Removed Splie interpolation.

Tried another calculation for filter coefficients.
dev
Holger Wirtz 6 years ago
parent 11a4168cf3
commit c5db956a3d
  1. 2
      config.h
  2. 116
      effect_modulated_delay.cpp
  3. 7
      effect_modulated_delay.h
  4. 120
      spline.cpp
  5. 42
      spline.h

@ -57,7 +57,7 @@
#define USE_XFADE_DATA 1
// CHORUS parameters
#define INTERPOLATION_WINDOW_SIZE 5 // use only odd numbers!!!
//#define INTERPOLATE_MODE 11
#define INTERPOLATE_MODE 11
#define CHORUS_WAVEFORM WAVEFORM_TRIANGLE // WAVEFORM_SINE WAVEFORM_TRIANGLE WAVEFORM_SAWTOOTH WAVEFORM_SAWTOOTH_REVERSE
#define CHORUS_DELAY_LENGTH_SAMPLES (15*AUDIO_BLOCK_SAMPLES) // one AUDIO_BLOCK_SAMPLES = 2.902ms; you need doubled length, e.g. delay point is 20ms, so you need up to 40ms delay!

@ -25,7 +25,6 @@
#include <Audio.h>
#include "limits.h"
#include "effect_modulated_delay.h"
#include "spline.h"
#include "config.h"
/******************************************************************/
@ -62,7 +61,7 @@ boolean AudioEffectModulatedDelay::begin(short *delayline, int d_length)
filter.numStages = 1;
filter.pState = filter_state;
filter.pCoeffs = filter_coeffs;
calcModFilterCoeff(5000.0, 0.0, 5.0);
calcModFilterCoeff(500.0);
return (true);
}
@ -86,13 +85,6 @@ void AudioEffectModulatedDelay::update(void)
float mod_number;
float mod_fraction;
#ifdef INTERPOLATE_MODE
int8_t j;
float x[INTERPOLATION_WINDOW_SIZE];
float y[INTERPOLATION_WINDOW_SIZE];
Spline s(x, y, INTERPOLATION_WINDOW_SIZE, INTERPOLATE_MODE);
#endif
// (Filter implementation: https://web.fhnw.ch/technik/projekte/eit/Fruehling2016/MuelZum/html/parametric__equalizer__example_8c_source.html)
arm_q15_to_float(modulation->data, modulation_f32, AUDIO_BLOCK_SAMPLES);
arm_biquad_cascade_df1_f32(&filter, modulation_f32, modulation_f32, AUDIO_BLOCK_SAMPLES);
@ -111,23 +103,8 @@ void AudioEffectModulatedDelay::update(void)
mod_idx = *mp * float(_delay_length >> 1);
mod_fraction = modff(mod_idx, &mod_number);
#ifdef INTERPOLATE_MODE
// Generate a an array with the size of INTERPOLATION_WINDOW_SIZE of x/y values around mod_idx for interpolation
uint8_t c;
int16_t c_mod_idx = _circ_idx - int(round(mod_idx)); // This is the pointer to the value in the circular buffer at the current modulation index
for (j = ~(INTERPOLATION_WINDOW_SIZE >> 1) | 0x01, c = 0; j <= INTERPOLATION_WINDOW_SIZE >> 1; j++, c++) // only another way to say: from -INTERPOLATION_WINDOW_SIZE/2 to INTERPOLATION_WINDOW_SIZE/2
{
int16_t jc_mod_idx = (c_mod_idx + j) % _delay_length; // The modulation index pointer plus the value of the current window pointer
if (jc_mod_idx < 0)
y[c] = float(_delayline[_delay_length + jc_mod_idx]);
else
y[c] = float(_delayline[jc_mod_idx]);
x[c] = float(j);
}
*bp = int(round(s.value(mod_fraction)));
#else
// Simple interpolation
int16_t c_mod_idx = (_circ_idx - int(round(mod_idx))) % _delay_length;
int16_t c_mod_idx = (_circ_idx + int(round(mod_idx))) % _delay_length;
float value1, value2;
if (c_mod_idx < 0)
@ -140,7 +117,15 @@ void AudioEffectModulatedDelay::update(void)
value1 = _delayline[c_mod_idx - 1];
value2 = _delayline[c_mod_idx];
}
*bp = mod_fraction * value1 + (1.0 - mod_fraction) * value2;
*bp = int(round(mod_fraction * value1 + (1.0 - mod_fraction) * value2));
#ifdef DEBUG
float m = (value2 - value1) / (SHRT_MAX >> 1);
if (m > 1.0 || m < -1.0)
{
Serial.print(F("WARNING m="));
Serial.println(m, 4);
}
#endif
bp++; // next audio data
@ -164,56 +149,39 @@ void AudioEffectModulatedDelay::setDelay(float milliseconds)
_delay_length = min(AUDIO_SAMPLE_RATE * milliseconds / 500, _max_delay_length);
}
void AudioEffectModulatedDelay::calcModFilterCoeff(float32_t cFrq, float32_t gain, float32_t width)
void AudioEffectModulatedDelay::calcModFilterCoeff(float32_t cFrq)
{
/* Calculate intermediate values */
// float32_t A = sqrt(pow(10, gain / 20.0f));
// float32_t w0 = 2.0f * PI * cFrq / ((float32_t)AUDIO_SAMPLE_RATE_EXACT);
// float32_t cosw0 = cos(w0);
// float32_t sinw0 = sin(w0);
// float32_t alpha = sinw0 / (2.0f * width);
/* Calculate coefficients */
// float32_t b0 = 1.0f + alpha * A;
// float32_t b1 = -2.0f * cosw0;
// float32_t b2 = 1.0f - alpha * A;
// float32_t a0 = 1.0f + alpha / A;
// float32_t a1 = -2.0f * cosw0;
// float32_t a2 = 1.0f - alpha / A;
/* https://stackoverflow.com/questions/20924868/calculate-coefficients-of-2nd-order-butterworth-low-pass-filter/20932062
ff=cutoff_frq/sample_rate=AUDIO_SAMPLE_RATE_EXACT/1000
const double ita =1.0/ tan(M_PI*ff);
const double q=sqrt(2.0);
b0 = 1.0 / (1.0 + q*ita + ita*ita);
b1= 2*b0;
b2= b0;
a1 = 2.0 * (ita*ita - 1.0) * b0;
a2 = -(1.0 - q*ita + ita*ita) * b0;
ff=1000/44117.64706=0.02266666666
ita=804.60898525
q=1.414213
*/
// 1kHz 2nd order Butterworth lowpass filter coefficients
// calculated with Iowa IIR FIlter Designer 6.5
float32_t b0 = 0.124589380980617656;
float32_t b1 = 0.124589380980617656;
float32_t b2 = 0.0;
float32_t a0 = 1.000000000000000000;
float32_t a1 = -0.750821238038764660;
float32_t a2 = 0.0;
/* Normalize so a0 = 1 */
filter_coeffs[0] = b0 / a0;
filter_coeffs[1] = b1 / a0;
filter_coeffs[2] = b2 / a0;
filter_coeffs[3] = -a1 / a0;
filter_coeffs[4] = -a2 / a0;
const float sqrt2 = 1.4142135623730950488;
float QcRaw = (2 * PI * cFrq) / AUDIO_SAMPLE_RATE_EXACT; // Find cutoff frequency in [0..PI]
float QcWarp = tan(QcRaw); // Warp cutoff frequency
float gain = 1 / (1 + sqrt2 / QcWarp + 2 / (QcWarp * QcWarp));
filter_coeffs[2] = (1 - sqrt2 / QcWarp + 2 / (QcWarp * QcWarp)) * gain;
filter_coeffs[1] = (2 - 2 * 2 / (QcWarp * QcWarp)) * gain;
filter_coeffs[0] = 1;
filter_coeffs[3] = 1 * gain;
filter_coeffs[4] = 2 * gain;
/*
// 1.1kHz 2nd order Butterworth lowpass filter coefficients
// calculated with Iowa IIR FIlter Designer 6.5
float32_t b0 = 0.072959657268266670;
float32_t b1 = 0.072959657268266670;
float32_t b2 = 0.0;
float32_t a0 = 1.000000000000000000;
float32_t a1 = -0.854080685463466605;
float32_t a2 = 0.0;
// Normalize so a0 = 1
filter_coeffs[0] = b0 / a0;
filter_coeffs[1] = b1 / a0;
filter_coeffs[2] = b2 / a0;
filter_coeffs[3] = -a1 / a0;
filter_coeffs[4] = -a2 / a0; */
}
void AudioEffectModulatedDelay::setModFilter(float cFrq, float gain, float width)
void AudioEffectModulatedDelay::setModFilter(float cFrq)
{
calcModFilterCoeff(cFrq, gain, width);
calcModFilterCoeff(cFrq);
}

@ -26,9 +26,9 @@
#include "Arduino.h"
#include "AudioStream.h"
#include "config.h"
/*************************************************************************/
// A u d i o E f f e c t M o d u l a t e d D e l a y
// Written by Pete (El Supremo) Jan 2014
// 140219 - correct storage class (not static)
@ -45,16 +45,17 @@ class AudioEffectModulatedDelay :
boolean begin(short *delayline, int delay_length);
virtual void update(void);
virtual void setDelay(float milliseconds);
virtual void setModFilter(float cFrq, float gain, float width);
virtual void setModFilter(float cFrq);
private:
virtual void calcModFilterCoeff(float32_t cFrq, float32_t gain, float32_t width);
virtual void calcModFilterCoeff(float32_t cFrq);
audio_block_t *inputQueueArray[2];
int16_t *_delayline;
uint16_t _circ_idx;
uint16_t _max_delay_length;
uint16_t _delay_length;
// filter data
arm_biquad_casd_df1_inst_f32 filter;
float32_t modulation_f32[AUDIO_BLOCK_SAMPLES];

@ -1,120 +0,0 @@
#include "Arduino.h"
#include "spline.h"
#include <math.h>
Spline::Spline(void) {
_prev_point = 0;
}
Spline::Spline( float x[], float y[], int numPoints, int degree )
{
setPoints(x, y, numPoints);
setDegree(degree);
_prev_point = 0;
}
Spline::Spline( float x[], float y[], float m[], int numPoints )
{
setPoints(x, y, m, numPoints);
setDegree(Hermite);
_prev_point = 0;
}
void Spline::setPoints( float x[], float y[], int numPoints ) {
_x = x;
_y = y;
_length = numPoints;
}
void Spline::setPoints( float x[], float y[], float m[], int numPoints ) {
_x = x;
_y = y;
_m = m;
_length = numPoints;
}
void Spline::setDegree( int degree ) {
_degree = degree;
}
float Spline::value( float x )
{
if ( _x[0] > x ) {
return _y[0];
}
else if ( _x[_length - 1] < x ) {
return _y[_length - 1];
}
else {
for (int i = 0; i < _length; i++ )
{
int index = ( i + _prev_point ) % _length;
if ( _x[index] == x ) {
_prev_point = index;
return _y[index];
} else if ( (_x[index] < x) && (x < _x[index + 1]) ) {
_prev_point = index;
return calc( x, index );
}
}
}
return (0.0);
}
float Spline::calc( float x, int i )
{
switch ( _degree ) {
case 0:
return _y[i];
case 1:
if ( _x[i] == _x[i + 1] ) {
// Avoids division by 0
return _y[i];
} else {
return _y[i] + (_y[i + 1] - _y[i]) * ( x - _x[i]) / ( _x[i + 1] - _x[i] );
}
case Hermite:
return hermite( ((x - _x[i]) / (_x[i + 1] - _x[i])), _y[i], _y[i + 1], _m[i], _m[i + 1], _x[i], _x[i + 1] );
case Catmull:
if ( i == 0 ) {
// x prior to spline start - first point used to determine tangent
return _y[1];
} else if ( i == _length - 2 ) {
// x after spline end - last point used to determine tangent
return _y[_length - 2];
} else {
float t = (x - _x[i]) / (_x[i + 1] - _x[i]);
float m0 = (i == 0 ? 0 : catmull_tangent(i) );
float m1 = (i == _length - 1 ? 0 : catmull_tangent(i + 1) );
return hermite( t, _y[i], _y[i + 1], m0, m1, _x[i], _x[i + 1]);
}
}
return (0.0);
}
float Spline::hermite( float t, float p0, float p1, float m0, float m1, float x0, float x1 ) {
return (hermite_00(t) * p0) + (hermite_10(t) * (x1 - x0) * m0) + (hermite_01(t) * p1) + (hermite_11(t) * (x1 - x0) * m1);
}
float Spline::hermite_00( float t ) {
return (2 * pow(t, 3)) - (3 * pow(t, 2)) + 1;
}
float Spline::hermite_10( float t ) {
return pow(t, 3) - (2 * pow(t, 2)) + t;
}
float Spline::hermite_01( float t ) {
return (3 * pow(t, 2)) - (2 * pow(t, 3));
}
float Spline::hermite_11( float t ) {
return pow(t, 3) - pow(t, 2);
}
float Spline::catmull_tangent( int i )
{
if ( _x[i + 1] == _x[i - 1] ) {
// Avoids division by 0
return 0;
} else {
return (_y[i + 1] - _y[i - 1]) / (_x[i + 1] - _x[i - 1]);
}
}

@ -1,42 +0,0 @@
/*
Library for 1-d splines
Copyright Ryan Michael
Licensed under the GPLv3
*/
#ifndef spline_h
#define spline_h
#include "Arduino.h"
#define Hermite 10
#define Catmull 11
class Spline
{
public:
Spline( void );
Spline( float x[], float y[], int numPoints, int degree = 1 );
Spline( float x[], float y[], float m[], int numPoints );
float value( float x );
void setPoints( float x[], float y[], int numPoints );
void setPoints( float x[], float y[], float m[], int numPoints );
void setDegree( int degree );
private:
float calc( float, int);
float* _x;
float* _y;
float* _m;
int _degree;
int _length;
int _prev_point;
float hermite( float t, float p0, float p1, float m0, float m1, float x0, float x1 );
float hermite_00( float t );
float hermite_10( float t );
float hermite_01( float t );
float hermite_11( float t );
float catmull_tangent( int i );
};
#endif
Loading…
Cancel
Save