/* MicroMDAEPiano MicroMDAEPiano is a port of the MDA-EPiano sound engine (https://sourceforge.net/projects/mda-vst/) for the Teensy-3.5/3.6 with audio shield. (c)2019 H. Wirtz This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config.h" #include #include #include #include #include #include "EEPROMAnything.h" #include #include "mdaEPiano.h" #ifdef USE_XFADE_DATA #include "mdaEPianoDataXfade.h" #else #include "mdaEPianoData.h" #endif #include #include "Encoder4.h" #include #include #include "UI.hpp" #include "midi_devices.hpp" //************************************************************************************************* //* GLOBAL VARIABLES //************************************************************************************************* // Audio configuration AudioPlayQueue queue_r; AudioPlayQueue queue_l; AudioAnalyzePeak peak_r; AudioAnalyzePeak peak_l; AudioEffectFreeverb freeverb_r; AudioEffectFreeverb freeverb_l; AudioMixer4 mixer_r; AudioMixer4 mixer_l; AudioConnection patchCord0(queue_r, peak_r); AudioConnection patchCord1(queue_l, peak_l); AudioConnection patchCord4(queue_r, freeverb_r); AudioConnection patchCord5(queue_l, freeverb_l); AudioConnection patchCord6(queue_r, 0, mixer_r, 0); AudioConnection patchCord7(queue_l, 0, mixer_l, 0); AudioConnection patchCord8(freeverb_r, 0, mixer_r, 1); AudioConnection patchCord9(freeverb_l, 0, mixer_l, 1); #if defined(TEENSY_AUDIO_BOARD) AudioOutputI2S i2s1; AudioConnection patchCord110(mixer_r, 0, i2s1, 0); AudioConnection patchCord111(mixer_l, 0, i2s1, 1); AudioControlSGTL5000 sgtl5000_1; #elif defined(TGA_AUDIO_BOARD) AudioOutputI2S i2s1; AudioAmplifier volume_r; AudioAmplifier volume_l; AudioConnection patchCord10(mixer_r, volume_r); AudioConnection patchCord11(mixer_l, volume_l); AudioConnection patchCord12(volume_r, 0, i2s1, 1); AudioConnection patchCord13(volume_l, 0, i2s1, 0); AudioControlWM8731master wm8731_1; #else AudioOutputPT8211 pt8211_1; AudioAmplifier volume_r; AudioAmplifier volume_l; AudioConnection patchCord10(mixer_r, volume_r); AudioConnection patchCord11(mixer_l, volume_l); AudioConnection patchCord12(volume_r, 0, pt8211_1, 1); AudioConnection patchCord13(volume_l, 0, pt8211_1, 0); #endif // Objects mdaEPiano* ep; LiquidCrystal_I2C lcd(LCD_I2C_ADDRESS, LCD_CHARS, LCD_LINES); Encoder4 enc[2] = {Encoder4(ENC_L_PIN_A, ENC_L_PIN_B), Encoder4(ENC_R_PIN_A, ENC_R_PIN_B)}; int32_t enc_val[2] = {INITIAL_ENC_L_VALUE, INITIAL_ENC_R_VALUE}; Bounce but[2] = {Bounce(BUT_L_PIN, BUT_DEBOUNCE_MS), Bounce(BUT_R_PIN, BUT_DEBOUNCE_MS)}; // Variables uint8_t midi_channel = DEFAULT_MIDI_CHANNEL; uint32_t xrun = 0; uint32_t overload = 0; uint32_t peak = 0; uint16_t render_time_max = 0; elapsedMicros fill_audio_buffer; elapsedMillis control_rate; elapsedMillis autostore; const uint16_t audio_block_time_us = 1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES); config_t configuration = {0xffff, 0, VOLUME, 0.5f, DEFAULT_MIDI_CHANNEL}; bool eeprom_update_flag = false; #ifdef SHOW_CPU_LOAD_MSEC elapsedMillis cpu_mem_millis; #endif enum MDA_EP_PARAM { DECAY, RELEASE, HARDNESS, TREBLE, PAN_TREM, LFO_RATE, VELOCITY_SENSE, STEREO, MAX_POLY, TUNE, DETUNE, OVERDRIVE }; //************************************************************************************************* //* SETUP FUNCTION //************************************************************************************************* void setup() { //while (!Serial) ; // wait for Arduino Serial Monitor menu_init(); Serial.begin(SERIAL_SPEED); delay(500); // Encoder setup enc[0].write(INITIAL_ENC_L_VALUE); enc_val[0] = enc[0].read(); enc[1].write(INITIAL_ENC_R_VALUE); enc_val[1] = enc[1].read(); but[0].update(); but[1].update(); // Debug output Serial.println(F("MicroMDAEPiano based on https://sourceforge.net/projects/mda-vst")); Serial.println(F("(c)2018/2019 H. Wirtz ")); Serial.println(F("https://codeberg.org/dcoredump/MicroMDAEPiano")); Serial.print(F("Data in PROGMEM: ")); Serial.print(sizeof(epianoDataXfade), DEC); Serial.println(F(" bytes")); Serial.println(); Serial.println(F("")); // create EPiano object ep = new mdaEPiano(); // read initial EEPROM variables initial_values_from_eeprom(); setup_midi_devices(); // start audio card AudioNoInterrupts(); AudioMemory(AUDIO_MEM); #ifdef TEENSY_AUDIO_BOARD sgtl5000_1.enable(); sgtl5000_1.dacVolumeRamp(); sgtl5000_1.dacVolume(1.0); //sgtl5000_1.dacVolumeRampLinear(); sgtl5000_1.unmuteHeadphone(); sgtl5000_1.unmuteLineout(); sgtl5000_1.autoVolumeDisable(); // turn off AGC sgtl5000_1.unmuteHeadphone(); sgtl5000_1.volume(0.5, 0.5); // Headphone volume sgtl5000_1.lineOutLevel(SGTL5000_LINEOUT_LEVEL); sgtl5000_1.audioPostProcessorEnable(); sgtl5000_1.autoVolumeControl(1, 1, 1, 0.9, 0.01, 0.05); sgtl5000_1.autoVolumeEnable(); sgtl5000_1.surroundSoundEnable(); sgtl5000_1.surroundSound(7, 3); // Configures virtual surround width from 0 (mono) to 7 (widest). select may be set to 1 (disable), 2 (mono input) or 3 (stereo input). sgtl5000_1.enhanceBassEnable(); sgtl5000_1.enhanceBass(1.0, 0.2, 1, 2); // Configures the bass enhancement by setting the levels of the original stereo signal and the bass-enhanced mono level which will be mixed together. The high-pass filter may be enabled (0) or bypassed (1). /* The cutoff frequency is specified as follows: value frequency 0 80Hz 1 100Hz 2 125Hz 3 150Hz 4 175Hz 5 200Hz 6 225Hz */ //sgtl5000_1.eqBands(bass, mid_bass, midrange, mid_treble, treble); Serial.println(F("Teensy-Audio-Board enabled.")); #elif defined(TGA_AUDIO_BOARD) wm8731_1.enable(); wm8731_1.volume(1.0); Serial.println(F("TGA board enabled.")); #else Serial.println(F("PT8211 enabled.")); #endif //set_volume(vol, vol_left, vol_right); set_volume(1.0, 0.5); #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) // Initialize processor and memory measurements AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); #endif Serial.print(F("AUDIO_BLOCK_SAMPLES=")); Serial.print(AUDIO_BLOCK_SAMPLES); Serial.print(F(" (Time per block=")); Serial.print(audio_block_time_us); Serial.println(F("ms)")); ep->setParameter(DECAY, 0.5); ep->setParameter(RELEASE, 0.5); ep->setParameter(HARDNESS, 0.7); ep->setParameter(TREBLE, 0.85); ep->setParameter(DETUNE, 0.1); ep->setParameter(VELOCITY_SENSE, 1.0); ep->setParameter(STEREO, 0.7); ep->setParameter(OVERDRIVE, 0.3); freeverb_r.roomsize(0.2); freeverb_l.roomsize(0.2); freeverb_r.damping(0.5); freeverb_l.damping(0.5); mixer_r.gain(0, 0.7); mixer_l.gain(0, 0.7); mixer_r.gain(1, 0.3); mixer_l.gain(1, 0.3); AudioInterrupts(); Serial.println(F("")); menu_system.next_screen(); menu_system.update(); menu_system.switch_focus(); #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) show_cpu_and_mem_usage(); cpu_mem_millis = 0; #endif } //************************************************************************************************* //* MAIN LOOP //************************************************************************************************* void loop() { int16_t* audio_buffer_r; // pointer to AUDIO_BLOCK_SAMPLES * sizeof(int16_t) int16_t* audio_buffer_l; // pointer to AUDIO_BLOCK_SAMPLES * sizeof(int16_t) // Main sound calculation if (queue_r.available() && queue_l.available() && fill_audio_buffer > audio_block_time_us - 10) { fill_audio_buffer = 0; #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) if (cpu_mem_millis > SHOW_CPU_LOAD_MSEC) { show_cpu_and_mem_usage(); cpu_mem_millis = 0; } #endif audio_buffer_r = queue_r.getBuffer(); if (audio_buffer_r == NULL) { Serial.println(F("E: audio_buffer_r allocation problems!")); } audio_buffer_l = queue_l.getBuffer(); if (audio_buffer_l == NULL) { Serial.println(F("E: audio_buffer_l allocation problems!")); } elapsedMicros t1; ep->process(audio_buffer_l, audio_buffer_r); uint32_t t2 = t1; if (t2 > audio_block_time_us) // everything greater 2.9ms is a buffer underrun! xrun++; if (t2 > render_time_max) render_time_max = t2; if (peak_r.available()) { if (peak_r.read() > 1.00) peak++; } if (peak_l.available()) { if (peak_l.read() > 1.00) peak++; } queue_r.playBuffer(); queue_l.playBuffer(); } check_midi_devices(); // CONTROL-RATE-EVENT-HANDLING if (control_rate > CONTROL_RATE_MS) { control_rate = 0; } } //************************************************************************************************* //* PROGRAM FUNCTIONS //************************************************************************************************* void handleNoteOn(byte inChannel, byte inNumber, byte inVelocity) { if (checkMidiChannel(inChannel)) { ep->noteOn(inNumber, inVelocity); } } void handleNoteOff(byte inChannel, byte inNumber, byte inVelocity) { if (checkMidiChannel(inChannel)) { ep->noteOn(inNumber, 0); } } void handleControlChange(byte inChannel, byte inData1, byte inData2) { if (checkMidiChannel(inChannel)) { ep->processMidiController(inData1, inData2); } } void handleAfterTouch(byte inChannel, byte inPressure) { ; } void handlePitchBend(byte inChannel, int inPitch) { ; } void handleProgramChange(byte inChannel, byte inProgram) { ; } void handleSystemExclusive(byte *data, uint len) { ; } void handleSystemExclusiveChunk(const byte *data, uint16_t len, bool last) { ; } void handleTimeCodeQuarterFrame(byte data) { ; } void handleAfterTouchPoly(byte inChannel, byte inNumber, byte inVelocity) { ; } void handleSongSelect(byte inSong) { ; } void handleTuneRequest(void) { ; } void handleClock(void) { ; } void handleStart(void) { ; } void handleContinue(void) { ; } void handleStop(void) { ; } void handleActiveSensing(void) { ; } void handleSystemReset(void) { ; } void handleRealTimeSystem(void) { ; } bool checkMidiChannel(byte inChannel) { // check for MIDI channel if (midi_channel == MIDI_CHANNEL_OMNI) { return (true); } else if (inChannel != midi_channel) { #ifdef DEBUG Serial.print(F("Ignoring MIDI data on channel ")); Serial.print(inChannel); Serial.print(F("(listening on ")); Serial.print(midi_channel); Serial.println(F(")")); #endif return (false); } return (true); } void set_volume(float v, float p) { configuration.vol = v; configuration.pan = p; #ifdef DEBUG Serial.print(F("Setting volume: VOL=")); Serial.print(v, DEC); Serial.print(F("[")); Serial.print(configuration.vol, DEC); Serial.print(F("] PAN=")); Serial.print(F("[")); Serial.print(configuration.pan, DEC); Serial.print(F("] ")); Serial.print(pow(configuration.vol * sinf(configuration.pan * PI / 2), VOLUME_CURVE), 3); Serial.print(F("/")); Serial.println(pow(configuration.vol * cosf( configuration.pan * PI / 2), VOLUME_CURVE), 3); #endif // http://files.csound-tutorial.net/floss_manual/Release03/Cs_FM_03_ScrapBook/b-panning-and-spatialization.html mixer_r.gain(0,sinf(p * PI / 2)); mixer_l.gain(0,cosf(p * PI / 2)); } /****************************************************************************** EEPROM HELPER ******************************************************************************/ void initial_values_from_eeprom(void) { uint32_t checksum; config_t tmp_conf; EEPROM_readAnything(EEPROM_START_ADDRESS, tmp_conf); checksum = crc32((byte*)&tmp_conf + 4, sizeof(tmp_conf) - 4); #ifdef DEBUG Serial.print(F("EEPROM checksum: 0x")); Serial.print(tmp_conf.checksum, HEX); Serial.print(F(" / 0x")); Serial.print(checksum, HEX); #endif if (checksum != tmp_conf.checksum) { #ifdef DEBUG Serial.print(F(" - mismatch -> initializing EEPROM!")); #endif eeprom_update(); } else { EEPROM_readAnything(EEPROM_START_ADDRESS, configuration); Serial.print(F(" - OK, loading!")); } #ifdef DEBUG Serial.println(); #endif } void eeprom_write(void) { autostore = 0; eeprom_update_flag = true; } void eeprom_update(void) { eeprom_update_flag = false; configuration.checksum = crc32((byte*)&configuration + 4, sizeof(configuration) - 4); EEPROM_writeAnything(EEPROM_START_ADDRESS, configuration); Serial.println(F("Updating EEPROM with configuration data")); } uint32_t crc32(byte * calc_start, uint16_t calc_bytes) // base code from https://www.arduino.cc/en/Tutorial/EEPROMCrc { const uint32_t crc_table[16] = { 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c }; uint32_t crc = ~0L; for (byte* index = calc_start ; index < (calc_start + calc_bytes) ; ++index) { crc = crc_table[(crc ^ *index) & 0x0f] ^ (crc >> 4); crc = crc_table[(crc ^ (*index >> 4)) & 0x0f] ^ (crc >> 4); crc = ~crc; } return (crc); } //************************************************************************************************* //* DEBUG FUNCTIONS //************************************************************************************************* #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) void show_cpu_and_mem_usage(void) { Serial.print(F("CPU: ")); Serial.print(AudioProcessorUsage(), DEC); Serial.print(F(" CPU MAX: ")); Serial.print(AudioProcessorUsageMax(), DEC); Serial.print(F(" MEM: ")); Serial.print(AudioMemoryUsage(), DEC); Serial.print(F(" MEM MAX: ")); Serial.print(AudioMemoryUsageMax(), DEC); Serial.print(F(" RENDER_TIME_MAX: ")); Serial.print(render_time_max, DEC); Serial.print(F(" XRUN: ")); Serial.print(xrun, DEC); Serial.print(F(" OVERLOAD: ")); Serial.print(overload, DEC); Serial.print(F(" PEAK: ")); Serial.print(peak, DEC); Serial.println(); AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); render_time_max = 0; } #endif