Added displaying name of chorus waveform in menu. Added a copy of Teensy audio library SynthWaveform for adding a method for changing the waveform at runtime. Don't know if this can also be done without this method...master
parent
b85b6592dd
commit
a11d7791df
@ -1,89 +0,0 @@ |
|||||||
/*
|
|
||||||
* DCfilter.h |
|
||||||
* |
|
||||||
* Copyright 2012 Tim Barrass. |
|
||||||
* |
|
||||||
* This file is part of Mozzi. |
|
||||||
* |
|
||||||
* Mozzi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. |
|
||||||
* |
|
||||||
*/ |
|
||||||
|
|
||||||
#ifndef DCFILTER_H |
|
||||||
#define DCFILTER_H |
|
||||||
|
|
||||||
/*
|
|
||||||
tb2010 adapted from: |
|
||||||
robert bristow-johnson, DSP Trick: Fixed-Point DC Blocking Filter with Noise-Shaping |
|
||||||
http://www.dspguru.com/book/export/html/126
|
|
||||||
|
|
||||||
y[n] = x[n] - x[n-1] + a * y[n-1] |
|
||||||
|
|
||||||
Where y[n] is the output at the current time n, and x[n] is the input at the current time n. |
|
||||||
|
|
||||||
also, see DC Blocker Algorithms, http://www.ingelec.uns.edu.ar/pds2803/materiales/articulos/04472252.pdf
|
|
||||||
*/ |
|
||||||
|
|
||||||
/**
|
|
||||||
A DC-blocking filter useful for highlighting changes in control signals. |
|
||||||
The output of the filter settles to 0 if the incoming signal stays constant. If the input changes, the |
|
||||||
filter output swings to track the change and eventually settles back to 0. |
|
||||||
*/ |
|
||||||
class DCfilter |
|
||||||
{ |
|
||||||
public: |
|
||||||
/**
|
|
||||||
Instantiate a DC-blocking filter. |
|
||||||
@param pole sets the responsiveness of the filter, |
|
||||||
how long it takes to settle to 0 if the input signal levels out at a constant value. |
|
||||||
*/ |
|
||||||
DCfilter(float pole):acc(0),prev_x(0),prev_y(0) |
|
||||||
{ |
|
||||||
A = (int)(32768.0*(1.0 - pole)); |
|
||||||
} |
|
||||||
|
|
||||||
/* almost original
|
|
||||||
// timing: 20us
|
|
||||||
int next(int x) |
|
||||||
{ |
|
||||||
setPin13High(); |
|
||||||
acc -= prev_x; |
|
||||||
prev_x = (long)x<<15; |
|
||||||
acc += prev_x; |
|
||||||
acc -= A*prev_y; |
|
||||||
prev_y = acc>>15; // quantization happens here
|
|
||||||
int filtered = (int)prev_y; |
|
||||||
// acc has y[n] in upper 17 bits and -e[n] in lower 15 bits
|
|
||||||
setPin13Low(); |
|
||||||
return filtered; |
|
||||||
} |
|
||||||
*/ |
|
||||||
|
|
||||||
/**
|
|
||||||
Filter the incoming value and return the result. |
|
||||||
@param x the value to filter |
|
||||||
@return filtered signal |
|
||||||
*/ |
|
||||||
// timing :8us
|
|
||||||
inline |
|
||||||
int next(int x) |
|
||||||
{ |
|
||||||
acc += ((long)(x-prev_x)<<16)>>1; |
|
||||||
prev_x = x; |
|
||||||
acc -= (long)A*prev_y; // acc has y[n] in upper 17 bits and -e[n] in lower 15 bits
|
|
||||||
prev_y = (acc>>16)<<1; // faster than >>15 but loses bit 0
|
|
||||||
if (acc & 32784) prev_y += 1; // adds 1 if it was in the 0 bit position lost in the shifts above
|
|
||||||
return prev_y; |
|
||||||
} |
|
||||||
|
|
||||||
private: |
|
||||||
long acc; |
|
||||||
int prev_x, prev_y,A; |
|
||||||
}; |
|
||||||
|
|
||||||
/**
|
|
||||||
@example 05.Control_Filters/DCFilter/DCFilter.ino |
|
||||||
This example demonstrates the DCFilter class. |
|
||||||
*/ |
|
||||||
|
|
||||||
#endif // #ifndef DCFILTER_H
|
|
@ -1,50 +0,0 @@ |
|||||||
/* Example of filtering an analog input to remove DC bias,
|
|
||||||
using Mozzi sonification library. |
|
||||||
|
|
||||||
Demonstrates DCfilter(), DC-blocking filter useful for |
|
||||||
highlighting changes in control signals. |
|
||||||
The output of the filter settles to 0 if the incoming signal stays constant. |
|
||||||
If the input changes, the filter output swings to track the change and |
|
||||||
eventually settles back to 0. |
|
||||||
|
|
||||||
Mozzi documentation/API |
|
||||||
https://sensorium.github.io/Mozzi/doc/html/index.html
|
|
||||||
|
|
||||||
Mozzi help/discussion/announcements: |
|
||||||
https://groups.google.com/forum/#!forum/mozzi-users
|
|
||||||
|
|
||||||
Tim Barrass 2013, CC by-nc-sa. |
|
||||||
|
|
||||||
*/ |
|
||||||
|
|
||||||
#include <MozziGuts.h> |
|
||||||
#include <DCfilter.h> |
|
||||||
|
|
||||||
int sensorPin = A0; |
|
||||||
|
|
||||||
DCfilter dcFiltered(0.9); // parameter sets how long the filter takes to settle
|
|
||||||
|
|
||||||
void setup() { |
|
||||||
//Serial.begin(9600); // for Teensy 3.1, beware printout can cause glitches
|
|
||||||
Serial.begin(115200); |
|
||||||
startMozzi(); |
|
||||||
} |
|
||||||
|
|
||||||
|
|
||||||
void updateControl(){ |
|
||||||
// read the value from the sensor:
|
|
||||||
int sensorValue = mozziAnalogRead(sensorPin); |
|
||||||
Serial.print(sensorValue); |
|
||||||
Serial.print(" Filtered = "); |
|
||||||
Serial.println(dcFiltered.next(sensorValue)); |
|
||||||
} |
|
||||||
|
|
||||||
|
|
||||||
int updateAudio(){ |
|
||||||
return 0; |
|
||||||
} |
|
||||||
|
|
||||||
|
|
||||||
void loop(){ |
|
||||||
audioHook(); |
|
||||||
} |
|
@ -0,0 +1,403 @@ |
|||||||
|
/* Audio Library for Teensy 3.X
|
||||||
|
* Copyright (c) 2018, Paul Stoffregen, paul@pjrc.com |
||||||
|
* |
||||||
|
* Development of this audio library was funded by PJRC.COM, LLC by sales of |
||||||
|
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop |
||||||
|
* open source software by purchasing Teensy or other PJRC products. |
||||||
|
* |
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy |
||||||
|
* of this software and associated documentation files (the "Software"), to deal |
||||||
|
* in the Software without restriction, including without limitation the rights |
||||||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
||||||
|
* copies of the Software, and to permit persons to whom the Software is |
||||||
|
* furnished to do so, subject to the following conditions: |
||||||
|
* |
||||||
|
* The above copyright notice, development funding notice, and this permission |
||||||
|
* notice shall be included in all copies or substantial portions of the Software. |
||||||
|
* |
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
||||||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
||||||
|
* THE SOFTWARE. |
||||||
|
*/ |
||||||
|
|
||||||
|
#include <Arduino.h> |
||||||
|
#include "synth_waveform_extended.h" |
||||||
|
#include "arm_math.h" |
||||||
|
#include "utility/dspinst.h" |
||||||
|
|
||||||
|
|
||||||
|
// uncomment for more accurate but more computationally expensive frequency modulation
|
||||||
|
//#define IMPROVE_EXPONENTIAL_ACCURACY
|
||||||
|
|
||||||
|
|
||||||
|
void AudioSynthWaveformExtended::update(void) |
||||||
|
{ |
||||||
|
audio_block_t *block; |
||||||
|
int16_t *bp, *end; |
||||||
|
int32_t val1, val2; |
||||||
|
int16_t magnitude15; |
||||||
|
uint32_t i, ph, index, index2, scale; |
||||||
|
const uint32_t inc = phase_increment; |
||||||
|
|
||||||
|
ph = phase_accumulator + phase_offset; |
||||||
|
if (magnitude == 0) { |
||||||
|
phase_accumulator += inc * AUDIO_BLOCK_SAMPLES; |
||||||
|
return; |
||||||
|
} |
||||||
|
block = allocate(); |
||||||
|
if (!block) { |
||||||
|
phase_accumulator += inc * AUDIO_BLOCK_SAMPLES; |
||||||
|
return; |
||||||
|
} |
||||||
|
bp = block->data; |
||||||
|
|
||||||
|
switch(tone_type) { |
||||||
|
case WAVEFORM_SINE: |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
index = ph >> 24; |
||||||
|
val1 = AudioWaveformSine[index]; |
||||||
|
val2 = AudioWaveformSine[index+1]; |
||||||
|
scale = (ph >> 8) & 0xFFFF; |
||||||
|
val2 *= scale; |
||||||
|
val1 *= 0x10000 - scale; |
||||||
|
*bp++ = multiply_32x32_rshift32(val1 + val2, magnitude); |
||||||
|
ph += inc; |
||||||
|
} |
||||||
|
break; |
||||||
|
|
||||||
|
case WAVEFORM_ARBITRARY: |
||||||
|
if (!arbdata) { |
||||||
|
release(block); |
||||||
|
phase_accumulator += inc * AUDIO_BLOCK_SAMPLES; |
||||||
|
return; |
||||||
|
} |
||||||
|
// len = 256
|
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
index = ph >> 24; |
||||||
|
index2 = index + 1; |
||||||
|
if (index2 >= 256) index2 = 0; |
||||||
|
val1 = *(arbdata + index); |
||||||
|
val2 = *(arbdata + index2); |
||||||
|
scale = (ph >> 8) & 0xFFFF; |
||||||
|
val2 *= scale; |
||||||
|
val1 *= 0x10000 - scale; |
||||||
|
*bp++ = multiply_32x32_rshift32(val1 + val2, magnitude); |
||||||
|
ph += inc; |
||||||
|
} |
||||||
|
break; |
||||||
|
|
||||||
|
case WAVEFORM_SQUARE: |
||||||
|
magnitude15 = signed_saturate_rshift(magnitude, 16, 1); |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
if (ph & 0x80000000) { |
||||||
|
*bp++ = -magnitude15; |
||||||
|
} else { |
||||||
|
*bp++ = magnitude15; |
||||||
|
} |
||||||
|
ph += inc; |
||||||
|
} |
||||||
|
break; |
||||||
|
|
||||||
|
case WAVEFORM_SAWTOOTH: |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
*bp++ = signed_multiply_32x16t(magnitude, ph); |
||||||
|
ph += inc; |
||||||
|
} |
||||||
|
break; |
||||||
|
|
||||||
|
case WAVEFORM_SAWTOOTH_REVERSE: |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
*bp++ = signed_multiply_32x16t(0xFFFFFFFFu - magnitude, ph); |
||||||
|
ph += inc; |
||||||
|
} |
||||||
|
break; |
||||||
|
|
||||||
|
case WAVEFORM_TRIANGLE: |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
uint32_t phtop = ph >> 30; |
||||||
|
if (phtop == 1 || phtop == 2) { |
||||||
|
*bp++ = ((0xFFFF - (ph >> 15)) * magnitude) >> 16; |
||||||
|
} else { |
||||||
|
*bp++ = (((int32_t)ph >> 15) * magnitude) >> 16; |
||||||
|
} |
||||||
|
ph += inc; |
||||||
|
} |
||||||
|
break; |
||||||
|
|
||||||
|
case WAVEFORM_TRIANGLE_VARIABLE: |
||||||
|
do { |
||||||
|
uint32_t rise = 0xFFFFFFFF / (pulse_width >> 16); |
||||||
|
uint32_t fall = 0xFFFFFFFF / (0xFFFF - (pulse_width >> 16)); |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
if (ph < pulse_width/2) { |
||||||
|
uint32_t n = (ph >> 16) * rise; |
||||||
|
*bp++ = ((n >> 16) * magnitude) >> 16; |
||||||
|
} else if (ph < 0xFFFFFFFF - pulse_width/2) { |
||||||
|
uint32_t n = 0x7FFFFFFF - (((ph - pulse_width/2) >> 16) * fall); |
||||||
|
*bp++ = (((int32_t)n >> 16) * magnitude) >> 16; |
||||||
|
} else { |
||||||
|
uint32_t n = ((ph + pulse_width/2) >> 16) * rise + 0x80000000; |
||||||
|
*bp++ = (((int32_t)n >> 16) * magnitude) >> 16; |
||||||
|
} |
||||||
|
ph += inc; |
||||||
|
} |
||||||
|
} while (0); |
||||||
|
break; |
||||||
|
|
||||||
|
case WAVEFORM_PULSE: |
||||||
|
magnitude15 = signed_saturate_rshift(magnitude, 16, 1); |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
if (ph < pulse_width) { |
||||||
|
*bp++ = magnitude15; |
||||||
|
} else { |
||||||
|
*bp++ = -magnitude15; |
||||||
|
} |
||||||
|
ph += inc; |
||||||
|
} |
||||||
|
break; |
||||||
|
|
||||||
|
case WAVEFORM_SAMPLE_HOLD: |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
*bp++ = sample; |
||||||
|
uint32_t newph = ph + inc; |
||||||
|
if (newph < ph) { |
||||||
|
sample = random(magnitude) - (magnitude >> 1); |
||||||
|
} |
||||||
|
ph = newph; |
||||||
|
} |
||||||
|
break; |
||||||
|
} |
||||||
|
phase_accumulator = ph - phase_offset; |
||||||
|
|
||||||
|
if (tone_offset) { |
||||||
|
bp = block->data; |
||||||
|
end = bp + AUDIO_BLOCK_SAMPLES; |
||||||
|
do { |
||||||
|
val1 = *bp; |
||||||
|
*bp++ = signed_saturate_rshift(val1 + tone_offset, 16, 0); |
||||||
|
} while (bp < end); |
||||||
|
} |
||||||
|
transmit(block, 0); |
||||||
|
release(block); |
||||||
|
} |
||||||
|
|
||||||
|
//--------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
void AudioSynthWaveformExtendedModulated::update(void) |
||||||
|
{ |
||||||
|
audio_block_t *block, *moddata, *shapedata; |
||||||
|
int16_t *bp, *end; |
||||||
|
int32_t val1, val2; |
||||||
|
int16_t magnitude15; |
||||||
|
uint32_t i, ph, index, index2, scale, priorphase; |
||||||
|
const uint32_t inc = phase_increment; |
||||||
|
|
||||||
|
moddata = receiveReadOnly(0); |
||||||
|
shapedata = receiveReadOnly(1); |
||||||
|
|
||||||
|
// Pre-compute the phase angle for every output sample of this update
|
||||||
|
ph = phase_accumulator; |
||||||
|
priorphase = phasedata[AUDIO_BLOCK_SAMPLES-1]; |
||||||
|
if (moddata && modulation_type == 0) { |
||||||
|
// Frequency Modulation
|
||||||
|
bp = moddata->data; |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
int32_t n = (*bp++) * modulation_factor; // n is # of octaves to mod
|
||||||
|
int32_t ipart = n >> 27; // 4 integer bits
|
||||||
|
n &= 0x7FFFFFF; // 27 fractional bits
|
||||||
|
#ifdef IMPROVE_EXPONENTIAL_ACCURACY |
||||||
|
// exp2 polynomial suggested by Stefan Stenzel on "music-dsp"
|
||||||
|
// mail list, Wed, 3 Sep 2014 10:08:55 +0200
|
||||||
|
int32_t x = n << 3; |
||||||
|
n = multiply_accumulate_32x32_rshift32_rounded(536870912, x, 1494202713); |
||||||
|
int32_t sq = multiply_32x32_rshift32_rounded(x, x); |
||||||
|
n = multiply_accumulate_32x32_rshift32_rounded(n, sq, 1934101615); |
||||||
|
n = n + (multiply_32x32_rshift32_rounded(sq, |
||||||
|
multiply_32x32_rshift32_rounded(x, 1358044250)) << 1); |
||||||
|
n = n << 1; |
||||||
|
#else |
||||||
|
// exp2 algorithm by Laurent de Soras
|
||||||
|
// https://www.musicdsp.org/en/latest/Other/106-fast-exp2-approximation.html
|
||||||
|
n = (n + 134217728) << 3; |
||||||
|
n = multiply_32x32_rshift32_rounded(n, n); |
||||||
|
n = multiply_32x32_rshift32_rounded(n, 715827883) << 3; |
||||||
|
n = n + 715827882; |
||||||
|
#endif |
||||||
|
uint32_t scale = n >> (14 - ipart); |
||||||
|
uint64_t phstep = (uint64_t)inc * scale; |
||||||
|
uint32_t phstep_msw = phstep >> 32; |
||||||
|
if (phstep_msw < 0x7FFE) { |
||||||
|
ph += phstep >> 16; |
||||||
|
} else { |
||||||
|
ph += 0x7FFE0000; |
||||||
|
} |
||||||
|
phasedata[i] = ph; |
||||||
|
} |
||||||
|
release(moddata); |
||||||
|
} else if (moddata) { |
||||||
|
// Phase Modulation
|
||||||
|
bp = moddata->data; |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
// more than +/- 180 deg shift by 32 bit overflow of "n"
|
||||||
|
uint32_t n = (uint16_t)(*bp++) * modulation_factor; |
||||||
|
phasedata[i] = ph + n; |
||||||
|
ph += inc; |
||||||
|
} |
||||||
|
release(moddata); |
||||||
|
} else { |
||||||
|
// No Modulation Input
|
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
phasedata[i] = ph; |
||||||
|
ph += inc; |
||||||
|
} |
||||||
|
} |
||||||
|
phase_accumulator = ph; |
||||||
|
|
||||||
|
// If the amplitude is zero, no output, but phase still increments properly
|
||||||
|
if (magnitude == 0) { |
||||||
|
if (shapedata) release(shapedata); |
||||||
|
return; |
||||||
|
} |
||||||
|
block = allocate(); |
||||||
|
if (!block) { |
||||||
|
if (shapedata) release(shapedata); |
||||||
|
return; |
||||||
|
} |
||||||
|
bp = block->data; |
||||||
|
|
||||||
|
// Now generate the output samples using the pre-computed phase angles
|
||||||
|
switch(tone_type) { |
||||||
|
case WAVEFORM_SINE: |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
ph = phasedata[i]; |
||||||
|
index = ph >> 24; |
||||||
|
val1 = AudioWaveformSine[index]; |
||||||
|
val2 = AudioWaveformSine[index+1]; |
||||||
|
scale = (ph >> 8) & 0xFFFF; |
||||||
|
val2 *= scale; |
||||||
|
val1 *= 0x10000 - scale; |
||||||
|
*bp++ = multiply_32x32_rshift32(val1 + val2, magnitude); |
||||||
|
} |
||||||
|
break; |
||||||
|
|
||||||
|
case WAVEFORM_ARBITRARY: |
||||||
|
if (!arbdata) { |
||||||
|
release(block); |
||||||
|
if (shapedata) release(shapedata); |
||||||
|
return; |
||||||
|
} |
||||||
|
// len = 256
|
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
ph = phasedata[i]; |
||||||
|
index = ph >> 24; |
||||||
|
index2 = index + 1; |
||||||
|
if (index2 >= 256) index2 = 0; |
||||||
|
val1 = *(arbdata + index); |
||||||
|
val2 = *(arbdata + index2); |
||||||
|
scale = (ph >> 8) & 0xFFFF; |
||||||
|
val2 *= scale; |
||||||
|
val1 *= 0x10000 - scale; |
||||||
|
*bp++ = multiply_32x32_rshift32(val1 + val2, magnitude); |
||||||
|
} |
||||||
|
break; |
||||||
|
|
||||||
|
case WAVEFORM_PULSE: |
||||||
|
if (shapedata) { |
||||||
|
magnitude15 = signed_saturate_rshift(magnitude, 16, 1); |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
uint32_t width = ((shapedata->data[i] + 0x8000) & 0xFFFF) << 16; |
||||||
|
if (phasedata[i] < width) { |
||||||
|
*bp++ = magnitude15; |
||||||
|
} else { |
||||||
|
*bp++ = -magnitude15; |
||||||
|
} |
||||||
|
} |
||||||
|
break; |
||||||
|
} // else fall through to orginary square without shape modulation
|
||||||
|
|
||||||
|
case WAVEFORM_SQUARE: |
||||||
|
magnitude15 = signed_saturate_rshift(magnitude, 16, 1); |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
if (phasedata[i] & 0x80000000) { |
||||||
|
*bp++ = -magnitude15; |
||||||
|
} else { |
||||||
|
*bp++ = magnitude15; |
||||||
|
} |
||||||
|
} |
||||||
|
break; |
||||||
|
|
||||||
|
case WAVEFORM_SAWTOOTH: |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
*bp++ = signed_multiply_32x16t(magnitude, phasedata[i]); |
||||||
|
} |
||||||
|
break; |
||||||
|
|
||||||
|
case WAVEFORM_SAWTOOTH_REVERSE: |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
*bp++ = signed_multiply_32x16t(0xFFFFFFFFu - magnitude, phasedata[i]); |
||||||
|
} |
||||||
|
break; |
||||||
|
|
||||||
|
case WAVEFORM_TRIANGLE_VARIABLE: |
||||||
|
if (shapedata) { |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
uint32_t width = (shapedata->data[i] + 0x8000) & 0xFFFF; |
||||||
|
uint32_t rise = 0xFFFFFFFF / width; |
||||||
|
uint32_t fall = 0xFFFFFFFF / (0xFFFF - width); |
||||||
|
uint32_t halfwidth = width << 15; |
||||||
|
uint32_t n; |
||||||
|
ph = phasedata[i]; |
||||||
|
if (ph < halfwidth) { |
||||||
|
n = (ph >> 16) * rise; |
||||||
|
*bp++ = ((n >> 16) * magnitude) >> 16; |
||||||
|
} else if (ph < 0xFFFFFFFF - halfwidth) { |
||||||
|
n = 0x7FFFFFFF - (((ph - halfwidth) >> 16) * fall); |
||||||
|
*bp++ = (((int32_t)n >> 16) * magnitude) >> 16; |
||||||
|
} else { |
||||||
|
n = ((ph + halfwidth) >> 16) * rise + 0x80000000; |
||||||
|
*bp++ = (((int32_t)n >> 16) * magnitude) >> 16; |
||||||
|
} |
||||||
|
ph += inc; |
||||||
|
} |
||||||
|
break; |
||||||
|
} // else fall through to orginary triangle without shape modulation
|
||||||
|
|
||||||
|
case WAVEFORM_TRIANGLE: |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
ph = phasedata[i]; |
||||||
|
uint32_t phtop = ph >> 30; |
||||||
|
if (phtop == 1 || phtop == 2) { |
||||||
|
*bp++ = ((0xFFFF - (ph >> 15)) * magnitude) >> 16; |
||||||
|
} else { |
||||||
|
*bp++ = (((int32_t)ph >> 15) * magnitude) >> 16; |
||||||
|
} |
||||||
|
} |
||||||
|
break; |
||||||
|
case WAVEFORM_SAMPLE_HOLD: |
||||||
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { |
||||||
|
ph = phasedata[i]; |
||||||
|
if (ph < priorphase) { // does not work for phase modulation
|
||||||
|
sample = random(magnitude) - (magnitude >> 1); |
||||||
|
} |
||||||
|
priorphase = ph; |
||||||
|
*bp++ = sample; |
||||||
|
} |
||||||
|
break; |
||||||
|
} |
||||||
|
|
||||||
|
if (tone_offset) { |
||||||
|
bp = block->data; |
||||||
|
end = bp + AUDIO_BLOCK_SAMPLES; |
||||||
|
do { |
||||||
|
val1 = *bp; |
||||||
|
*bp++ = signed_saturate_rshift(val1 + tone_offset, 16, 0); |
||||||
|
} while (bp < end); |
||||||
|
} |
||||||
|
if (shapedata) release(shapedata); |
||||||
|
transmit(block, 0); |
||||||
|
release(block); |
||||||
|
} |
@ -0,0 +1,221 @@ |
|||||||
|
/* Audio Library for Teensy 3.X
|
||||||
|
Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com |
||||||
|
|
||||||
|
Development of this audio library was funded by PJRC.COM, LLC by sales of |
||||||
|
Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop |
||||||
|
open source software by purchasing Teensy or other PJRC products. |
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy |
||||||
|
of this software and associated documentation files (the "Software"), to deal |
||||||
|
in the Software without restriction, including without limitation the rights |
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
||||||
|
copies of the Software, and to permit persons to whom the Software is |
||||||
|
furnished to do so, subject to the following conditions: |
||||||
|
|
||||||
|
The above copyright notice, development funding notice, and this permission |
||||||
|
notice shall be included in all copies or substantial portions of the Software. |
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
||||||
|
THE SOFTWARE. |
||||||
|
*/ |
||||||
|
|
||||||
|
/*
|
||||||
|
Extension for setting the waveform while running by H. Wirtz <wirtz@parasitstudio.de> |
||||||
|
*/ |
||||||
|
|
||||||
|
#ifndef synth_waveform_extended_h_ |
||||||
|
#define synth_waveform_extended_h_ |
||||||
|
|
||||||
|
#include <Arduino.h> |
||||||
|
#include "AudioStream.h" |
||||||
|
#include "arm_math.h" |
||||||
|
|
||||||
|
// waveforms.c
|
||||||
|
extern "C" { |
||||||
|
extern const int16_t AudioWaveformSine[257]; |
||||||
|
} |
||||||
|
|
||||||
|
|
||||||
|
#define WAVEFORM_SINE 0 |
||||||
|
#define WAVEFORM_SAWTOOTH 1 |
||||||
|
#define WAVEFORM_SQUARE 2 |
||||||
|
#define WAVEFORM_TRIANGLE 3 |
||||||
|
#define WAVEFORM_ARBITRARY 4 |
||||||
|
#define WAVEFORM_PULSE 5 |
||||||
|
#define WAVEFORM_SAWTOOTH_REVERSE 6 |
||||||
|
#define WAVEFORM_SAMPLE_HOLD 7 |
||||||
|
#define WAVEFORM_TRIANGLE_VARIABLE 8 |
||||||
|
|
||||||
|
class AudioSynthWaveformExtended : public AudioStream |
||||||
|
{ |
||||||
|
public: |
||||||
|
AudioSynthWaveformExtended(void) : AudioStream(0, NULL), |
||||||
|
phase_accumulator(0), phase_increment(0), phase_offset(0), |
||||||
|
magnitude(0), pulse_width(0x40000000), |
||||||
|
arbdata(NULL), sample(0), tone_type(WAVEFORM_SINE), |
||||||
|
tone_offset(0) { |
||||||
|
} |
||||||
|
|
||||||
|
void frequency(float freq) { |
||||||
|
if (freq < 0.0) { |
||||||
|
freq = 0.0; |
||||||
|
} else if (freq > AUDIO_SAMPLE_RATE_EXACT / 2) { |
||||||
|
freq = AUDIO_SAMPLE_RATE_EXACT / 2; |
||||||
|
} |
||||||
|
phase_increment = freq * (4294967296.0 / AUDIO_SAMPLE_RATE_EXACT); |
||||||
|
if (phase_increment > 0x7FFE0000u) phase_increment = 0x7FFE0000; |
||||||
|
} |
||||||
|
void phase(float angle) { |
||||||
|
if (angle < 0.0) { |
||||||
|
angle = 0.0; |
||||||
|
} else if (angle > 360.0) { |
||||||
|
angle = angle - 360.0; |
||||||
|
if (angle >= 360.0) return; |
||||||
|
} |
||||||
|
phase_offset = angle * (4294967296.0 / 360.0); |
||||||
|
} |
||||||
|
void amplitude(float n) { // 0 to 1.0
|
||||||
|
if (n < 0) { |
||||||
|
n = 0; |
||||||
|
} else if (n > 1.0) { |
||||||
|
n = 1.0; |
||||||
|
} |
||||||
|
magnitude = n * 65536.0; |
||||||
|
} |
||||||
|
void offset(float n) { |
||||||
|
if (n < -1.0) { |
||||||
|
n = -1.0; |
||||||
|
} else if (n > 1.0) { |
||||||
|
n = 1.0; |
||||||
|
} |
||||||
|
tone_offset = n * 32767.0; |
||||||
|
} |
||||||
|
void pulseWidth(float n) { // 0.0 to 1.0
|
||||||
|
if (n < 0) { |
||||||
|
n = 0; |
||||||
|
} else if (n > 1.0) { |
||||||
|
n = 1.0; |
||||||
|
} |
||||||
|
pulse_width = n * 4294967296.0; |
||||||
|
} |
||||||
|
void waveform(short t_type) { |
||||||
|
phase_offset = 0; |
||||||
|
tone_type = t_type; |
||||||
|
} |
||||||
|
void begin(short t_type) { |
||||||
|
phase_offset = 0; |
||||||
|
tone_type = t_type; |
||||||
|
} |
||||||
|
void begin(float t_amp, float t_freq, short t_type) { |
||||||
|
amplitude(t_amp); |
||||||
|
frequency(t_freq); |
||||||
|
phase_offset = 0; |
||||||
|
tone_type = t_type; |
||||||
|
} |
||||||
|
void arbitraryWaveform(const int16_t *data, float maxFreq) { |
||||||
|
arbdata = data; |
||||||
|
} |
||||||
|
virtual void update(void); |
||||||
|
|
||||||
|
private: |
||||||
|
uint32_t phase_accumulator; |
||||||
|
uint32_t phase_increment; |
||||||
|
uint32_t phase_offset; |
||||||
|
int32_t magnitude; |
||||||
|
uint32_t pulse_width; |
||||||
|
const int16_t *arbdata; |
||||||
|
int16_t sample; // for WAVEFORM_SAMPLE_HOLD
|
||||||
|
short tone_type; |
||||||
|
int16_t tone_offset; |
||||||
|
}; |
||||||
|
|
||||||
|
|
||||||
|
class AudioSynthWaveformExtendedModulated : public AudioStream |
||||||
|
{ |
||||||
|
public: |
||||||
|
AudioSynthWaveformExtendedModulated(void) : AudioStream(2, inputQueueArray), |
||||||
|
phase_accumulator(0), phase_increment(0), modulation_factor(32768), |
||||||
|
magnitude(0), arbdata(NULL), sample(0), tone_offset(0), |
||||||
|
tone_type(WAVEFORM_SINE), modulation_type(0) { |
||||||
|
} |
||||||
|
|
||||||
|
void frequency(float freq) { |
||||||
|
if (freq < 0.0) { |
||||||
|
freq = 0.0; |
||||||
|
} else if (freq > AUDIO_SAMPLE_RATE_EXACT / 2) { |
||||||
|
freq = AUDIO_SAMPLE_RATE_EXACT / 2; |
||||||
|
} |
||||||
|
phase_increment = freq * (4294967296.0 / AUDIO_SAMPLE_RATE_EXACT); |
||||||
|
if (phase_increment > 0x7FFE0000u) phase_increment = 0x7FFE0000; |
||||||
|
} |
||||||
|
void amplitude(float n) { // 0 to 1.0
|
||||||
|
if (n < 0) { |
||||||
|
n = 0; |
||||||
|
} else if (n > 1.0) { |
||||||
|
n = 1.0; |
||||||
|
} |
||||||
|
magnitude = n * 65536.0; |
||||||
|
} |
||||||
|
void offset(float n) { |
||||||
|
if (n < -1.0) { |
||||||
|
n = -1.0; |
||||||
|
} else if (n > 1.0) { |
||||||
|
n = 1.0; |
||||||
|
} |
||||||
|
tone_offset = n * 32767.0; |
||||||
|
} |
||||||
|
void waveform(short t_type) { |
||||||
|
tone_type = t_type; |
||||||
|
} |
||||||
|
void begin(short t_type) { |
||||||
|
tone_type = t_type; |
||||||
|
} |
||||||
|
void begin(float t_amp, float t_freq, short t_type) { |
||||||
|
amplitude(t_amp); |
||||||
|
frequency(t_freq); |
||||||
|
tone_type = t_type; |
||||||
|
} |
||||||
|
void arbitraryWaveform(const int16_t *data, float maxFreq) { |
||||||
|
arbdata = data; |
||||||
|
} |
||||||
|
void frequencyModulation(float octaves) { |
||||||
|
if (octaves > 12.0) { |
||||||
|
octaves = 12.0; |
||||||
|
} else if (octaves < 0.1) { |
||||||
|
octaves = 0.1; |
||||||
|
} |
||||||
|
modulation_factor = octaves * 4096.0; |
||||||
|
modulation_type = 0; |
||||||
|
} |
||||||
|
void phaseModulation(float degrees) { |
||||||
|
if (degrees > 9000.0) { |
||||||
|
degrees = 9000.0; |
||||||
|
} else if (degrees < 30.0) { |
||||||
|
degrees = 30.0; |
||||||
|
} |
||||||
|
modulation_factor = degrees * (65536.0 / 180.0); |
||||||
|
modulation_type = 1; |
||||||
|
} |
||||||
|
virtual void update(void); |
||||||
|
|
||||||
|
private: |
||||||
|
audio_block_t *inputQueueArray[2]; |
||||||
|
uint32_t phase_accumulator; |
||||||
|
uint32_t phase_increment; |
||||||
|
uint32_t modulation_factor; |
||||||
|
int32_t magnitude; |
||||||
|
const int16_t *arbdata; |
||||||
|
uint32_t phasedata[AUDIO_BLOCK_SAMPLES]; |
||||||
|
int16_t sample; // for WAVEFORM_SAMPLE_HOLD
|
||||||
|
int16_t tone_offset; |
||||||
|
uint8_t tone_type; |
||||||
|
uint8_t modulation_type; |
||||||
|
}; |
||||||
|
|
||||||
|
|
||||||
|
#endif |
Loading…
Reference in new issue