Added displaying name of chorus waveform in menu. Added a copy of Teensy audio library SynthWaveform for adding a method for changing the waveform at runtime. Don't know if this can also be done without this method...dev
parent
bd42d373c0
commit
c2c284a14b
@ -1,89 +0,0 @@ |
||||
/*
|
||||
* DCfilter.h |
||||
* |
||||
* Copyright 2012 Tim Barrass. |
||||
* |
||||
* This file is part of Mozzi. |
||||
* |
||||
* Mozzi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. |
||||
* |
||||
*/ |
||||
|
||||
#ifndef DCFILTER_H |
||||
#define DCFILTER_H |
||||
|
||||
/*
|
||||
tb2010 adapted from: |
||||
robert bristow-johnson, DSP Trick: Fixed-Point DC Blocking Filter with Noise-Shaping |
||||
http://www.dspguru.com/book/export/html/126
|
||||
|
||||
y[n] = x[n] - x[n-1] + a * y[n-1] |
||||
|
||||
Where y[n] is the output at the current time n, and x[n] is the input at the current time n. |
||||
|
||||
also, see DC Blocker Algorithms, http://www.ingelec.uns.edu.ar/pds2803/materiales/articulos/04472252.pdf
|
||||
*/ |
||||
|
||||
/**
|
||||
A DC-blocking filter useful for highlighting changes in control signals. |
||||
The output of the filter settles to 0 if the incoming signal stays constant. If the input changes, the |
||||
filter output swings to track the change and eventually settles back to 0. |
||||
*/ |
||||
class DCfilter |
||||
{ |
||||
public: |
||||
/**
|
||||
Instantiate a DC-blocking filter. |
||||
@param pole sets the responsiveness of the filter, |
||||
how long it takes to settle to 0 if the input signal levels out at a constant value. |
||||
*/ |
||||
DCfilter(float pole):acc(0),prev_x(0),prev_y(0) |
||||
{ |
||||
A = (int)(32768.0*(1.0 - pole)); |
||||
} |
||||
|
||||
/* almost original
|
||||
// timing: 20us
|
||||
int next(int x) |
||||
{ |
||||
setPin13High(); |
||||
acc -= prev_x; |
||||
prev_x = (long)x<<15; |
||||
acc += prev_x; |
||||
acc -= A*prev_y; |
||||
prev_y = acc>>15; // quantization happens here
|
||||
int filtered = (int)prev_y; |
||||
// acc has y[n] in upper 17 bits and -e[n] in lower 15 bits
|
||||
setPin13Low(); |
||||
return filtered; |
||||
} |
||||
*/ |
||||
|
||||
/**
|
||||
Filter the incoming value and return the result. |
||||
@param x the value to filter |
||||
@return filtered signal |
||||
*/ |
||||
// timing :8us
|
||||
inline |
||||
int next(int x) |
||||
{ |
||||
acc += ((long)(x-prev_x)<<16)>>1; |
||||
prev_x = x; |
||||
acc -= (long)A*prev_y; // acc has y[n] in upper 17 bits and -e[n] in lower 15 bits
|
||||
prev_y = (acc>>16)<<1; // faster than >>15 but loses bit 0
|
||||
if (acc & 32784) prev_y += 1; // adds 1 if it was in the 0 bit position lost in the shifts above
|
||||
return prev_y; |
||||
} |
||||
|
||||
private: |
||||
long acc; |
||||
int prev_x, prev_y,A; |
||||
}; |
||||
|
||||
/**
|
||||
@example 05.Control_Filters/DCFilter/DCFilter.ino |
||||
This example demonstrates the DCFilter class. |
||||
*/ |
||||
|
||||
#endif // #ifndef DCFILTER_H
|
@ -1,50 +0,0 @@ |
||||
/* Example of filtering an analog input to remove DC bias,
|
||||
using Mozzi sonification library. |
||||
|
||||
Demonstrates DCfilter(), DC-blocking filter useful for |
||||
highlighting changes in control signals. |
||||
The output of the filter settles to 0 if the incoming signal stays constant. |
||||
If the input changes, the filter output swings to track the change and |
||||
eventually settles back to 0. |
||||
|
||||
Mozzi documentation/API |
||||
https://sensorium.github.io/Mozzi/doc/html/index.html
|
||||
|
||||
Mozzi help/discussion/announcements: |
||||
https://groups.google.com/forum/#!forum/mozzi-users
|
||||
|
||||
Tim Barrass 2013, CC by-nc-sa. |
||||
|
||||
*/ |
||||
|
||||
#include <MozziGuts.h> |
||||
#include <DCfilter.h> |
||||
|
||||
int sensorPin = A0; |
||||
|
||||
DCfilter dcFiltered(0.9); // parameter sets how long the filter takes to settle
|
||||
|
||||
void setup() { |
||||
//Serial.begin(9600); // for Teensy 3.1, beware printout can cause glitches
|
||||
Serial.begin(115200); |
||||
startMozzi(); |
||||
} |
||||
|
||||
|
||||
void updateControl(){ |
||||
// read the value from the sensor:
|
||||
int sensorValue = mozziAnalogRead(sensorPin); |
||||
Serial.print(sensorValue); |
||||
Serial.print(" Filtered = "); |
||||
Serial.println(dcFiltered.next(sensorValue)); |
||||
} |
||||
|
||||
|
||||
int updateAudio(){ |
||||
return 0; |
||||
} |
||||
|
||||
|
||||
void loop(){ |
||||
audioHook(); |
||||
} |
@ -0,0 +1,403 @@ |
||||
/* Audio Library for Teensy 3.X
|
||||
* Copyright (c) 2018, Paul Stoffregen, paul@pjrc.com |
||||
* |
||||
* Development of this audio library was funded by PJRC.COM, LLC by sales of |
||||
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop |
||||
* open source software by purchasing Teensy or other PJRC products. |
||||
* |
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy |
||||
* of this software and associated documentation files (the "Software"), to deal |
||||
* in the Software without restriction, including without limitation the rights |
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
||||
* copies of the Software, and to permit persons to whom the Software is |
||||
* furnished to do so, subject to the following conditions: |
||||
* |
||||
* The above copyright notice, development funding notice, and this permission |
||||
* notice shall be included in all copies or substantial portions of the Software. |
||||
* |
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
||||
* THE SOFTWARE. |
||||
*/ |
||||
|
||||
#include <Arduino.h> |
||||
#include "synth_waveform_extended.h" |
||||
#include "arm_math.h" |
||||
#include "utility/dspinst.h" |
||||
|
||||
|
||||
// uncomment for more accurate but more computationally expensive frequency modulation
|
||||
//#define IMPROVE_EXPONENTIAL_ACCURACY
|
||||
|
||||
|
||||
void AudioSynthWaveformExtended::update(void) |
||||
{ |
||||
audio_block_t *block; |
||||
int16_t *bp, *end; |
||||
int32_t val1, val2; |
||||
int16_t magnitude15; |
||||
uint32_t i, ph, index, index2, scale; |
||||
const uint32_t inc = phase_increment; |
||||
|
||||
ph = phase_accumulator + phase_offset; |
||||
if (magnitude == 0) { |
||||
phase_accumulator += inc * AUDIO_BLOCK_SAMPLES; |
||||
return; |
||||
} |
||||
block = allocate(); |
||||
if (!block) { |
||||
phase_accumulator += inc * AUDIO_BLOCK_SAMPLES; |
||||
return; |
||||
} |
||||
bp = block->data; |
||||
|
||||
switch(tone_type) { |
||||
case WAVEFORM_SINE: |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
index = ph >> 24; |
||||
val1 = AudioWaveformSine[index]; |
||||
val2 = AudioWaveformSine[index+1]; |
||||
scale = (ph >> 8) & 0xFFFF; |
||||
val2 *= scale; |
||||
val1 *= 0x10000 - scale; |
||||
*bp++ = multiply_32x32_rshift32(val1 + val2, magnitude); |
||||
ph += inc; |
||||
} |
||||
break; |
||||
|
||||
case WAVEFORM_ARBITRARY: |
||||
if (!arbdata) { |
||||
release(block); |
||||
phase_accumulator += inc * AUDIO_BLOCK_SAMPLES; |
||||
return; |
||||
} |
||||
// len = 256
|
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
index = ph >> 24; |
||||
index2 = index + 1; |
||||
if (index2 >= 256) index2 = 0; |
||||
val1 = *(arbdata + index); |
||||
val2 = *(arbdata + index2); |
||||
scale = (ph >> 8) & 0xFFFF; |
||||
val2 *= scale; |
||||
val1 *= 0x10000 - scale; |
||||
*bp++ = multiply_32x32_rshift32(val1 + val2, magnitude); |
||||
ph += inc; |
||||
} |
||||
break; |
||||
|
||||
case WAVEFORM_SQUARE: |
||||
magnitude15 = signed_saturate_rshift(magnitude, 16, 1); |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
if (ph & 0x80000000) { |
||||
*bp++ = -magnitude15; |
||||
} else { |
||||
*bp++ = magnitude15; |
||||
} |
||||
ph += inc; |
||||
} |
||||
break; |
||||
|
||||
case WAVEFORM_SAWTOOTH: |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
*bp++ = signed_multiply_32x16t(magnitude, ph); |
||||
ph += inc; |
||||
} |
||||
break; |
||||
|
||||
case WAVEFORM_SAWTOOTH_REVERSE: |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
*bp++ = signed_multiply_32x16t(0xFFFFFFFFu - magnitude, ph); |
||||
ph += inc; |
||||
} |
||||
break; |
||||
|
||||
case WAVEFORM_TRIANGLE: |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
uint32_t phtop = ph >> 30; |
||||
if (phtop == 1 || phtop == 2) { |
||||
*bp++ = ((0xFFFF - (ph >> 15)) * magnitude) >> 16; |
||||
} else { |
||||
*bp++ = (((int32_t)ph >> 15) * magnitude) >> 16; |
||||
} |
||||
ph += inc; |
||||
} |
||||
break; |
||||
|
||||
case WAVEFORM_TRIANGLE_VARIABLE: |
||||
do { |
||||
uint32_t rise = 0xFFFFFFFF / (pulse_width >> 16); |
||||
uint32_t fall = 0xFFFFFFFF / (0xFFFF - (pulse_width >> 16)); |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
if (ph < pulse_width/2) { |
||||
uint32_t n = (ph >> 16) * rise; |
||||
*bp++ = ((n >> 16) * magnitude) >> 16; |
||||
} else if (ph < 0xFFFFFFFF - pulse_width/2) { |
||||
uint32_t n = 0x7FFFFFFF - (((ph - pulse_width/2) >> 16) * fall); |
||||
*bp++ = (((int32_t)n >> 16) * magnitude) >> 16; |
||||
} else { |
||||
uint32_t n = ((ph + pulse_width/2) >> 16) * rise + 0x80000000; |
||||
*bp++ = (((int32_t)n >> 16) * magnitude) >> 16; |
||||
} |
||||
ph += inc; |
||||
} |
||||
} while (0); |
||||
break; |
||||
|
||||
case WAVEFORM_PULSE: |
||||
magnitude15 = signed_saturate_rshift(magnitude, 16, 1); |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
if (ph < pulse_width) { |
||||
*bp++ = magnitude15; |
||||
} else { |
||||
*bp++ = -magnitude15; |
||||
} |
||||
ph += inc; |
||||
} |
||||
break; |
||||
|
||||
case WAVEFORM_SAMPLE_HOLD: |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
*bp++ = sample; |
||||
uint32_t newph = ph + inc; |
||||
if (newph < ph) { |
||||
sample = random(magnitude) - (magnitude >> 1); |
||||
} |
||||
ph = newph; |
||||
} |
||||
break; |
||||
} |
||||
phase_accumulator = ph - phase_offset; |
||||
|
||||
if (tone_offset) { |
||||
bp = block->data; |
||||
end = bp + AUDIO_BLOCK_SAMPLES; |
||||
do { |
||||
val1 = *bp; |
||||
*bp++ = signed_saturate_rshift(val1 + tone_offset, 16, 0); |
||||
} while (bp < end); |
||||
} |
||||
transmit(block, 0); |
||||
release(block); |
||||
} |
||||
|
||||
//--------------------------------------------------------------------------------
|
||||
|
||||
void AudioSynthWaveformExtendedModulated::update(void) |
||||
{ |
||||
audio_block_t *block, *moddata, *shapedata; |
||||
int16_t *bp, *end; |
||||
int32_t val1, val2; |
||||
int16_t magnitude15; |
||||
uint32_t i, ph, index, index2, scale, priorphase; |
||||
const uint32_t inc = phase_increment; |
||||
|
||||
moddata = receiveReadOnly(0); |
||||
shapedata = receiveReadOnly(1); |
||||
|
||||
// Pre-compute the phase angle for every output sample of this update
|
||||
ph = phase_accumulator; |
||||
priorphase = phasedata[AUDIO_BLOCK_SAMPLES-1]; |
||||
if (moddata && modulation_type == 0) { |
||||
// Frequency Modulation
|
||||
bp = moddata->data; |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
int32_t n = (*bp++) * modulation_factor; // n is # of octaves to mod
|
||||
int32_t ipart = n >> 27; // 4 integer bits
|
||||
n &= 0x7FFFFFF; // 27 fractional bits
|
||||
#ifdef IMPROVE_EXPONENTIAL_ACCURACY |
||||
// exp2 polynomial suggested by Stefan Stenzel on "music-dsp"
|
||||
// mail list, Wed, 3 Sep 2014 10:08:55 +0200
|
||||
int32_t x = n << 3; |
||||
n = multiply_accumulate_32x32_rshift32_rounded(536870912, x, 1494202713); |
||||
int32_t sq = multiply_32x32_rshift32_rounded(x, x); |
||||
n = multiply_accumulate_32x32_rshift32_rounded(n, sq, 1934101615); |
||||
n = n + (multiply_32x32_rshift32_rounded(sq, |
||||
multiply_32x32_rshift32_rounded(x, 1358044250)) << 1); |
||||
n = n << 1; |
||||
#else |
||||
// exp2 algorithm by Laurent de Soras
|
||||
// https://www.musicdsp.org/en/latest/Other/106-fast-exp2-approximation.html
|
||||
n = (n + 134217728) << 3; |
||||
n = multiply_32x32_rshift32_rounded(n, n); |
||||
n = multiply_32x32_rshift32_rounded(n, 715827883) << 3; |
||||
n = n + 715827882; |
||||
#endif |
||||
uint32_t scale = n >> (14 - ipart); |
||||
uint64_t phstep = (uint64_t)inc * scale; |
||||
uint32_t phstep_msw = phstep >> 32; |
||||
if (phstep_msw < 0x7FFE) { |
||||
ph += phstep >> 16; |
||||
} else { |
||||
ph += 0x7FFE0000; |
||||
} |
||||
phasedata[i] = ph; |
||||
} |
||||
release(moddata); |
||||
} else if (moddata) { |
||||
// Phase Modulation
|
||||
bp = moddata->data; |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
// more than +/- 180 deg shift by 32 bit overflow of "n"
|
||||
uint32_t n = (uint16_t)(*bp++) * modulation_factor; |
||||
phasedata[i] = ph + n; |
||||
ph += inc; |
||||
} |
||||
release(moddata); |
||||
} else { |
||||
// No Modulation Input
|
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
phasedata[i] = ph; |
||||
ph += inc; |
||||
} |
||||
} |
||||
phase_accumulator = ph; |
||||
|
||||
// If the amplitude is zero, no output, but phase still increments properly
|
||||
if (magnitude == 0) { |
||||
if (shapedata) release(shapedata); |
||||
return; |
||||
} |
||||
block = allocate(); |
||||
if (!block) { |
||||
if (shapedata) release(shapedata); |
||||
return; |
||||
} |
||||
bp = block->data; |
||||
|
||||
// Now generate the output samples using the pre-computed phase angles
|
||||
switch(tone_type) { |
||||
case WAVEFORM_SINE: |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
ph = phasedata[i]; |
||||
index = ph >> 24; |
||||
val1 = AudioWaveformSine[index]; |
||||
val2 = AudioWaveformSine[index+1]; |
||||
scale = (ph >> 8) & 0xFFFF; |
||||
val2 *= scale; |
||||
val1 *= 0x10000 - scale; |
||||
*bp++ = multiply_32x32_rshift32(val1 + val2, magnitude); |
||||
} |
||||
break; |
||||
|
||||
case WAVEFORM_ARBITRARY: |
||||
if (!arbdata) { |
||||
release(block); |
||||
if (shapedata) release(shapedata); |
||||
return; |
||||
} |
||||
// len = 256
|
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
ph = phasedata[i]; |
||||
index = ph >> 24; |
||||
index2 = index + 1; |
||||
if (index2 >= 256) index2 = 0; |
||||
val1 = *(arbdata + index); |
||||
val2 = *(arbdata + index2); |
||||
scale = (ph >> 8) & 0xFFFF; |
||||
val2 *= scale; |
||||
val1 *= 0x10000 - scale; |
||||
*bp++ = multiply_32x32_rshift32(val1 + val2, magnitude); |
||||
} |
||||
break; |
||||
|
||||
case WAVEFORM_PULSE: |
||||
if (shapedata) { |
||||
magnitude15 = signed_saturate_rshift(magnitude, 16, 1); |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
uint32_t width = ((shapedata->data[i] + 0x8000) & 0xFFFF) << 16; |
||||
if (phasedata[i] < width) { |
||||
*bp++ = magnitude15; |
||||
} else { |
||||
*bp++ = -magnitude15; |
||||
} |
||||
} |
||||
break; |
||||
} // else fall through to orginary square without shape modulation
|
||||
|
||||
case WAVEFORM_SQUARE: |
||||
magnitude15 = signed_saturate_rshift(magnitude, 16, 1); |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
if (phasedata[i] & 0x80000000) { |
||||
*bp++ = -magnitude15; |
||||
} else { |
||||
*bp++ = magnitude15; |
||||
} |
||||
} |
||||
break; |
||||
|
||||
case WAVEFORM_SAWTOOTH: |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
*bp++ = signed_multiply_32x16t(magnitude, phasedata[i]); |
||||
} |
||||
break; |
||||
|
||||
case WAVEFORM_SAWTOOTH_REVERSE: |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
*bp++ = signed_multiply_32x16t(0xFFFFFFFFu - magnitude, phasedata[i]); |
||||
} |
||||
break; |
||||
|
||||
case WAVEFORM_TRIANGLE_VARIABLE: |
||||
if (shapedata) { |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
uint32_t width = (shapedata->data[i] + 0x8000) & 0xFFFF; |
||||
uint32_t rise = 0xFFFFFFFF / width; |
||||
uint32_t fall = 0xFFFFFFFF / (0xFFFF - width); |
||||
uint32_t halfwidth = width << 15; |
||||
uint32_t n; |
||||
ph = phasedata[i]; |
||||
if (ph < halfwidth) { |
||||
n = (ph >> 16) * rise; |
||||
*bp++ = ((n >> 16) * magnitude) >> 16; |
||||
} else if (ph < 0xFFFFFFFF - halfwidth) { |
||||
n = 0x7FFFFFFF - (((ph - halfwidth) >> 16) * fall); |
||||
*bp++ = (((int32_t)n >> 16) * magnitude) >> 16; |
||||
} else { |
||||
n = ((ph + halfwidth) >> 16) * rise + 0x80000000; |
||||
*bp++ = (((int32_t)n >> 16) * magnitude) >> 16; |
||||
} |
||||
ph += inc; |
||||
} |
||||
break; |
||||
} // else fall through to orginary triangle without shape modulation
|
||||
|
||||
case WAVEFORM_TRIANGLE: |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
ph = phasedata[i]; |
||||
uint32_t phtop = ph >> 30; |
||||
if (phtop == 1 || phtop == 2) { |
||||
*bp++ = ((0xFFFF - (ph >> 15)) * magnitude) >> 16; |
||||
} else { |
||||
*bp++ = (((int32_t)ph >> 15) * magnitude) >> 16; |
||||
} |
||||
} |
||||
break; |
||||
case WAVEFORM_SAMPLE_HOLD: |
||||
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||
ph = phasedata[i]; |
||||
if (ph < priorphase) { // does not work for phase modulation
|
||||
sample = random(magnitude) - (magnitude >> 1); |
||||
} |
||||
priorphase = ph; |
||||
*bp++ = sample; |
||||
} |
||||
break; |
||||
} |
||||
|
||||
if (tone_offset) { |
||||
bp = block->data; |
||||
end = bp + AUDIO_BLOCK_SAMPLES; |
||||
do { |
||||
val1 = *bp; |
||||
*bp++ = signed_saturate_rshift(val1 + tone_offset, 16, 0); |
||||
} while (bp < end); |
||||
} |
||||
if (shapedata) release(shapedata); |
||||
transmit(block, 0); |
||||
release(block); |
||||
} |
@ -0,0 +1,221 @@ |
||||
/* Audio Library for Teensy 3.X
|
||||
Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com |
||||
|
||||
Development of this audio library was funded by PJRC.COM, LLC by sales of |
||||
Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop |
||||
open source software by purchasing Teensy or other PJRC products. |
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy |
||||
of this software and associated documentation files (the "Software"), to deal |
||||
in the Software without restriction, including without limitation the rights |
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
||||
copies of the Software, and to permit persons to whom the Software is |
||||
furnished to do so, subject to the following conditions: |
||||
|
||||
The above copyright notice, development funding notice, and this permission |
||||
notice shall be included in all copies or substantial portions of the Software. |
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
||||
THE SOFTWARE. |
||||
*/ |
||||
|
||||
/*
|
||||
Extension for setting the waveform while running by H. Wirtz <wirtz@parasitstudio.de> |
||||
*/ |
||||
|
||||
#ifndef synth_waveform_extended_h_ |
||||
#define synth_waveform_extended_h_ |
||||
|
||||
#include <Arduino.h> |
||||
#include "AudioStream.h" |
||||
#include "arm_math.h" |
||||
|
||||
// waveforms.c
|
||||
extern "C" { |
||||
extern const int16_t AudioWaveformSine[257]; |
||||
} |
||||
|
||||
|
||||
#define WAVEFORM_SINE 0 |
||||
#define WAVEFORM_SAWTOOTH 1 |
||||
#define WAVEFORM_SQUARE 2 |
||||
#define WAVEFORM_TRIANGLE 3 |
||||
#define WAVEFORM_ARBITRARY 4 |
||||
#define WAVEFORM_PULSE 5 |
||||
#define WAVEFORM_SAWTOOTH_REVERSE 6 |
||||
#define WAVEFORM_SAMPLE_HOLD 7 |
||||
#define WAVEFORM_TRIANGLE_VARIABLE 8 |
||||
|
||||
class AudioSynthWaveformExtended : public AudioStream |
||||
{ |
||||
public: |
||||
AudioSynthWaveformExtended(void) : AudioStream(0, NULL), |
||||
phase_accumulator(0), phase_increment(0), phase_offset(0), |
||||
magnitude(0), pulse_width(0x40000000), |
||||
arbdata(NULL), sample(0), tone_type(WAVEFORM_SINE), |
||||
tone_offset(0) { |
||||
} |
||||
|
||||
void frequency(float freq) { |
||||
if (freq < 0.0) { |
||||
freq = 0.0; |
||||
} else if (freq > AUDIO_SAMPLE_RATE_EXACT / 2) { |
||||
freq = AUDIO_SAMPLE_RATE_EXACT / 2; |
||||
} |
||||
phase_increment = freq * (4294967296.0 / AUDIO_SAMPLE_RATE_EXACT); |
||||
if (phase_increment > 0x7FFE0000u) phase_increment = 0x7FFE0000; |
||||
} |
||||
void phase(float angle) { |
||||
if (angle < 0.0) { |
||||
angle = 0.0; |
||||
} else if (angle > 360.0) { |
||||
angle = angle - 360.0; |
||||
if (angle >= 360.0) return; |
||||
} |
||||
phase_offset = angle * (4294967296.0 / 360.0); |
||||
} |
||||
void amplitude(float n) { // 0 to 1.0
|
||||
if (n < 0) { |
||||
n = 0; |
||||
} else if (n > 1.0) { |
||||
n = 1.0; |
||||
} |
||||
magnitude = n * 65536.0; |
||||
} |
||||
void offset(float n) { |
||||
if (n < -1.0) { |
||||
n = -1.0; |
||||
} else if (n > 1.0) { |
||||
n = 1.0; |
||||
} |
||||
tone_offset = n * 32767.0; |
||||
} |
||||
void pulseWidth(float n) { // 0.0 to 1.0
|
||||
if (n < 0) { |
||||
n = 0; |
||||
} else if (n > 1.0) { |
||||
n = 1.0; |
||||
} |
||||
pulse_width = n * 4294967296.0; |
||||
} |
||||
void waveform(short t_type) { |
||||
phase_offset = 0; |
||||
tone_type = t_type; |
||||
} |
||||
void begin(short t_type) { |
||||
phase_offset = 0; |
||||
tone_type = t_type; |
||||
} |
||||
void begin(float t_amp, float t_freq, short t_type) { |
||||
amplitude(t_amp); |
||||
frequency(t_freq); |
||||
phase_offset = 0; |
||||
tone_type = t_type; |
||||
} |
||||
void arbitraryWaveform(const int16_t *data, float maxFreq) { |
||||
arbdata = data; |
||||
} |
||||
virtual void update(void); |
||||
|
||||
private: |
||||
uint32_t phase_accumulator; |
||||
uint32_t phase_increment; |
||||
uint32_t phase_offset; |
||||
int32_t magnitude; |
||||
uint32_t pulse_width; |
||||
const int16_t *arbdata; |
||||
int16_t sample; // for WAVEFORM_SAMPLE_HOLD
|
||||
short tone_type; |
||||
int16_t tone_offset; |
||||
}; |
||||
|
||||
|
||||
class AudioSynthWaveformExtendedModulated : public AudioStream |
||||
{ |
||||
public: |
||||
AudioSynthWaveformExtendedModulated(void) : AudioStream(2, inputQueueArray), |
||||
phase_accumulator(0), phase_increment(0), modulation_factor(32768), |
||||
magnitude(0), arbdata(NULL), sample(0), tone_offset(0), |
||||
tone_type(WAVEFORM_SINE), modulation_type(0) { |
||||
} |
||||
|
||||
void frequency(float freq) { |
||||
if (freq < 0.0) { |
||||
freq = 0.0; |
||||
} else if (freq > AUDIO_SAMPLE_RATE_EXACT / 2) { |
||||
freq = AUDIO_SAMPLE_RATE_EXACT / 2; |
||||
} |
||||
phase_increment = freq * (4294967296.0 / AUDIO_SAMPLE_RATE_EXACT); |
||||
if (phase_increment > 0x7FFE0000u) phase_increment = 0x7FFE0000; |
||||
} |
||||
void amplitude(float n) { // 0 to 1.0
|
||||
if (n < 0) { |
||||
n = 0; |
||||
} else if (n > 1.0) { |
||||
n = 1.0; |
||||
} |
||||
magnitude = n * 65536.0; |
||||
} |
||||
void offset(float n) { |
||||
if (n < -1.0) { |
||||
n = -1.0; |
||||
} else if (n > 1.0) { |
||||
n = 1.0; |
||||
} |
||||
tone_offset = n * 32767.0; |
||||
} |
||||
void waveform(short t_type) { |
||||
tone_type = t_type; |
||||
} |
||||
void begin(short t_type) { |
||||
tone_type = t_type; |
||||
} |
||||
void begin(float t_amp, float t_freq, short t_type) { |
||||
amplitude(t_amp); |
||||
frequency(t_freq); |
||||
tone_type = t_type; |
||||
} |
||||
void arbitraryWaveform(const int16_t *data, float maxFreq) { |
||||
arbdata = data; |
||||
} |
||||
void frequencyModulation(float octaves) { |
||||
if (octaves > 12.0) { |
||||
octaves = 12.0; |
||||
} else if (octaves < 0.1) { |
||||
octaves = 0.1; |
||||
} |
||||
modulation_factor = octaves * 4096.0; |
||||
modulation_type = 0; |
||||
} |
||||
void phaseModulation(float degrees) { |
||||
if (degrees > 9000.0) { |
||||
degrees = 9000.0; |
||||
} else if (degrees < 30.0) { |
||||
degrees = 30.0; |
||||
} |
||||
modulation_factor = degrees * (65536.0 / 180.0); |
||||
modulation_type = 1; |
||||
} |
||||
virtual void update(void); |
||||
|
||||
private: |
||||
audio_block_t *inputQueueArray[2]; |
||||
uint32_t phase_accumulator; |
||||
uint32_t phase_increment; |
||||
uint32_t modulation_factor; |
||||
int32_t magnitude; |
||||
const int16_t *arbdata; |
||||
uint32_t phasedata[AUDIO_BLOCK_SAMPLES]; |
||||
int16_t sample; // for WAVEFORM_SAMPLE_HOLD
|
||||
int16_t tone_offset; |
||||
uint8_t tone_type; |
||||
uint8_t modulation_type; |
||||
}; |
||||
|
||||
|
||||
#endif |
Loading…
Reference in new issue