You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
MiniDexed/src/minidexed.cpp

1943 lines
50 KiB

//
// minidexed.cpp
//
// MiniDexed - Dexed FM synthesizer for bare metal Raspberry Pi
// Copyright (C) 2022 The MiniDexed Team
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "minidexed.h"
#include <circle/logger.h>
#include <circle/memory.h>
#include <circle/sound/pwmsoundbasedevice.h>
#include <circle/sound/i2ssoundbasedevice.h>
#include <circle/sound/hdmisoundbasedevice.h>
#include <circle/gpiopin.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
LOGMODULE ("minidexed");
CMiniDexed::CMiniDexed (CConfig *pConfig, CInterruptSystem *pInterrupt,
CGPIOManager *pGPIOManager, CI2CMaster *pI2CMaster, FATFS *pFileSystem)
:
#ifdef ARM_ALLOW_MULTI_CORE
CMultiCoreSupport (CMemorySystem::Get ()),
#endif
m_pConfig (pConfig),
m_UI (this, pGPIOManager, pI2CMaster, pConfig),
m_PerformanceConfig (pFileSystem),
m_PCKeyboard (this, pConfig, &m_UI),
m_SerialMIDI (this, pInterrupt, pConfig, &m_UI),
m_bUseSerial (false),
m_pSoundDevice (0),
m_bChannelsSwapped (pConfig->GetChannelsSwapped ()),
#ifdef ARM_ALLOW_MULTI_CORE
m_nActiveTGsLog2 (0),
#endif
m_GetChunkTimer ("GetChunk",
1000000U * pConfig->GetChunkSize ()/2 / pConfig->GetSampleRate ()),
m_bProfileEnabled (m_pConfig->GetProfileEnabled ()),
m_bSavePerformance (false),
m_bSavePerformanceNewFile (false),
m_bSetNewPerformance (false),
m_bSetNewPerformanceBank (false),
m_bSetFirstPerformance (false),
m_bDeletePerformance (false),
m_bLoadPerformanceBusy(false),
m_bLoadPerformanceBankBusy(false)
{
assert (m_pConfig);
for (unsigned i = 0; i < CConfig::ToneGenerators; i++)
{
m_nVoiceBankID[i] = 0;
m_nVoiceBankIDMSB[i] = 0;
m_nProgram[i] = 0;
m_nVolume[i] = 100;
m_nPan[i] = 64;
m_nMasterTune[i] = 0;
m_nCutoff[i] = 99;
m_nResonance[i] = 0;
m_nMIDIChannel[i] = CMIDIDevice::Disabled;
m_nPitchBendRange[i] = 2;
m_nPitchBendStep[i] = 0;
m_nPortamentoMode[i] = 0;
m_nPortamentoGlissando[i] = 0;
m_nPortamentoTime[i] = 0;
m_bMonoMode[i]=0;
m_nNoteLimitLow[i] = 0;
m_nNoteLimitHigh[i] = 127;
m_nNoteShift[i] = 0;
m_nModulationWheelRange[i]=99;
m_nModulationWheelTarget[i]=7;
m_nFootControlRange[i]=99;
m_nFootControlTarget[i]=0;
m_nBreathControlRange[i]=99;
m_nBreathControlTarget[i]=0;
m_nAftertouchRange[i]=99;
m_nAftertouchTarget[i]=0;
m_nReverbSend[i] = 0;
m_uchOPMask[i] = 0b111111; // All operators on
m_pTG[i] = new CDexedAdapter (CConfig::MaxNotes, pConfig->GetSampleRate ());
assert (m_pTG[i]);
m_pTG[i]->setEngineType(pConfig->GetEngineType ());
m_pTG[i]->activate ();
}
if (pConfig->GetUSBGadgetMode())
{
#if RASPPI==5
LOGNOTE ("USB Gadget (Device) Mode NOT supported on RPI 5");
#else
LOGNOTE ("USB In Gadget (Device) Mode");
#endif
}
else
{
LOGNOTE ("USB In Host Mode");
}
for (unsigned i = 0; i < CConfig::MaxUSBMIDIDevices; i++)
{
m_pMIDIKeyboard[i] = new CMIDIKeyboard (this, pConfig, &m_UI, i);
assert (m_pMIDIKeyboard[i]);
}
// select the sound device
const char *pDeviceName = pConfig->GetSoundDevice ();
if (strcmp (pDeviceName, "i2s") == 0)
{
LOGNOTE ("I2S mode");
m_pSoundDevice = new CI2SSoundBaseDevice (pInterrupt, pConfig->GetSampleRate (),
pConfig->GetChunkSize (), false,
pI2CMaster, pConfig->GetDACI2CAddress ());
}
else if (strcmp (pDeviceName, "hdmi") == 0)
{
#if RASPPI==5
LOGNOTE ("HDMI mode NOT supported on RPI 5.");
#else
LOGNOTE ("HDMI mode");
m_pSoundDevice = new CHDMISoundBaseDevice (pInterrupt, pConfig->GetSampleRate (),
pConfig->GetChunkSize ());
// The channels are swapped by default in the HDMI sound driver.
// TODO: Remove this line, when this has been fixed in the driver.
m_bChannelsSwapped = !m_bChannelsSwapped;
#endif
}
else
{
LOGNOTE ("PWM mode");
m_pSoundDevice = new CPWMSoundBaseDevice (pInterrupt, pConfig->GetSampleRate (),
pConfig->GetChunkSize ());
}
#ifdef ARM_ALLOW_MULTI_CORE
for (unsigned nCore = 0; nCore < CORES; nCore++)
{
m_CoreStatus[nCore] = CoreStatusInit;
}
#endif
setMasterVolume(1.0);
// BEGIN setup tg_mixer
tg_mixer = new AudioStereoMixer<CConfig::ToneGenerators>(pConfig->GetChunkSize()/2);
// END setup tgmixer
// BEGIN setup reverb
reverb_send_mixer = new AudioStereoMixer<CConfig::ToneGenerators>(pConfig->GetChunkSize()/2);
reverb = new AudioEffectPlateReverb(pConfig->GetSampleRate());
SetParameter (ParameterReverbEnable, 1);
SetParameter (ParameterReverbSize, 70);
SetParameter (ParameterReverbHighDamp, 50);
SetParameter (ParameterReverbLowDamp, 50);
SetParameter (ParameterReverbLowPass, 30);
SetParameter (ParameterReverbDiffusion, 65);
SetParameter (ParameterReverbLevel, 99);
// END setup reverb
SetParameter (ParameterCompressorEnable, 1);
SetPerformanceSelectChannel(m_pConfig->GetPerformanceSelectChannel());
SetParameter (ParameterPerformanceBank, 0);
};
bool CMiniDexed::Initialize (void)
{
assert (m_pConfig);
assert (m_pSoundDevice);
if (!m_UI.Initialize ())
{
return false;
}
m_SysExFileLoader.Load (m_pConfig->GetHeaderlessSysExVoices ());
if (m_SerialMIDI.Initialize ())
{
LOGNOTE ("Serial MIDI interface enabled");
m_bUseSerial = true;
}
if (m_pConfig->GetMIDIRXProgramChange())
{
int nPerfCh = GetParameter(ParameterPerformanceSelectChannel);
if (nPerfCh == CMIDIDevice::Disabled) {
LOGNOTE("Program Change: Enabled for Voices");
} else if (nPerfCh == CMIDIDevice::OmniMode) {
LOGNOTE("Program Change: Enabled for Performances (Omni)");
} else {
LOGNOTE("Program Change: Enabled for Performances (CH %d)", nPerfCh+1);
}
} else {
LOGNOTE("Program Change: Disabled");
}
for (unsigned i = 0; i < CConfig::ToneGenerators; i++)
{
assert (m_pTG[i]);
SetVolume (100, i);
ProgramChange (0, i);
m_pTG[i]->setTranspose (24);
m_pTG[i]->setPBController (2, 0);
m_pTG[i]->setMWController (99, 1, 0);
m_pTG[i]->setFCController (99, 1, 0);
m_pTG[i]->setBCController (99, 1, 0);
m_pTG[i]->setATController (99, 1, 0);
tg_mixer->pan(i,mapfloat(m_nPan[i],0,127,0.0f,1.0f));
tg_mixer->gain(i,1.0f);
reverb_send_mixer->pan(i,mapfloat(m_nPan[i],0,127,0.0f,1.0f));
reverb_send_mixer->gain(i,mapfloat(m_nReverbSend[i],0,99,0.0f,1.0f));
}
m_PerformanceConfig.Init();
if (m_PerformanceConfig.Load ())
{
LoadPerformanceParameters();
}
else
{
SetMIDIChannel (CMIDIDevice::OmniMode, 0);
}
// setup and start the sound device
if (!m_pSoundDevice->AllocateQueueFrames (m_pConfig->GetChunkSize ()))
{
LOGERR ("Cannot allocate sound queue");
return false;
}
#ifndef ARM_ALLOW_MULTI_CORE
m_pSoundDevice->SetWriteFormat (SoundFormatSigned16, 1); // 16-bit Mono
#else
m_pSoundDevice->SetWriteFormat (SoundFormatSigned16, 2); // 16-bit Stereo
#endif
m_nQueueSizeFrames = m_pSoundDevice->GetQueueSizeFrames ();
m_pSoundDevice->Start ();
#ifdef ARM_ALLOW_MULTI_CORE
// start secondary cores
if (!CMultiCoreSupport::Initialize ())
{
return false;
}
#endif
return true;
}
void CMiniDexed::Process (bool bPlugAndPlayUpdated)
{
#ifndef ARM_ALLOW_MULTI_CORE
ProcessSound ();
#endif
for (unsigned i = 0; i < CConfig::MaxUSBMIDIDevices; i++)
{
assert (m_pMIDIKeyboard[i]);
m_pMIDIKeyboard[i]->Process (bPlugAndPlayUpdated);
}
m_PCKeyboard.Process (bPlugAndPlayUpdated);
if (m_bUseSerial)
{
m_SerialMIDI.Process ();
}
m_UI.Process ();
if (m_bSavePerformance)
{
DoSavePerformance ();
m_bSavePerformance = false;
}
if (m_bSavePerformanceNewFile)
{
DoSavePerformanceNewFile ();
m_bSavePerformanceNewFile = false;
}
if (m_bSetNewPerformanceBank && !m_bLoadPerformanceBusy && !m_bLoadPerformanceBankBusy)
{
DoSetNewPerformanceBank ();
if (m_nSetNewPerformanceBankID == GetActualPerformanceBankID())
{
m_bSetNewPerformanceBank = false;
}
// If there is no pending SetNewPerformance already, then see if we need to find the first performance to load
// NB: If called from the UI, then there will not be a SetNewPerformance, so load the first existing one.
// If called from MIDI, there will probably be a SetNewPerformance alongside the Bank select.
if (!m_bSetNewPerformance && m_bSetFirstPerformance)
{
DoSetFirstPerformance();
}
}
if (m_bSetNewPerformance && !m_bSetNewPerformanceBank && !m_bLoadPerformanceBusy && !m_bLoadPerformanceBankBusy)
{
DoSetNewPerformance ();
if (m_nSetNewPerformanceID == GetActualPerformanceID())
{
m_bSetNewPerformance = false;
}
}
if(m_bDeletePerformance)
{
DoDeletePerformance ();
m_bDeletePerformance = false;
}
if (m_bProfileEnabled)
{
m_GetChunkTimer.Dump ();
}
}
#ifdef ARM_ALLOW_MULTI_CORE
void CMiniDexed::Run (unsigned nCore)
{
assert (1 <= nCore && nCore < CORES);
if (nCore == 1)
{
m_CoreStatus[nCore] = CoreStatusIdle; // core 1 ready
// wait for cores 2 and 3 to be ready
for (unsigned nCore = 2; nCore < CORES; nCore++)
{
while (m_CoreStatus[nCore] != CoreStatusIdle)
{
// just wait
}
}
while (m_CoreStatus[nCore] != CoreStatusExit)
{
ProcessSound ();
}
}
else // core 2 and 3
{
while (1)
{
m_CoreStatus[nCore] = CoreStatusIdle; // ready to be kicked
while (m_CoreStatus[nCore] == CoreStatusIdle)
{
// just wait
}
// now kicked from core 1
if (m_CoreStatus[nCore] == CoreStatusExit)
{
m_CoreStatus[nCore] = CoreStatusUnknown;
break;
}
assert (m_CoreStatus[nCore] == CoreStatusBusy);
// process the TGs, assigned to this core (2 or 3)
assert (m_nFramesToProcess <= CConfig::MaxChunkSize);
unsigned nTG = CConfig::TGsCore1 + (nCore-2)*CConfig::TGsCore23;
for (unsigned i = 0; i < CConfig::TGsCore23; i++, nTG++)
{
assert (m_pTG[nTG]);
m_pTG[nTG]->getSamples (m_OutputLevel[nTG],m_nFramesToProcess);
}
}
}
}
#endif
CSysExFileLoader *CMiniDexed::GetSysExFileLoader (void)
{
return &m_SysExFileLoader;
}
CPerformanceConfig *CMiniDexed::GetPerformanceConfig (void)
{
return &m_PerformanceConfig;
}
void CMiniDexed::BankSelect (unsigned nBank, unsigned nTG)
{
nBank=constrain((int)nBank,0,16383);
assert (nTG < CConfig::ToneGenerators);
if (GetSysExFileLoader ()->IsValidBank(nBank))
{
// Only change if we have the bank loaded
m_nVoiceBankID[nTG] = nBank;
m_UI.ParameterChanged ();
}
}
void CMiniDexed::BankSelectPerformance (unsigned nBank)
{
nBank=constrain((int)nBank,0,16383);
if (GetPerformanceConfig ()->IsValidPerformanceBank(nBank))
{
// Only change if we have the bank loaded
m_nVoiceBankIDPerformance = nBank;
SetNewPerformanceBank (nBank);
m_UI.ParameterChanged ();
}
}
void CMiniDexed::BankSelectMSB (unsigned nBankMSB, unsigned nTG)
{
nBankMSB=constrain((int)nBankMSB,0,127);
assert (nTG < CConfig::ToneGenerators);
// MIDI Spec 1.0 "BANK SELECT" states:
// "The transmitter must transmit the MSB and LSB as a pair,
// and the Program Change must be sent immediately after
// the Bank Select pair."
//
// So it isn't possible to validate the selected bank ID until
// we receive both MSB and LSB so just store the MSB for now.
m_nVoiceBankIDMSB[nTG] = nBankMSB;
}
void CMiniDexed::BankSelectMSBPerformance (unsigned nBankMSB)
{
nBankMSB=constrain((int)nBankMSB,0,127);
m_nVoiceBankIDMSBPerformance = nBankMSB;
}
void CMiniDexed::BankSelectLSB (unsigned nBankLSB, unsigned nTG)
{
nBankLSB=constrain((int)nBankLSB,0,127);
assert (nTG < CConfig::ToneGenerators);
unsigned nBank = m_nVoiceBankID[nTG];
unsigned nBankMSB = m_nVoiceBankIDMSB[nTG];
nBank = (nBankMSB << 7) + nBankLSB;
// Now should have both MSB and LSB so enable the BankSelect
BankSelect(nBank, nTG);
}
void CMiniDexed::BankSelectLSBPerformance (unsigned nBankLSB)
{
nBankLSB=constrain((int)nBankLSB,0,127);
unsigned nBank = m_nVoiceBankIDPerformance;
unsigned nBankMSB = m_nVoiceBankIDMSBPerformance;
nBank = (nBankMSB << 7) + nBankLSB;
// Now should have both MSB and LSB so enable the BankSelect
BankSelectPerformance(nBank);
}
void CMiniDexed::ProgramChange (unsigned nProgram, unsigned nTG)
{
assert (m_pConfig);
unsigned nBankOffset;
bool bPCAcrossBanks = m_pConfig->GetExpandPCAcrossBanks();
if (bPCAcrossBanks)
{
// Note: This doesn't actually change the bank in use
// but will allow PC messages of 0..127
// to select across four consecutive banks of voices.
//
// So if the current bank = 5 then:
// PC 0-31 = Bank 5, Program 0-31
// PC 32-63 = Bank 6, Program 0-31
// PC 64-95 = Bank 7, Program 0-31
// PC 96-127 = Bank 8, Program 0-31
nProgram=constrain((int)nProgram,0,127);
nBankOffset = nProgram >> 5;
nProgram = nProgram % 32;
}
else
{
nBankOffset = 0;
nProgram=constrain((int)nProgram,0,31);
}
assert (nTG < CConfig::ToneGenerators);
m_nProgram[nTG] = nProgram;
uint8_t Buffer[156];
m_SysExFileLoader.GetVoice (m_nVoiceBankID[nTG]+nBankOffset, nProgram, Buffer);
assert (m_pTG[nTG]);
m_pTG[nTG]->loadVoiceParameters (Buffer);
if (m_pConfig->GetMIDIAutoVoiceDumpOnPC())
{
// Only do the voice dump back out over MIDI if we have a specific
// MIDI channel configured for this TG
if (m_nMIDIChannel[nTG] < CMIDIDevice::Channels)
{
m_SerialMIDI.SendSystemExclusiveVoice(nProgram,0,nTG);
}
}
m_UI.ParameterChanged ();
}
void CMiniDexed::ProgramChangePerformance (unsigned nProgram)
{
if (m_nParameter[ParameterPerformanceSelectChannel] != CMIDIDevice::Disabled)
{
// Program Change messages change Performances.
if (m_PerformanceConfig.IsValidPerformance(nProgram))
{
SetNewPerformance(nProgram);
}
m_UI.ParameterChanged ();
}
}
void CMiniDexed::SetVolume (unsigned nVolume, unsigned nTG)
{
nVolume=constrain((int)nVolume,0,127);
assert (nTG < CConfig::ToneGenerators);
m_nVolume[nTG] = nVolume;
assert (m_pTG[nTG]);
m_pTG[nTG]->setGain (nVolume / 127.0f);
m_UI.ParameterChanged ();
}
void CMiniDexed::SetPan (unsigned nPan, unsigned nTG)
{
nPan=constrain((int)nPan,0,127);
assert (nTG < CConfig::ToneGenerators);
m_nPan[nTG] = nPan;
tg_mixer->pan(nTG,mapfloat(nPan,0,127,0.0f,1.0f));
reverb_send_mixer->pan(nTG,mapfloat(nPan,0,127,0.0f,1.0f));
m_UI.ParameterChanged ();
}
void CMiniDexed::SetReverbSend (unsigned nReverbSend, unsigned nTG)
{
nReverbSend=constrain((int)nReverbSend,0,99);
assert (nTG < CConfig::ToneGenerators);
m_nReverbSend[nTG] = nReverbSend;
reverb_send_mixer->gain(nTG,mapfloat(nReverbSend,0,99,0.0f,1.0f));
m_UI.ParameterChanged ();
}
void CMiniDexed::SetMasterTune (int nMasterTune, unsigned nTG)
{
nMasterTune=constrain((int)nMasterTune,-99,99);
assert (nTG < CConfig::ToneGenerators);
m_nMasterTune[nTG] = nMasterTune;
assert (m_pTG[nTG]);
m_pTG[nTG]->setMasterTune ((int8_t) nMasterTune);
m_UI.ParameterChanged ();
}
void CMiniDexed::SetCutoff (int nCutoff, unsigned nTG)
{
nCutoff = constrain (nCutoff, 0, 99);
assert (nTG < CConfig::ToneGenerators);
m_nCutoff[nTG] = nCutoff;
assert (m_pTG[nTG]);
m_pTG[nTG]->setFilterCutoff (mapfloat (nCutoff, 0, 99, 0.0f, 1.0f));
m_UI.ParameterChanged ();
}
void CMiniDexed::SetResonance (int nResonance, unsigned nTG)
{
nResonance = constrain (nResonance, 0, 99);
assert (nTG < CConfig::ToneGenerators);
m_nResonance[nTG] = nResonance;
assert (m_pTG[nTG]);
m_pTG[nTG]->setFilterResonance (mapfloat (nResonance, 0, 99, 0.0f, 1.0f));
m_UI.ParameterChanged ();
}
void CMiniDexed::SetMIDIChannel (uint8_t uchChannel, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (uchChannel < CMIDIDevice::ChannelUnknown);
m_nMIDIChannel[nTG] = uchChannel;
for (unsigned i = 0; i < CConfig::MaxUSBMIDIDevices; i++)
{
assert (m_pMIDIKeyboard[i]);
m_pMIDIKeyboard[i]->SetChannel (uchChannel, nTG);
}
m_PCKeyboard.SetChannel (uchChannel, nTG);
if (m_bUseSerial)
{
m_SerialMIDI.SetChannel (uchChannel, nTG);
}
#ifdef ARM_ALLOW_MULTI_CORE
unsigned nActiveTGs = 0;
for (unsigned nTG = 0; nTG < CConfig::ToneGenerators; nTG++)
{
if (m_nMIDIChannel[nTG] != CMIDIDevice::Disabled)
{
nActiveTGs++;
}
}
assert (nActiveTGs <= 8);
static const unsigned Log2[] = {0, 0, 1, 2, 2, 3, 3, 3, 3};
m_nActiveTGsLog2 = Log2[nActiveTGs];
#endif
m_UI.ParameterChanged ();
}
void CMiniDexed::keyup (int16_t pitch, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
pitch = ApplyNoteLimits (pitch, nTG);
if (pitch >= 0)
{
m_pTG[nTG]->keyup (pitch);
}
}
void CMiniDexed::keydown (int16_t pitch, uint8_t velocity, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
pitch = ApplyNoteLimits (pitch, nTG);
if (pitch >= 0)
{
m_pTG[nTG]->keydown (pitch, velocity);
}
}
int16_t CMiniDexed::ApplyNoteLimits (int16_t pitch, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
if ( pitch < (int16_t) m_nNoteLimitLow[nTG]
|| pitch > (int16_t) m_nNoteLimitHigh[nTG])
{
return -1;
}
pitch += m_nNoteShift[nTG];
if ( pitch < 0
|| pitch > 127)
{
return -1;
}
return pitch;
}
void CMiniDexed::setSustain(bool sustain, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_pTG[nTG]->setSustain (sustain);
}
void CMiniDexed::panic(uint8_t value, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
if (value == 0) {
m_pTG[nTG]->panic ();
}
}
void CMiniDexed::notesOff(uint8_t value, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
if (value == 0) {
m_pTG[nTG]->notesOff ();
}
}
void CMiniDexed::setModWheel (uint8_t value, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_pTG[nTG]->setModWheel (value);
}
void CMiniDexed::setFootController (uint8_t value, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_pTG[nTG]->setFootController (value);
}
void CMiniDexed::setBreathController (uint8_t value, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_pTG[nTG]->setBreathController (value);
}
void CMiniDexed::setAftertouch (uint8_t value, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_pTG[nTG]->setAftertouch (value);
}
void CMiniDexed::setPitchbend (int16_t value, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_pTG[nTG]->setPitchbend (value);
}
void CMiniDexed::ControllersRefresh (unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_pTG[nTG]->ControllersRefresh ();
}
void CMiniDexed::SetParameter (TParameter Parameter, int nValue)
{
assert (reverb);
assert (Parameter < ParameterUnknown);
m_nParameter[Parameter] = nValue;
switch (Parameter)
{
case ParameterCompressorEnable:
for (unsigned nTG = 0; nTG < CConfig::ToneGenerators; nTG++)
{
assert (m_pTG[nTG]);
m_pTG[nTG]->setCompressor (!!nValue);
}
break;
case ParameterReverbEnable:
nValue=constrain((int)nValue,0,1);
m_ReverbSpinLock.Acquire ();
reverb->set_bypass (!nValue);
m_ReverbSpinLock.Release ();
break;
case ParameterReverbSize:
nValue=constrain((int)nValue,0,99);
m_ReverbSpinLock.Acquire ();
reverb->size (nValue / 99.0f);
m_ReverbSpinLock.Release ();
break;
case ParameterReverbHighDamp:
nValue=constrain((int)nValue,0,99);
m_ReverbSpinLock.Acquire ();
reverb->hidamp (nValue / 99.0f);
m_ReverbSpinLock.Release ();
break;
case ParameterReverbLowDamp:
nValue=constrain((int)nValue,0,99);
m_ReverbSpinLock.Acquire ();
reverb->lodamp (nValue / 99.0f);
m_ReverbSpinLock.Release ();
break;
case ParameterReverbLowPass:
nValue=constrain((int)nValue,0,99);
m_ReverbSpinLock.Acquire ();
reverb->lowpass (nValue / 99.0f);
m_ReverbSpinLock.Release ();
break;
case ParameterReverbDiffusion:
nValue=constrain((int)nValue,0,99);
m_ReverbSpinLock.Acquire ();
reverb->diffusion (nValue / 99.0f);
m_ReverbSpinLock.Release ();
break;
case ParameterReverbLevel:
nValue=constrain((int)nValue,0,99);
m_ReverbSpinLock.Acquire ();
reverb->level (nValue / 99.0f);
m_ReverbSpinLock.Release ();
break;
case ParameterPerformanceSelectChannel:
// Nothing more to do
break;
case ParameterPerformanceBank:
BankSelectPerformance(nValue);
break;
default:
assert (0);
break;
}
}
int CMiniDexed::GetParameter (TParameter Parameter)
{
assert (Parameter < ParameterUnknown);
return m_nParameter[Parameter];
}
void CMiniDexed::SetTGParameter (TTGParameter Parameter, int nValue, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
switch (Parameter)
{
case TGParameterVoiceBank: BankSelect (nValue, nTG); break;
case TGParameterVoiceBankMSB: BankSelectMSB (nValue, nTG); break;
case TGParameterVoiceBankLSB: BankSelectLSB (nValue, nTG); break;
case TGParameterProgram: ProgramChange (nValue, nTG); break;
case TGParameterVolume: SetVolume (nValue, nTG); break;
case TGParameterPan: SetPan (nValue, nTG); break;
case TGParameterMasterTune: SetMasterTune (nValue, nTG); break;
case TGParameterCutoff: SetCutoff (nValue, nTG); break;
case TGParameterResonance: SetResonance (nValue, nTG); break;
case TGParameterPitchBendRange: setPitchbendRange (nValue, nTG); break;
case TGParameterPitchBendStep: setPitchbendStep (nValue, nTG); break;
case TGParameterPortamentoMode: setPortamentoMode (nValue, nTG); break;
case TGParameterPortamentoGlissando: setPortamentoGlissando (nValue, nTG); break;
case TGParameterPortamentoTime: setPortamentoTime (nValue, nTG); break;
case TGParameterMonoMode: setMonoMode (nValue , nTG); break;
case TGParameterMWRange: setModController(0, 0, nValue, nTG); break;
case TGParameterMWPitch: setModController(0, 1, nValue, nTG); break;
case TGParameterMWAmplitude: setModController(0, 2, nValue, nTG); break;
case TGParameterMWEGBias: setModController(0, 3, nValue, nTG); break;
case TGParameterFCRange: setModController(1, 0, nValue, nTG); break;
case TGParameterFCPitch: setModController(1, 1, nValue, nTG); break;
case TGParameterFCAmplitude: setModController(1, 2, nValue, nTG); break;
case TGParameterFCEGBias: setModController(1, 3, nValue, nTG); break;
case TGParameterBCRange: setModController(2, 0, nValue, nTG); break;
case TGParameterBCPitch: setModController(2, 1, nValue, nTG); break;
case TGParameterBCAmplitude: setModController(2, 2, nValue, nTG); break;
case TGParameterBCEGBias: setModController(2, 3, nValue, nTG); break;
case TGParameterATRange: setModController(3, 0, nValue, nTG); break;
case TGParameterATPitch: setModController(3, 1, nValue, nTG); break;
case TGParameterATAmplitude: setModController(3, 2, nValue, nTG); break;
case TGParameterATEGBias: setModController(3, 3, nValue, nTG); break;
case TGParameterMIDIChannel:
assert (0 <= nValue && nValue <= 255);
SetMIDIChannel ((uint8_t) nValue, nTG);
break;
case TGParameterReverbSend: SetReverbSend (nValue, nTG); break;
default:
assert (0);
break;
}
}
int CMiniDexed::GetTGParameter (TTGParameter Parameter, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
switch (Parameter)
{
case TGParameterVoiceBank: return m_nVoiceBankID[nTG];
case TGParameterVoiceBankMSB: return m_nVoiceBankID[nTG] >> 7;
case TGParameterVoiceBankLSB: return m_nVoiceBankID[nTG] & 0x7F;
case TGParameterProgram: return m_nProgram[nTG];
case TGParameterVolume: return m_nVolume[nTG];
case TGParameterPan: return m_nPan[nTG];
case TGParameterMasterTune: return m_nMasterTune[nTG];
case TGParameterCutoff: return m_nCutoff[nTG];
case TGParameterResonance: return m_nResonance[nTG];
case TGParameterMIDIChannel: return m_nMIDIChannel[nTG];
case TGParameterReverbSend: return m_nReverbSend[nTG];
case TGParameterPitchBendRange: return m_nPitchBendRange[nTG];
case TGParameterPitchBendStep: return m_nPitchBendStep[nTG];
case TGParameterPortamentoMode: return m_nPortamentoMode[nTG];
case TGParameterPortamentoGlissando: return m_nPortamentoGlissando[nTG];
case TGParameterPortamentoTime: return m_nPortamentoTime[nTG];
case TGParameterMonoMode: return m_bMonoMode[nTG] ? 1 : 0;
case TGParameterMWRange: return getModController(0, 0, nTG);
case TGParameterMWPitch: return getModController(0, 1, nTG);
case TGParameterMWAmplitude: return getModController(0, 2, nTG);
case TGParameterMWEGBias: return getModController(0, 3, nTG);
case TGParameterFCRange: return getModController(1, 0, nTG);
case TGParameterFCPitch: return getModController(1, 1, nTG);
case TGParameterFCAmplitude: return getModController(1, 2, nTG);
case TGParameterFCEGBias: return getModController(1, 3, nTG);
case TGParameterBCRange: return getModController(2, 0, nTG);
case TGParameterBCPitch: return getModController(2, 1, nTG);
case TGParameterBCAmplitude: return getModController(2, 2, nTG);
case TGParameterBCEGBias: return getModController(2, 3, nTG);
case TGParameterATRange: return getModController(3, 0, nTG);
case TGParameterATPitch: return getModController(3, 1, nTG);
case TGParameterATAmplitude: return getModController(3, 2, nTG);
case TGParameterATEGBias: return getModController(3, 3, nTG);
default:
assert (0);
return 0;
}
}
void CMiniDexed::SetVoiceParameter (uint8_t uchOffset, uint8_t uchValue, unsigned nOP, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
assert (nOP <= 6);
if (nOP < 6)
{
if (uchOffset == DEXED_OP_ENABLE)
{
if (uchValue)
{
m_uchOPMask[nTG] |= 1 << nOP;
}
else
{
m_uchOPMask[nTG] &= ~(1 << nOP);
}
m_pTG[nTG]->setOPAll (m_uchOPMask[nTG]);
return;
}
nOP = 5 - nOP; // OPs are in reverse order
}
uchOffset += nOP * 21;
assert (uchOffset < 156);
m_pTG[nTG]->setVoiceDataElement (uchOffset, uchValue);
}
uint8_t CMiniDexed::GetVoiceParameter (uint8_t uchOffset, unsigned nOP, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
assert (nOP <= 6);
if (nOP < 6)
{
if (uchOffset == DEXED_OP_ENABLE)
{
return !!(m_uchOPMask[nTG] & (1 << nOP));
}
nOP = 5 - nOP; // OPs are in reverse order
}
uchOffset += nOP * 21;
assert (uchOffset < 156);
return m_pTG[nTG]->getVoiceDataElement (uchOffset);
}
std::string CMiniDexed::GetVoiceName (unsigned nTG)
{
char VoiceName[11];
memset (VoiceName, 0, sizeof VoiceName);
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_pTG[nTG]->setName (VoiceName);
std::string Result (VoiceName);
return Result;
}
#ifndef ARM_ALLOW_MULTI_CORE
void CMiniDexed::ProcessSound (void)
{
assert (m_pSoundDevice);
unsigned nFrames = m_nQueueSizeFrames - m_pSoundDevice->GetQueueFramesAvail ();
if (nFrames >= m_nQueueSizeFrames/2)
{
if (m_bProfileEnabled)
{
m_GetChunkTimer.Start ();
}
float32_t SampleBuffer[nFrames];
m_pTG[0]->getSamples (SampleBuffer, nFrames);
// Convert single float array (mono) to int16 array
int16_t tmp_int[nFrames];
arm_float_to_q15(SampleBuffer,tmp_int,nFrames);
if (m_pSoundDevice->Write (tmp_int, sizeof(tmp_int)) != (int) sizeof(tmp_int))
{
LOGERR ("Sound data dropped");
}
if (m_bProfileEnabled)
{
m_GetChunkTimer.Stop ();
}
}
}
#else // #ifdef ARM_ALLOW_MULTI_CORE
void CMiniDexed::ProcessSound (void)
{
assert (m_pSoundDevice);
unsigned nFrames = m_nQueueSizeFrames - m_pSoundDevice->GetQueueFramesAvail ();
if (nFrames >= m_nQueueSizeFrames/2)
{
if (m_bProfileEnabled)
{
m_GetChunkTimer.Start ();
}
m_nFramesToProcess = nFrames;
// kick secondary cores
for (unsigned nCore = 2; nCore < CORES; nCore++)
{
assert (m_CoreStatus[nCore] == CoreStatusIdle);
m_CoreStatus[nCore] = CoreStatusBusy;
}
// process the TGs assigned to core 1
assert (nFrames <= CConfig::MaxChunkSize);
for (unsigned i = 0; i < CConfig::TGsCore1; i++)
{
assert (m_pTG[i]);
m_pTG[i]->getSamples (m_OutputLevel[i], nFrames);
}
// wait for cores 2 and 3 to complete their work
for (unsigned nCore = 2; nCore < CORES; nCore++)
{
while (m_CoreStatus[nCore] != CoreStatusIdle)
{
// just wait
}
}
//
// Audio signal path after tone generators starts here
//
assert (CConfig::ToneGenerators == 8);
uint8_t indexL=0, indexR=1;
// BEGIN TG mixing
float32_t tmp_float[nFrames*2];
int16_t tmp_int[nFrames*2];
if(nMasterVolume > 0.0)
{
for (uint8_t i = 0; i < CConfig::ToneGenerators; i++)
{
tg_mixer->doAddMix(i,m_OutputLevel[i]);
reverb_send_mixer->doAddMix(i,m_OutputLevel[i]);
}
// END TG mixing
// BEGIN create SampleBuffer for holding audio data
float32_t SampleBuffer[2][nFrames];
// END create SampleBuffer for holding audio data
// get the mix of all TGs
tg_mixer->getMix(SampleBuffer[indexL], SampleBuffer[indexR]);
// BEGIN adding reverb
if (m_nParameter[ParameterReverbEnable])
{
float32_t ReverbBuffer[2][nFrames];
float32_t ReverbSendBuffer[2][nFrames];
arm_fill_f32(0.0f, ReverbBuffer[indexL], nFrames);
arm_fill_f32(0.0f, ReverbBuffer[indexR], nFrames);
arm_fill_f32(0.0f, ReverbSendBuffer[indexR], nFrames);
arm_fill_f32(0.0f, ReverbSendBuffer[indexL], nFrames);
m_ReverbSpinLock.Acquire ();
reverb_send_mixer->getMix(ReverbSendBuffer[indexL], ReverbSendBuffer[indexR]);
reverb->doReverb(ReverbSendBuffer[indexL],ReverbSendBuffer[indexR],ReverbBuffer[indexL], ReverbBuffer[indexR],nFrames);
// scale down and add left reverb buffer by reverb level
arm_scale_f32(ReverbBuffer[indexL], reverb->get_level(), ReverbBuffer[indexL], nFrames);
arm_add_f32(SampleBuffer[indexL], ReverbBuffer[indexL], SampleBuffer[indexL], nFrames);
// scale down and add right reverb buffer by reverb level
arm_scale_f32(ReverbBuffer[indexR], reverb->get_level(), ReverbBuffer[indexR], nFrames);
arm_add_f32(SampleBuffer[indexR], ReverbBuffer[indexR], SampleBuffer[indexR], nFrames);
m_ReverbSpinLock.Release ();
}
// END adding reverb
// swap stereo channels if needed prior to writing back out
if (m_bChannelsSwapped)
{
indexL=1;
indexR=0;
}
// Convert dual float array (left, right) to single int16 array (left/right)
for(uint16_t i=0; i<nFrames;i++)
{
if(nMasterVolume >0.0 && nMasterVolume <1.0)
{
tmp_float[i*2]=SampleBuffer[indexL][i] * nMasterVolume;
tmp_float[(i*2)+1]=SampleBuffer[indexR][i] * nMasterVolume;
}
else if(nMasterVolume == 1.0)
{
tmp_float[i*2]=SampleBuffer[indexL][i];
tmp_float[(i*2)+1]=SampleBuffer[indexR][i];
}
}
arm_float_to_q15(tmp_float,tmp_int,nFrames*2);
}
else
arm_fill_q15(0, tmp_int, nFrames * 2);
if (m_pSoundDevice->Write (tmp_int, sizeof(tmp_int)) != (int) sizeof(tmp_int))
{
LOGERR ("Sound data dropped");
}
if (m_bProfileEnabled)
{
m_GetChunkTimer.Stop ();
}
}
}
#endif
unsigned CMiniDexed::GetPerformanceSelectChannel (void)
{
// Stores and returns Select Channel using MIDI Device Channel definitions
return (unsigned) GetParameter (ParameterPerformanceSelectChannel);
}
void CMiniDexed::SetPerformanceSelectChannel (unsigned uCh)
{
// Turns a configuration setting to MIDI Device Channel definitions
// Mirrors the logic in Performance Config for handling MIDI channel configuration
if (uCh == 0)
{
SetParameter (ParameterPerformanceSelectChannel, CMIDIDevice::Disabled);
}
else if (uCh < CMIDIDevice::Channels)
{
SetParameter (ParameterPerformanceSelectChannel, uCh - 1);
}
else
{
SetParameter (ParameterPerformanceSelectChannel, CMIDIDevice::OmniMode);
}
}
bool CMiniDexed::SavePerformance (bool bSaveAsDeault)
{
if (m_PerformanceConfig.GetInternalFolderOk())
{
m_bSavePerformance = true;
m_bSaveAsDeault=bSaveAsDeault;
return true;
}
else
{
return false;
}
}
bool CMiniDexed::DoSavePerformance (void)
{
for (unsigned nTG = 0; nTG < CConfig::ToneGenerators; nTG++)
{
m_PerformanceConfig.SetBankNumber (m_nVoiceBankID[nTG], nTG);
m_PerformanceConfig.SetVoiceNumber (m_nProgram[nTG], nTG);
m_PerformanceConfig.SetMIDIChannel (m_nMIDIChannel[nTG], nTG);
m_PerformanceConfig.SetVolume (m_nVolume[nTG], nTG);
m_PerformanceConfig.SetPan (m_nPan[nTG], nTG);
m_PerformanceConfig.SetDetune (m_nMasterTune[nTG], nTG);
m_PerformanceConfig.SetCutoff (m_nCutoff[nTG], nTG);
m_PerformanceConfig.SetResonance (m_nResonance[nTG], nTG);
m_PerformanceConfig.SetPitchBendRange (m_nPitchBendRange[nTG], nTG);
m_PerformanceConfig.SetPitchBendStep (m_nPitchBendStep[nTG], nTG);
m_PerformanceConfig.SetPortamentoMode (m_nPortamentoMode[nTG], nTG);
m_PerformanceConfig.SetPortamentoGlissando (m_nPortamentoGlissando[nTG], nTG);
m_PerformanceConfig.SetPortamentoTime (m_nPortamentoTime[nTG], nTG);
m_PerformanceConfig.SetNoteLimitLow (m_nNoteLimitLow[nTG], nTG);
m_PerformanceConfig.SetNoteLimitHigh (m_nNoteLimitHigh[nTG], nTG);
m_PerformanceConfig.SetNoteShift (m_nNoteShift[nTG], nTG);
m_pTG[nTG]->getVoiceData(m_nRawVoiceData);
m_PerformanceConfig.SetVoiceDataToTxt (m_nRawVoiceData, nTG);
m_PerformanceConfig.SetMonoMode (m_bMonoMode[nTG], nTG);
m_PerformanceConfig.SetModulationWheelRange (m_nModulationWheelRange[nTG], nTG);
m_PerformanceConfig.SetModulationWheelTarget (m_nModulationWheelTarget[nTG], nTG);
m_PerformanceConfig.SetFootControlRange (m_nFootControlRange[nTG], nTG);
m_PerformanceConfig.SetFootControlTarget (m_nFootControlTarget[nTG], nTG);
m_PerformanceConfig.SetBreathControlRange (m_nBreathControlRange[nTG], nTG);
m_PerformanceConfig.SetBreathControlTarget (m_nBreathControlTarget[nTG], nTG);
m_PerformanceConfig.SetAftertouchRange (m_nAftertouchRange[nTG], nTG);
m_PerformanceConfig.SetAftertouchTarget (m_nAftertouchTarget[nTG], nTG);
m_PerformanceConfig.SetReverbSend (m_nReverbSend[nTG], nTG);
}
m_PerformanceConfig.SetCompressorEnable (!!m_nParameter[ParameterCompressorEnable]);
m_PerformanceConfig.SetReverbEnable (!!m_nParameter[ParameterReverbEnable]);
m_PerformanceConfig.SetReverbSize (m_nParameter[ParameterReverbSize]);
m_PerformanceConfig.SetReverbHighDamp (m_nParameter[ParameterReverbHighDamp]);
m_PerformanceConfig.SetReverbLowDamp (m_nParameter[ParameterReverbLowDamp]);
m_PerformanceConfig.SetReverbLowPass (m_nParameter[ParameterReverbLowPass]);
m_PerformanceConfig.SetReverbDiffusion (m_nParameter[ParameterReverbDiffusion]);
m_PerformanceConfig.SetReverbLevel (m_nParameter[ParameterReverbLevel]);
if(m_bSaveAsDeault)
{
m_PerformanceConfig.SetNewPerformance(0);
}
return m_PerformanceConfig.Save ();
}
void CMiniDexed::setMonoMode(uint8_t mono, uint8_t nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_bMonoMode[nTG]= mono != 0;
m_pTG[nTG]->setMonoMode(constrain(mono, 0, 1));
m_pTG[nTG]->doRefreshVoice();
m_UI.ParameterChanged ();
}
void CMiniDexed::setPitchbendRange(uint8_t range, uint8_t nTG)
{
range = constrain (range, 0, 12);
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_nPitchBendRange[nTG] = range;
m_pTG[nTG]->setPitchbendRange(range);
m_pTG[nTG]->ControllersRefresh();
m_UI.ParameterChanged ();
}
void CMiniDexed::setPitchbendStep(uint8_t step, uint8_t nTG)
{
step= constrain (step, 0, 12);
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_nPitchBendStep[nTG] = step;
m_pTG[nTG]->setPitchbendStep(step);
m_pTG[nTG]->ControllersRefresh();
m_UI.ParameterChanged ();
}
void CMiniDexed::setPortamentoMode(uint8_t mode, uint8_t nTG)
{
mode= constrain (mode, 0, 1);
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_nPortamentoMode[nTG] = mode;
m_pTG[nTG]->setPortamentoMode(mode);
m_pTG[nTG]->ControllersRefresh();
m_UI.ParameterChanged ();
}
void CMiniDexed::setPortamentoGlissando(uint8_t glissando, uint8_t nTG)
{
glissando = constrain (glissando, 0, 1);
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_nPortamentoGlissando[nTG] = glissando;
m_pTG[nTG]->setPortamentoGlissando(glissando);
m_pTG[nTG]->ControllersRefresh();
m_UI.ParameterChanged ();
}
void CMiniDexed::setPortamentoTime(uint8_t time, uint8_t nTG)
{
time = constrain (time, 0, 99);
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_nPortamentoTime[nTG] = time;
m_pTG[nTG]->setPortamentoTime(time);
m_pTG[nTG]->ControllersRefresh();
m_UI.ParameterChanged ();
}
void CMiniDexed::setModWheelRange(uint8_t range, uint8_t nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_nModulationWheelRange[nTG] = range;
m_pTG[nTG]->setMWController(range, m_pTG[nTG]->getModWheelTarget(), 0);
// m_pTG[nTG]->setModWheelRange(constrain(range, 0, 99)); replaces with the above due to wrong constrain on dexed_synth module.
m_pTG[nTG]->ControllersRefresh();
m_UI.ParameterChanged ();
}
void CMiniDexed::setModWheelTarget(uint8_t target, uint8_t nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_nModulationWheelTarget[nTG] = target;
m_pTG[nTG]->setModWheelTarget(constrain(target, 0, 7));
m_pTG[nTG]->ControllersRefresh();
m_UI.ParameterChanged ();
}
void CMiniDexed::setFootControllerRange(uint8_t range, uint8_t nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_nFootControlRange[nTG]=range;
m_pTG[nTG]->setFCController(range, m_pTG[nTG]->getFootControllerTarget(), 0);
// m_pTG[nTG]->setFootControllerRange(constrain(range, 0, 99)); replaces with the above due to wrong constrain on dexed_synth module.
m_pTG[nTG]->ControllersRefresh();
m_UI.ParameterChanged ();
}
void CMiniDexed::setFootControllerTarget(uint8_t target, uint8_t nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_nFootControlTarget[nTG] = target;
m_pTG[nTG]->setFootControllerTarget(constrain(target, 0, 7));
m_pTG[nTG]->ControllersRefresh();
m_UI.ParameterChanged ();
}
void CMiniDexed::setBreathControllerRange(uint8_t range, uint8_t nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_nBreathControlRange[nTG]=range;
m_pTG[nTG]->setBCController(range, m_pTG[nTG]->getBreathControllerTarget(), 0);
//m_pTG[nTG]->setBreathControllerRange(constrain(range, 0, 99));
m_pTG[nTG]->ControllersRefresh();
m_UI.ParameterChanged ();
}
void CMiniDexed::setBreathControllerTarget(uint8_t target, uint8_t nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_nBreathControlTarget[nTG]=target;
m_pTG[nTG]->setBreathControllerTarget(constrain(target, 0, 7));
m_pTG[nTG]->ControllersRefresh();
m_UI.ParameterChanged ();
}
void CMiniDexed::setAftertouchRange(uint8_t range, uint8_t nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_nAftertouchRange[nTG]=range;
m_pTG[nTG]->setATController(range, m_pTG[nTG]->getAftertouchTarget(), 0);
// m_pTG[nTG]->setAftertouchRange(constrain(range, 0, 99));
m_pTG[nTG]->ControllersRefresh();
m_UI.ParameterChanged ();
}
void CMiniDexed::setAftertouchTarget(uint8_t target, uint8_t nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_nAftertouchTarget[nTG]=target;
m_pTG[nTG]->setAftertouchTarget(constrain(target, 0, 7));
m_pTG[nTG]->ControllersRefresh();
m_UI.ParameterChanged ();
}
void CMiniDexed::loadVoiceParameters(const uint8_t* data, uint8_t nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
uint8_t voice[161];
memcpy(voice, data, sizeof(uint8_t)*161);
// fix voice name
for (uint8_t i = 0; i < 10; i++)
{
if (voice[151 + i] > 126) // filter characters
voice[151 + i] = 32;
}
m_pTG[nTG]->loadVoiceParameters(&voice[6]);
m_pTG[nTG]->doRefreshVoice();
m_UI.ParameterChanged ();
}
void CMiniDexed::setVoiceDataElement(uint8_t data, uint8_t number, uint8_t nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_pTG[nTG]->setVoiceDataElement(constrain(data, 0, 155),constrain(number, 0, 99));
//m_pTG[nTG]->doRefreshVoice();
m_UI.ParameterChanged ();
}
int16_t CMiniDexed::checkSystemExclusive(const uint8_t* pMessage,const uint16_t nLength, uint8_t nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
return(m_pTG[nTG]->checkSystemExclusive(pMessage, nLength));
}
void CMiniDexed::getSysExVoiceDump(uint8_t* dest, uint8_t nTG)
{
uint8_t checksum = 0;
uint8_t data[155];
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
m_pTG[nTG]->getVoiceData(data);
dest[0] = 0xF0; // SysEx start
dest[1] = 0x43; // ID=Yamaha
dest[2] = 0x00 | m_nMIDIChannel[nTG]; // 0x0c Sub-status 0 and MIDI channel
dest[3] = 0x00; // Format number (0=1 voice)
dest[4] = 0x01; // Byte count MSB
dest[5] = 0x1B; // Byte count LSB
for (uint8_t n = 0; n < 155; n++)
{
checksum -= data[n];
dest[6 + n] = data[n];
}
dest[161] = checksum & 0x7f; // Checksum
dest[162] = 0xF7; // SysEx end
}
void CMiniDexed::setMasterVolume (float32_t vol)
{
if(vol < 0.0)
vol = 0.0;
else if(vol > 1.0)
vol = 1.0;
nMasterVolume=vol;
}
std::string CMiniDexed::GetPerformanceFileName(unsigned nID)
{
return m_PerformanceConfig.GetPerformanceFileName(nID);
}
std::string CMiniDexed::GetPerformanceName(unsigned nID)
{
return m_PerformanceConfig.GetPerformanceName(nID);
}
unsigned CMiniDexed::GetLastPerformance()
{
return m_PerformanceConfig.GetLastPerformance();
}
unsigned CMiniDexed::GetPerformanceBank()
{
return m_PerformanceConfig.GetPerformanceBank();
}
unsigned CMiniDexed::GetLastPerformanceBank()
{
return m_PerformanceConfig.GetLastPerformanceBank();
}
unsigned CMiniDexed::GetActualPerformanceID()
{
return m_PerformanceConfig.GetActualPerformanceID();
}
void CMiniDexed::SetActualPerformanceID(unsigned nID)
{
m_PerformanceConfig.SetActualPerformanceID(nID);
}
unsigned CMiniDexed::GetActualPerformanceBankID()
{
return m_PerformanceConfig.GetActualPerformanceBankID();
}
void CMiniDexed::SetActualPerformanceBankID(unsigned nBankID)
{
m_PerformanceConfig.SetActualPerformanceBankID(nBankID);
}
bool CMiniDexed::SetNewPerformance(unsigned nID)
{
m_bSetNewPerformance = true;
m_nSetNewPerformanceID = nID;
return true;
}
bool CMiniDexed::SetNewPerformanceBank(unsigned nBankID)
{
m_bSetNewPerformanceBank = true;
m_nSetNewPerformanceBankID = nBankID;
return true;
}
void CMiniDexed::SetFirstPerformance(void)
{
m_bSetFirstPerformance = true;
return;
}
bool CMiniDexed::DoSetNewPerformance (void)
{
m_bLoadPerformanceBusy = true;
unsigned nID = m_nSetNewPerformanceID;
m_PerformanceConfig.SetNewPerformance(nID);
if (m_PerformanceConfig.Load ())
{
LoadPerformanceParameters();
m_bLoadPerformanceBusy = false;
return true;
}
else
{
SetMIDIChannel (CMIDIDevice::OmniMode, 0);
m_bLoadPerformanceBusy = false;
return false;
}
}
bool CMiniDexed::DoSetNewPerformanceBank (void)
{
m_bLoadPerformanceBankBusy = true;
unsigned nBankID = m_nSetNewPerformanceBankID;
m_PerformanceConfig.SetNewPerformanceBank(nBankID);
m_bLoadPerformanceBankBusy = false;
return true;
}
void CMiniDexed::DoSetFirstPerformance(void)
{
unsigned nID = m_PerformanceConfig.FindFirstPerformance();
SetNewPerformance(nID);
m_bSetFirstPerformance = false;
return;
}
bool CMiniDexed::SavePerformanceNewFile ()
{
m_bSavePerformanceNewFile = m_PerformanceConfig.GetInternalFolderOk() && m_PerformanceConfig.CheckFreePerformanceSlot();
return m_bSavePerformanceNewFile;
}
bool CMiniDexed::DoSavePerformanceNewFile (void)
{
if (m_PerformanceConfig.CreateNewPerformanceFile())
{
if(SavePerformance(false))
{
return true;
}
else
{
return false;
}
}
else
{
return false;
}
}
void CMiniDexed::LoadPerformanceParameters(void)
{
for (unsigned nTG = 0; nTG < CConfig::ToneGenerators; nTG++)
{
BankSelect (m_PerformanceConfig.GetBankNumber (nTG), nTG);
ProgramChange (m_PerformanceConfig.GetVoiceNumber (nTG), nTG);
SetMIDIChannel (m_PerformanceConfig.GetMIDIChannel (nTG), nTG);
SetVolume (m_PerformanceConfig.GetVolume (nTG), nTG);
SetPan (m_PerformanceConfig.GetPan (nTG), nTG);
SetMasterTune (m_PerformanceConfig.GetDetune (nTG), nTG);
SetCutoff (m_PerformanceConfig.GetCutoff (nTG), nTG);
SetResonance (m_PerformanceConfig.GetResonance (nTG), nTG);
setPitchbendRange (m_PerformanceConfig.GetPitchBendRange (nTG), nTG);
setPitchbendStep (m_PerformanceConfig.GetPitchBendStep (nTG), nTG);
setPortamentoMode (m_PerformanceConfig.GetPortamentoMode (nTG), nTG);
setPortamentoGlissando (m_PerformanceConfig.GetPortamentoGlissando (nTG), nTG);
setPortamentoTime (m_PerformanceConfig.GetPortamentoTime (nTG), nTG);
m_nNoteLimitLow[nTG] = m_PerformanceConfig.GetNoteLimitLow (nTG);
m_nNoteLimitHigh[nTG] = m_PerformanceConfig.GetNoteLimitHigh (nTG);
m_nNoteShift[nTG] = m_PerformanceConfig.GetNoteShift (nTG);
if(m_PerformanceConfig.VoiceDataFilled(nTG))
{
uint8_t* tVoiceData = m_PerformanceConfig.GetVoiceDataFromTxt(nTG);
m_pTG[nTG]->loadVoiceParameters(tVoiceData);
}
setMonoMode(m_PerformanceConfig.GetMonoMode(nTG) ? 1 : 0, nTG);
SetReverbSend (m_PerformanceConfig.GetReverbSend (nTG), nTG);
setModWheelRange (m_PerformanceConfig.GetModulationWheelRange (nTG), nTG);
setModWheelTarget (m_PerformanceConfig.GetModulationWheelTarget (nTG), nTG);
setFootControllerRange (m_PerformanceConfig.GetFootControlRange (nTG), nTG);
setFootControllerTarget (m_PerformanceConfig.GetFootControlTarget (nTG), nTG);
setBreathControllerRange (m_PerformanceConfig.GetBreathControlRange (nTG), nTG);
setBreathControllerTarget (m_PerformanceConfig.GetBreathControlTarget (nTG), nTG);
setAftertouchRange (m_PerformanceConfig.GetAftertouchRange (nTG), nTG);
setAftertouchTarget (m_PerformanceConfig.GetAftertouchTarget (nTG), nTG);
}
// Effects
SetParameter (ParameterCompressorEnable, m_PerformanceConfig.GetCompressorEnable () ? 1 : 0);
SetParameter (ParameterReverbEnable, m_PerformanceConfig.GetReverbEnable () ? 1 : 0);
SetParameter (ParameterReverbSize, m_PerformanceConfig.GetReverbSize ());
SetParameter (ParameterReverbHighDamp, m_PerformanceConfig.GetReverbHighDamp ());
SetParameter (ParameterReverbLowDamp, m_PerformanceConfig.GetReverbLowDamp ());
SetParameter (ParameterReverbLowPass, m_PerformanceConfig.GetReverbLowPass ());
SetParameter (ParameterReverbDiffusion, m_PerformanceConfig.GetReverbDiffusion ());
SetParameter (ParameterReverbLevel, m_PerformanceConfig.GetReverbLevel ());
}
std::string CMiniDexed::GetNewPerformanceDefaultName(void)
{
return m_PerformanceConfig.GetNewPerformanceDefaultName();
}
void CMiniDexed::SetNewPerformanceName(std::string nName)
{
m_PerformanceConfig.SetNewPerformanceName(nName);
}
bool CMiniDexed::IsValidPerformance(unsigned nID)
{
return m_PerformanceConfig.IsValidPerformance(nID);
}
bool CMiniDexed::IsValidPerformanceBank(unsigned nBankID)
{
return m_PerformanceConfig.IsValidPerformanceBank(nBankID);
}
void CMiniDexed::SetVoiceName (std::string VoiceName, unsigned nTG)
{
assert (nTG < CConfig::ToneGenerators);
assert (m_pTG[nTG]);
char Name[10];
strncpy(Name, VoiceName.c_str(),10);
m_pTG[nTG]->getName (Name);
}
bool CMiniDexed::DeletePerformance(unsigned nID)
{
if (m_PerformanceConfig.IsValidPerformance(nID) && m_PerformanceConfig.GetInternalFolderOk())
{
m_bDeletePerformance = true;
m_nDeletePerformanceID = nID;
return true;
}
else
{
return false;
}
}
bool CMiniDexed::DoDeletePerformance(void)
{
unsigned nID = m_nDeletePerformanceID;
if(m_PerformanceConfig.DeletePerformance(nID))
{
if (m_PerformanceConfig.Load ())
{
LoadPerformanceParameters();
return true;
}
else
{
SetMIDIChannel (CMIDIDevice::OmniMode, 0);
}
}
return false;
}
bool CMiniDexed::GetPerformanceSelectToLoad(void)
{
return m_pConfig->GetPerformanceSelectToLoad();
}
void CMiniDexed::setModController (unsigned controller, unsigned parameter, uint8_t value, uint8_t nTG)
{
uint8_t nBits;
switch (controller)
{
case 0:
if (parameter == 0)
{
setModWheelRange(value, nTG);
}
else
{
value=constrain(value, 0, 1);
nBits=m_nModulationWheelTarget[nTG];
value == 1 ? nBits |= 1 << (parameter-1) : nBits &= ~(1 << (parameter-1));
setModWheelTarget(nBits , nTG);
}
break;
case 1:
if (parameter == 0)
{
setFootControllerRange(value, nTG);
}
else
{
value=constrain(value, 0, 1);
nBits=m_nFootControlTarget[nTG];
value == 1 ? nBits |= 1 << (parameter-1) : nBits &= ~(1 << (parameter-1));
setFootControllerTarget(nBits , nTG);
}
break;
case 2:
if (parameter == 0)
{
setBreathControllerRange(value, nTG);
}
else
{
value=constrain(value, 0, 1);
nBits=m_nBreathControlTarget[nTG];
value == 1 ? nBits |= 1 << (parameter-1) : nBits &= ~(1 << (parameter-1));
setBreathControllerTarget(nBits , nTG);
}
break;
case 3:
if (parameter == 0)
{
setAftertouchRange(value, nTG);
}
else
{
value=constrain(value, 0, 1);
nBits=m_nAftertouchTarget[nTG];
value == 1 ? nBits |= 1 << (parameter-1) : nBits &= ~(1 << (parameter-1));
setAftertouchTarget(nBits , nTG);
}
break;
default:
break;
}
}
unsigned CMiniDexed::getModController (unsigned controller, unsigned parameter, uint8_t nTG)
{
unsigned nBits;
switch (controller)
{
case 0:
if (parameter == 0)
{
return m_nModulationWheelRange[nTG];
}
else
{
nBits=m_nModulationWheelTarget[nTG];
nBits &= 1 << (parameter-1);
return (nBits != 0 ? 1 : 0) ;
}
break;
case 1:
if (parameter == 0)
{
return m_nFootControlRange[nTG];
}
else
{
nBits=m_nFootControlTarget[nTG];
nBits &= 1 << (parameter-1) ;
return (nBits != 0 ? 1 : 0) ;
}
break;
case 2:
if (parameter == 0)
{
return m_nBreathControlRange[nTG];
}
else
{
nBits=m_nBreathControlTarget[nTG];
nBits &= 1 << (parameter-1) ;
return (nBits != 0 ? 1 : 0) ;
}
break;
case 3:
if (parameter == 0)
{
return m_nAftertouchRange[nTG];
}
else
{
nBits=m_nAftertouchTarget[nTG];
nBits &= 1 << (parameter-1) ;
return (nBits != 0 ? 1 : 0) ;
}
break;
default:
return 0;
break;
}
}