You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MicroMDAEPiano/interpolation.cpp

209 lines
5.9 KiB

/*
* interpolation.h
*
* interpolation - An interpolation library for Arduino.
* Author: Jose Gama 2015
*
* This library is free software; you can redistribute it
* and/or modify it under the terms of the GNU Lesser
* General Public License as published by the Free Software
* Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This library is distributed in the hope that it will
* be useful, but WITHOUT ANY WARRANTY; without even the
* implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser
* General Public License along with this library; if not,
* write to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/*
* From: https://github.com/tuxcell/interpolationArduino
* replaced all doubles by float (wirtz@parasitstudio.de)
*/
#include "interpolation.h"
interpolation::interpolation(void) {
_valInterp = 0;
_lenXY = 0;
}
interpolation::interpolation( float x[], float y[], int lenXY){
_x = x;_y = y;_lenXY = lenXY;
_valInterp = 0;
}
interpolation::interpolation( float x[], float y[], int lenXY, float valInterp){
_x = x;_y = y;_lenXY = lenXY;
_valInterp = valInterp;
}
void interpolation::valueI( float valInterp ) {
_valInterp = valInterp;
}
void interpolation::valuelenXY( int lenXY ) {
_lenXY = lenXY;
}
void interpolation::valueX( float x[]) {
_x = x;
}
void interpolation::valueY( float y[]) {
_y = y;
}
void interpolation::valueXM( float XM[]) {
_XM = XM;
}
void interpolation::valueZ( float Z[]) {
_Z = Z;
}
float interpolation::LinearInterpolate() {return(LinearInterp( _x, _y, _lenXY, _valInterp));}
float interpolation::CosineInterpolate() {return(CosineInterp( _x, _y, _lenXY, _valInterp));}
float interpolation::CubicInterpolate() {return(CubicInterp( _x, _y, _lenXY, _valInterp));}
float interpolation::LagrangeInterpolate() {return(LagrangeInterp( _x, _y, _lenXY, _valInterp));}
float interpolation::QuadraticInterpolate() {return(QuadraticInterp( _x, _y, _lenXY, _valInterp));}
float interpolation::AkimaInterpolate() {return(AkimaInterp( _x, _y, _XM, _Z, _lenXY, _valInterp));}
float interpolation::LinearInterp( float* x, float* y, int n, float p )
{
//http://paulbourke.net/miscellaneous/interpolation/
int i;
float mu;
for( i = 0; i < n-1; i++ )
{
if (( x[i] <= p && x[i+1] >= p )||( x[i] >= p && x[i+1] <= p ))
{
mu=(p - x[i])/(x[i] - x[i+1]);
if (mu<0) mu=-mu;
return(y[i]*(1-mu)+y[i+1]*mu);
}
}
return 0; // Not in Range
}
float interpolation::CosineInterp (float* x, float* y, int n, float p )
{
int i;
float mu, mu2;
for( i = 0; i < n-1; i++ )
{
if (( x[i] <= p && x[i+1] >= p )||( x[i] >= p && x[i+1] <= p ))
{
mu=(p - x[i])/(x[i] - x[i+1]);
if (mu<0) mu=-mu;
mu2 = (1.0-cos(3.1415926535897*mu))/2.0;
return(y[i]*(1.0-mu2)+y[i+1]*mu2);
}
}
return 0; // Not in Range
}
float interpolation::CubicInterp(float* x, float* y, int n, float p )
{
int i;
float a0,a1,a2,a3,mu, mu2;
for( i = 0; i < n-1; i++ )
{
if (( x[i] <= p && x[i+1] >= p )||( x[i] >= p && x[i+1] <= p ))
{
mu=(p - x[i])/(x[i] - x[i+1]);
if (mu<0) mu=-mu;
mu2 = mu*mu;
a0 = y[i+2] - y[i+1] - y[i-1] + y[i];
a1 = y[i-1] - y[i] - a0;
a2 = y[i+1] - y[i-1];
a3 = y[i];
return(a0*mu*mu2+a1*mu2+a2*mu+a3);
}
}
return 0; // Not in Range
}
float interpolation::LagrangeInterp( float* x, float* y, int n, float p )
{
//http://www.dailyfreecode.com/code/lagranges-interpolation-method-finding-2376.aspx
int i, j, k;
float t, r=0;
for(i=0;i<n;i++)
{
t = 1;
k = i;
for(j=0;j<n;j++)
{
if(k==j)
{
continue;
}
else
{
t = t * ((p-x[j])/(x[k]-x[j]));
}
}
r+=y[i]*t;
}
return r; // Not in Range
}
float interpolation::QuadraticInterp(float* x, float* y, int n, float p )
{
//view-source:http://www.johndcook.com/quadratic_interpolator.html
int i;
float xi2, k;
for( i = 0; i < n-1; i++ )
{
if (( x[i] <= p && x[i+1] >= p )||( x[i] >= p && x[i+1] <= p ))
{
if (i<(n-3)) xi2=x[i+2]; else xi2=0;
k = y[i]*(p - x[i+1])*(p - xi2)/((x[i] - x[i+1])*(x[i] - xi2));
k += y[i+1]*(p - x[i])*(p - xi2)/((x[i+1] - x[i])*(x[i+1] - xi2));
k += y[i+2]*(p - x[i])*(p - x[i+1])/((xi2 - x[i])*(xi2 - x[i+1]));
return(k);
}
}
return 0; // Not in Range
}
float interpolation::AkimaInterp( float* x, float* y, float* XM, float* Z, int n, float p ) {
//http://jean-pierre.moreau.pagesperso-orange.fr/Cplus/akima_cpp.txt
int i;
float a,b,r;
//special case p=0
if (p==0.0) {
return(0);
}
//Check to see if interpolation point is correct
if (p<x[1] || p>=x[n-3]) {
return(-330);
}
x[0]=2.0*x[1]-x[2];
//Calculate Akima coefficients, a and b
for (i=1; i<n; i++)
//Shift i to i+2
XM[i+2]=(y[i+1]-y[i])/(x[i+1]-x[i]);
XM[n+2]=2.0*XM[n+1]-XM[n];
XM[n+3]=2.0*XM[n+2]-XM[n+1];
XM[2]=2.0*XM[3]-XM[4];
XM[1]=2.0*XM[2]-XM[3];
for (i=1; i<n+1; i++) {
a=fabs(XM[i+3]-XM[i+2]);
b=fabs(XM[i+1]-XM[i]);
if (a+b==0) Z[i]=(a*XM[i+1]+b*XM[i+2])/(a+b); else Z[i]=(XM[i+2]+XM[i+1])/2.0;
}
//Find relevant table interval
i=0;
while (p>x[i]) i++;
i--;
//Begin interpolation
b=x[i+1]-x[i];
a=p-x[i];
r=y[i]+Z[i]*a+(3.0*XM[i+2]-2.0*Z[i]-Z[i+1])*a*a/b;
r=r+(Z[i]+Z[i+1]-2.0*XM[i+2])*a*a*a/(b*b);
return(r);
}