First implementation of using four PCM5102 I2S sound devices for 8-channel mono sound output on a Raspberry Pi 5. Requires latest develop branch of circle.

pull/657/head
Kevin 10 months ago
parent d08280bc70
commit 96fbce6c59
  1. 6
      src/config.cpp
  2. 2
      src/config.h
  3. 217
      src/minidexed.cpp
  4. 1
      src/minidexed.h

@ -85,6 +85,7 @@ void CConfig::Load (void)
m_bMIDIAutoVoiceDumpOnPC = m_Properties.GetNumber ("MIDIAutoVoiceDumpOnPC", 0) != 0;
m_bHeaderlessSysExVoices = m_Properties.GetNumber ("HeaderlessSysExVoices", 0) != 0;
m_bExpandPCAcrossBanks = m_Properties.GetNumber ("ExpandPCAcrossBanks", 1) != 0;
m_bQuadDAC8Chan = m_Properties.GetNumber ("QuadDAC8Chan", 0) != 0;
m_bLCDEnabled = m_Properties.GetNumber ("LCDEnabled", 0) != 0;
m_nLCDPinEnable = m_Properties.GetNumber ("LCDPinEnable", 4);
@ -243,6 +244,11 @@ bool CConfig::GetExpandPCAcrossBanks (void) const
return m_bExpandPCAcrossBanks;
}
bool CConfig::GetQuadDAC8Chan (void) const
{
return m_bQuadDAC8Chan;
}
bool CConfig::GetLCDEnabled (void) const
{
return m_bLCDEnabled;

@ -87,6 +87,7 @@ public:
bool GetMIDIAutoVoiceDumpOnPC (void) const; // false if not specified
bool GetHeaderlessSysExVoices (void) const; // false if not specified
bool GetExpandPCAcrossBanks (void) const; // true if not specified
bool GetQuadDAC8Chan (void) const; // false if not specified
// HD44780 LCD
// GPIO pin numbers are chip numbers, not header positions
@ -208,6 +209,7 @@ private:
bool m_bMIDIAutoVoiceDumpOnPC;
bool m_bHeaderlessSysExVoices;
bool m_bExpandPCAcrossBanks;
bool m_bQuadDAC8Chan;
bool m_bLCDEnabled;
unsigned m_nLCDPinEnable;

@ -42,6 +42,7 @@ CMiniDexed::CMiniDexed (CConfig *pConfig, CInterruptSystem *pInterrupt,
m_PCKeyboard (this, pConfig, &m_UI),
m_SerialMIDI (this, pInterrupt, pConfig, &m_UI),
m_bUseSerial (false),
m_bQuadDAC8Chan (false),
m_pSoundDevice (0),
m_bChannelsSwapped (pConfig->GetChannelsSwapped ()),
#ifdef ARM_ALLOW_MULTI_CORE
@ -125,10 +126,26 @@ CMiniDexed::CMiniDexed (CConfig *pConfig, CInterruptSystem *pInterrupt,
if (strcmp (pDeviceName, "i2s") == 0)
{
LOGNOTE ("I2S mode");
m_pSoundDevice = new CI2SSoundBaseDevice (pInterrupt, pConfig->GetSampleRate (),
pConfig->GetChunkSize (), false,
pI2CMaster, pConfig->GetDACI2CAddress ());
#if RASPPI==5
// Quad DAC 8-channel mono only an option for RPI 5
m_bQuadDAC8Chan = pConfig->GetQuadDAC8Chan ();
#endif
if (m_bQuadDAC8Chan) {
LOGNOTE ("Configured for Quad DAC 8-channel Mono audio");
m_pSoundDevice = new CI2SSoundBaseDevice (pInterrupt, pConfig->GetSampleRate (),
pConfig->GetChunkSize (), false,
pI2CMaster, pConfig->GetDACI2CAddress (),
CI2SSoundBaseDevice::DeviceModeTXOnly,
8); // 8 channels - L+R x4 across 4 I2S lanes
}
else
{
m_pSoundDevice = new CI2SSoundBaseDevice (pInterrupt, pConfig->GetSampleRate (),
pConfig->GetChunkSize (), false,
pI2CMaster, pConfig->GetDACI2CAddress (),
CI2SSoundBaseDevice::DeviceModeTXOnly,
2); // 2 channels - L+R
}
}
else if (strcmp (pDeviceName, "hdmi") == 0)
{
@ -251,18 +268,25 @@ bool CMiniDexed::Initialize (void)
}
// setup and start the sound device
if (!m_pSoundDevice->AllocateQueueFrames (m_pConfig->GetChunkSize ()))
int Channels = 1; // 16-bit Mono
#ifdef ARM_ALLOW_MULTI_CORE
if (m_bQuadDAC8Chan)
{
Channels = 8; // 16-bit 8-channel mono
}
else
{
Channels = 2; // 16-bit Stereo
}
#endif
if (!m_pSoundDevice->AllocateQueueFrames (Channels * m_pConfig->GetChunkSize ()))
{
LOGERR ("Cannot allocate sound queue");
return false;
}
#ifndef ARM_ALLOW_MULTI_CORE
m_pSoundDevice->SetWriteFormat (SoundFormatSigned16, 1); // 16-bit Mono
#else
m_pSoundDevice->SetWriteFormat (SoundFormatSigned16, 2); // 16-bit Stereo
#endif
m_pSoundDevice->SetWriteFormat (SoundFormatSigned16, Channels);
m_nQueueSizeFrames = m_pSoundDevice->GetQueueSizeFrames ();
@ -1128,85 +1152,130 @@ void CMiniDexed::ProcessSound (void)
assert (CConfig::ToneGenerators == 8);
uint8_t indexL=0, indexR=1;
// BEGIN TG mixing
float32_t tmp_float[nFrames*2];
int16_t tmp_int[nFrames*2];
if (m_bQuadDAC8Chan) {
// No mixing is performed by MiniDexed, sound is output in 8 channels.
// Note: one TG per audio channel; output=mono; no processing.
const int Channels = 8; // One TG per channel
float32_t tmp_float[nFrames*Channels];
int16_t tmp_int[nFrames*Channels];
if(nMasterVolume > 0.0)
{
for (uint8_t i = 0; i < CConfig::ToneGenerators; i++)
if(nMasterVolume > 0.0)
{
tg_mixer->doAddMix(i,m_OutputLevel[i]);
reverb_send_mixer->doAddMix(i,m_OutputLevel[i]);
// Convert dual float array (8 chan) to single int16 array (8 chan)
for(uint16_t i=0; i<nFrames;i++)
{
// TGs will alternate on L/R channels for each output
// reading directly from the TG OutputLevel buffer with
// no additional processing.
for (uint8_t tg = 0; tg < Channels; tg++)
{
if(nMasterVolume >0.0 && nMasterVolume <1.0)
{
tmp_float[(i*Channels)+tg]=m_OutputLevel[tg][i] * nMasterVolume;
}
else if(nMasterVolume == 1.0)
{
tmp_float[(i*Channels)+tg]=m_OutputLevel[tg][i];
}
}
}
arm_float_to_q15(tmp_float,tmp_int,nFrames*Channels);
}
// END TG mixing
// BEGIN create SampleBuffer for holding audio data
float32_t SampleBuffer[2][nFrames];
// END create SampleBuffer for holding audio data
// get the mix of all TGs
tg_mixer->getMix(SampleBuffer[indexL], SampleBuffer[indexR]);
// BEGIN adding reverb
if (m_nParameter[ParameterReverbEnable])
else
{
float32_t ReverbBuffer[2][nFrames];
float32_t ReverbSendBuffer[2][nFrames];
arm_fill_f32(0.0f, ReverbBuffer[indexL], nFrames);
arm_fill_f32(0.0f, ReverbBuffer[indexR], nFrames);
arm_fill_f32(0.0f, ReverbSendBuffer[indexR], nFrames);
arm_fill_f32(0.0f, ReverbSendBuffer[indexL], nFrames);
m_ReverbSpinLock.Acquire ();
reverb_send_mixer->getMix(ReverbSendBuffer[indexL], ReverbSendBuffer[indexR]);
reverb->doReverb(ReverbSendBuffer[indexL],ReverbSendBuffer[indexR],ReverbBuffer[indexL], ReverbBuffer[indexR],nFrames);
// scale down and add left reverb buffer by reverb level
arm_scale_f32(ReverbBuffer[indexL], reverb->get_level(), ReverbBuffer[indexL], nFrames);
arm_add_f32(SampleBuffer[indexL], ReverbBuffer[indexL], SampleBuffer[indexL], nFrames);
// scale down and add right reverb buffer by reverb level
arm_scale_f32(ReverbBuffer[indexR], reverb->get_level(), ReverbBuffer[indexR], nFrames);
arm_add_f32(SampleBuffer[indexR], ReverbBuffer[indexR], SampleBuffer[indexR], nFrames);
m_ReverbSpinLock.Release ();
arm_fill_q15(0, tmp_int, nFrames*Channels);
}
// END adding reverb
// swap stereo channels if needed prior to writing back out
if (m_bChannelsSwapped)
if (m_pSoundDevice->Write (tmp_int, sizeof(tmp_int)) != (int) sizeof(tmp_int))
{
indexL=1;
indexR=0;
LOGERR ("Sound data dropped");
}
}
else
{
// Mix everything down to stereo
uint8_t indexL=0, indexR=1;
// Convert dual float array (left, right) to single int16 array (left/right)
for(uint16_t i=0; i<nFrames;i++)
// BEGIN TG mixing
float32_t tmp_float[nFrames*2];
int16_t tmp_int[nFrames*2];
if(nMasterVolume > 0.0)
{
if(nMasterVolume >0.0 && nMasterVolume <1.0)
for (uint8_t i = 0; i < CConfig::ToneGenerators; i++)
{
tg_mixer->doAddMix(i,m_OutputLevel[i]);
reverb_send_mixer->doAddMix(i,m_OutputLevel[i]);
}
// END TG mixing
// BEGIN create SampleBuffer for holding audio data
float32_t SampleBuffer[2][nFrames];
// END create SampleBuffer for holding audio data
// get the mix of all TGs
tg_mixer->getMix(SampleBuffer[indexL], SampleBuffer[indexR]);
// BEGIN adding reverb
if (m_nParameter[ParameterReverbEnable])
{
float32_t ReverbBuffer[2][nFrames];
float32_t ReverbSendBuffer[2][nFrames];
arm_fill_f32(0.0f, ReverbBuffer[indexL], nFrames);
arm_fill_f32(0.0f, ReverbBuffer[indexR], nFrames);
arm_fill_f32(0.0f, ReverbSendBuffer[indexR], nFrames);
arm_fill_f32(0.0f, ReverbSendBuffer[indexL], nFrames);
m_ReverbSpinLock.Acquire ();
reverb_send_mixer->getMix(ReverbSendBuffer[indexL], ReverbSendBuffer[indexR]);
reverb->doReverb(ReverbSendBuffer[indexL],ReverbSendBuffer[indexR],ReverbBuffer[indexL], ReverbBuffer[indexR],nFrames);
// scale down and add left reverb buffer by reverb level
arm_scale_f32(ReverbBuffer[indexL], reverb->get_level(), ReverbBuffer[indexL], nFrames);
arm_add_f32(SampleBuffer[indexL], ReverbBuffer[indexL], SampleBuffer[indexL], nFrames);
// scale down and add right reverb buffer by reverb level
arm_scale_f32(ReverbBuffer[indexR], reverb->get_level(), ReverbBuffer[indexR], nFrames);
arm_add_f32(SampleBuffer[indexR], ReverbBuffer[indexR], SampleBuffer[indexR], nFrames);
m_ReverbSpinLock.Release ();
}
// END adding reverb
// swap stereo channels if needed prior to writing back out
if (m_bChannelsSwapped)
{
tmp_float[i*2]=SampleBuffer[indexL][i] * nMasterVolume;
tmp_float[(i*2)+1]=SampleBuffer[indexR][i] * nMasterVolume;
indexL=1;
indexR=0;
}
else if(nMasterVolume == 1.0)
// Convert dual float array (left, right) to single int16 array (left/right)
for(uint16_t i=0; i<nFrames;i++)
{
tmp_float[i*2]=SampleBuffer[indexL][i];
tmp_float[(i*2)+1]=SampleBuffer[indexR][i];
if(nMasterVolume >0.0 && nMasterVolume <1.0)
{
tmp_float[i*2]=SampleBuffer[indexL][i] * nMasterVolume;
tmp_float[(i*2)+1]=SampleBuffer[indexR][i] * nMasterVolume;
}
else if(nMasterVolume == 1.0)
{
tmp_float[i*2]=SampleBuffer[indexL][i];
tmp_float[(i*2)+1]=SampleBuffer[indexR][i];
}
}
arm_float_to_q15(tmp_float,tmp_int,nFrames*2);
}
else
{
arm_fill_q15(0, tmp_int, nFrames * 2);
}
arm_float_to_q15(tmp_float,tmp_int,nFrames*2);
}
else
arm_fill_q15(0, tmp_int, nFrames * 2);
if (m_pSoundDevice->Write (tmp_int, sizeof(tmp_int)) != (int) sizeof(tmp_int))
{
LOGERR ("Sound data dropped");
}
if (m_pSoundDevice->Write (tmp_int, sizeof(tmp_int)) != (int) sizeof(tmp_int))
{
LOGERR ("Sound data dropped");
}
} // End of Stereo mixing
if (m_bProfileEnabled)
{

@ -298,6 +298,7 @@ private:
CPCKeyboard m_PCKeyboard;
CSerialMIDIDevice m_SerialMIDI;
bool m_bUseSerial;
bool m_bQuadDAC8Chan;
CSoundBaseDevice *m_pSoundDevice;
bool m_bChannelsSwapped;

Loading…
Cancel
Save