Replaced spline interpolation with interpolation from https://github.com/tuxcell/interpolationArduino

master
Holger Wirtz 5 years ago
parent 78edeeb89c
commit 711f4be2ff
  1. 3
      config.h
  2. 122
      effect_modulated_chorus.cpp
  3. 209
      interpolation.cpp
  4. 79
      interpolation.h
  5. 124
      spline.cpp
  6. 45
      spline.h

@ -61,7 +61,8 @@
#define SAMPLE_RATE 44100
#define REDUCE_LOUDNESS 0
#define USE_XFADE_DATA 1
#define SPLINE_WINDOW_SIZE 7 // For chorus, only odd numbers!
#define INTERPOLATION_WINDOW_SIZE 7 // For chorus, only odd numbers!
#define INTERPOLATE CUBIC // LINEAR COSINE LAGRANGE QUADRATIC
//*************************************************************************************************
//* DEBUG OUTPUT SETTINGS

@ -24,7 +24,7 @@
#include <Arduino.h>
#include "limits.h"
#include "effect_modulated_chorus.h"
#include "spline.h"
#include "interpolation.h"
#include "config.h"
/******************************************************************/
@ -69,64 +69,31 @@ void AudioModulatedEffectChorus::update(void)
short *bp;
short *mp;
float mod_idx;
/* int x1;
int x2;
int y1;
int y2;*/
if (l_delayline == NULL)
return;
/*
block = receiveWritable(0);
if (block)
{
bp = block->data;
uint32_t tmp = delay_length / (num_chorus - 1) - 1;
for (int i = 0; i < AUDIO_BLOCK_SAMPLES; i++)
{
l_circ_idx++;
if (l_circ_idx >= delay_length)
{
l_circ_idx = 0;
}
l_delayline[l_circ_idx] = *bp;
sum = 0;
c_idx = l_circ_idx;
for (int k = 0; k < num_chorus; k++)
{
sum += l_delayline[c_idx];
if (num_chorus > 1)c_idx -= tmp;
if (c_idx < 0)
{
c_idx += delay_length;
}
}
bp++ = sum / num_chorus;
}
// transmit the block
transmit(block, 0);
release(block);
}
*/
block = receiveWritable(0);
modulation = receiveReadOnly(1);
if (block && modulation)
{
#ifdef INTERPOLATE
uint8_t j;
int16_t spline_idx;
Spline modulation_spline;
modulation_spline.setDegree(Catmull);
int16_t interpolation_idx;
interpolation modulation_interpolate;
modulation_interpolate.valuelenXY(INTERPOLATION_WINDOW_SIZE);
#endif
bp = block->data;
mp = modulation->data;
for (int i = 0; i < AUDIO_BLOCK_SAMPLES; i++)
{
float x[SPLINE_WINDOW_SIZE];
float y[SPLINE_WINDOW_SIZE];
#ifdef INTERPOLATE
float x[INTERPOLATION_WINDOW_SIZE];
float y[INTERPOLATION_WINDOW_SIZE];
#endif
// write data into circular buffer
if (l_circ_idx >= delay_length)
@ -140,44 +107,41 @@ void AudioModulatedEffectChorus::update(void)
else if (mod_idx < 0)
mod_idx = delay_length + mod_idx;
// get value with spline interpolation
for (j = 0; j < SPLINE_WINDOW_SIZE; j++)
#ifdef INTERPOLATE
// get value with interpolation
for (j = 0; j < INTERPOLATION_WINDOW_SIZE; j++)
{
spline_idx = mod_idx + (SPLINE_WINDOW_SIZE / -2) + j;
if (spline_idx > delay_length)
spline_idx = spline_idx - delay_length;
else if (spline_idx < 0)
spline_idx = delay_length + spline_idx;
x[j] = spline_idx;
y[j] = l_delayline[spline_idx];
Serial.print(j, DEC);
Serial.print(": X=");
Serial.print(x[j], DEC);
Serial.print(" Y=");
Serial.println(y[j], DEC);
interpolation_idx = mod_idx + (INTERPOLATION_WINDOW_SIZE / -2) + j;
if (interpolation_idx > delay_length)
interpolation_idx = interpolation_idx - delay_length;
else if (interpolation_idx < 0)
interpolation_idx = delay_length + interpolation_idx;
x[j] = interpolation_idx;
y[j] = l_delayline[interpolation_idx];
}
modulation_spline.setPoints(x, y, SPLINE_WINDOW_SIZE);
*bp = int(modulation_spline.value(mod_idx) + 0.5);
Serial.print(" SPLINE=");
Serial.println(*bp, DEC);
delay(200);
/*
// linear interpolation
x1 = int(mod_idx);
y1 = l_delayline[x1];
if (x1 + 1 >= delay_length)
x2 = 0;
else
x2 = x1 + 1;
y2 = l_delayline[x2];
bp = (int((float(y2 - y1) / (x2 - x1) * (mod_idx - x1) + y1) + 0.5) >> 1); // mix original signal 1:1 with modulated signal
*/
modulation_interpolate.valueX(x);
modulation_interpolate.valueY(y);
modulation_interpolate.valueI(mod_idx);
#if INTERPOLATE == CUBIC
*bp = int(modulation_interpolate.CubicInterpolate() + 0.5);
#elif INTERPOLATE == LINEAR
*bp = int(modulation_interpolate.LinearInterpolate() + 0.5);
#elif INTERPOLATE == COSINE
*bp = int(modulation_interpolate.CosineInterpolate() + 0.5);
#elif INTERPOLATE == LAGRANGE
*bp = int(modulation_interpolate.LagrangeInterpolate() + 0.5);
#elif INTERPOLATE == QUDRATIC
*bp = int(modulation_interpolate.QuadraticInterpolate() + 0.5);
#else
// No interpolation - should sound really bad...
*bp = int(mod_idx + 0.5);
#endif
#else
// No interpolation - should sound really bad...
*bp = int(mod_idx + 0.5);
#endif
bp++;
mp++;

@ -0,0 +1,209 @@
/*
* interpolation.h
*
* interpolation - An interpolation library for Arduino.
* Author: Jose Gama 2015
*
* This library is free software; you can redistribute it
* and/or modify it under the terms of the GNU Lesser
* General Public License as published by the Free Software
* Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This library is distributed in the hope that it will
* be useful, but WITHOUT ANY WARRANTY; without even the
* implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser
* General Public License along with this library; if not,
* write to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/*
* From: https://github.com/tuxcell/interpolationArduino
* replaced all doubles by float (wirtz@parasitstudio.de)
*/
#include "interpolation.h"
interpolation::interpolation(void) {
_valInterp = 0;
_lenXY = 0;
}
interpolation::interpolation( float x[], float y[], int lenXY){
_x = x;_y = y;_lenXY = lenXY;
_valInterp = 0;
}
interpolation::interpolation( float x[], float y[], int lenXY, float valInterp){
_x = x;_y = y;_lenXY = lenXY;
_valInterp = valInterp;
}
void interpolation::valueI( float valInterp ) {
_valInterp = valInterp;
}
void interpolation::valuelenXY( int lenXY ) {
_lenXY = lenXY;
}
void interpolation::valueX( float x[]) {
_x = x;
}
void interpolation::valueY( float y[]) {
_y = y;
}
void interpolation::valueXM( float XM[]) {
_XM = XM;
}
void interpolation::valueZ( float Z[]) {
_Z = Z;
}
float interpolation::LinearInterpolate() {return(LinearInterp( _x, _y, _lenXY, _valInterp));}
float interpolation::CosineInterpolate() {return(CosineInterp( _x, _y, _lenXY, _valInterp));}
float interpolation::CubicInterpolate() {return(CubicInterp( _x, _y, _lenXY, _valInterp));}
float interpolation::LagrangeInterpolate() {return(LagrangeInterp( _x, _y, _lenXY, _valInterp));}
float interpolation::QuadraticInterpolate() {return(QuadraticInterp( _x, _y, _lenXY, _valInterp));}
float interpolation::AkimaInterpolate() {return(AkimaInterp( _x, _y, _XM, _Z, _lenXY, _valInterp));}
float interpolation::LinearInterp( float* x, float* y, int n, float p )
{
//http://paulbourke.net/miscellaneous/interpolation/
int i;
float mu;
for( i = 0; i < n-1; i++ )
{
if (( x[i] <= p && x[i+1] >= p )||( x[i] >= p && x[i+1] <= p ))
{
mu=(p - x[i])/(x[i] - x[i+1]);
if (mu<0) mu=-mu;
return(y[i]*(1-mu)+y[i+1]*mu);
}
}
return 0; // Not in Range
}
float interpolation::CosineInterp (float* x, float* y, int n, float p )
{
int i;
float mu, mu2;
for( i = 0; i < n-1; i++ )
{
if (( x[i] <= p && x[i+1] >= p )||( x[i] >= p && x[i+1] <= p ))
{
mu=(p - x[i])/(x[i] - x[i+1]);
if (mu<0) mu=-mu;
mu2 = (1.0-cos(3.1415926535897*mu))/2.0;
return(y[i]*(1.0-mu2)+y[i+1]*mu2);
}
}
return 0; // Not in Range
}
float interpolation::CubicInterp(float* x, float* y, int n, float p )
{
int i;
float a0,a1,a2,a3,mu, mu2;
for( i = 0; i < n-1; i++ )
{
if (( x[i] <= p && x[i+1] >= p )||( x[i] >= p && x[i+1] <= p ))
{
mu=(p - x[i])/(x[i] - x[i+1]);
if (mu<0) mu=-mu;
mu2 = mu*mu;
a0 = y[i+2] - y[i+1] - y[i-1] + y[i];
a1 = y[i-1] - y[i] - a0;
a2 = y[i+1] - y[i-1];
a3 = y[i];
return(a0*mu*mu2+a1*mu2+a2*mu+a3);
}
}
return 0; // Not in Range
}
float interpolation::LagrangeInterp( float* x, float* y, int n, float p )
{
//http://www.dailyfreecode.com/code/lagranges-interpolation-method-finding-2376.aspx
int i, j, k;
float t, r=0;
for(i=0;i<n;i++)
{
t = 1;
k = i;
for(j=0;j<n;j++)
{
if(k==j)
{
continue;
}
else
{
t = t * ((p-x[j])/(x[k]-x[j]));
}
}
r+=y[i]*t;
}
return r; // Not in Range
}
float interpolation::QuadraticInterp(float* x, float* y, int n, float p )
{
//view-source:http://www.johndcook.com/quadratic_interpolator.html
int i;
float xi2, k;
for( i = 0; i < n-1; i++ )
{
if (( x[i] <= p && x[i+1] >= p )||( x[i] >= p && x[i+1] <= p ))
{
if (i<(n-3)) xi2=x[i+2]; else xi2=0;
k = y[i]*(p - x[i+1])*(p - xi2)/((x[i] - x[i+1])*(x[i] - xi2));
k += y[i+1]*(p - x[i])*(p - xi2)/((x[i+1] - x[i])*(x[i+1] - xi2));
k += y[i+2]*(p - x[i])*(p - x[i+1])/((xi2 - x[i])*(xi2 - x[i+1]));
return(k);
}
}
return 0; // Not in Range
}
float interpolation::AkimaInterp( float* x, float* y, float* XM, float* Z, int n, float p ) {
//http://jean-pierre.moreau.pagesperso-orange.fr/Cplus/akima_cpp.txt
int i;
float a,b,r;
//special case p=0
if (p==0.0) {
return(0);
}
//Check to see if interpolation point is correct
if (p<x[1] || p>=x[n-3]) {
return(-330);
}
x[0]=2.0*x[1]-x[2];
//Calculate Akima coefficients, a and b
for (i=1; i<n; i++)
//Shift i to i+2
XM[i+2]=(y[i+1]-y[i])/(x[i+1]-x[i]);
XM[n+2]=2.0*XM[n+1]-XM[n];
XM[n+3]=2.0*XM[n+2]-XM[n+1];
XM[2]=2.0*XM[3]-XM[4];
XM[1]=2.0*XM[2]-XM[3];
for (i=1; i<n+1; i++) {
a=fabs(XM[i+3]-XM[i+2]);
b=fabs(XM[i+1]-XM[i]);
if (a+b==0) Z[i]=(a*XM[i+1]+b*XM[i+2])/(a+b); else Z[i]=(XM[i+2]+XM[i+1])/2.0;
}
//Find relevant table interval
i=0;
while (p>x[i]) i++;
i--;
//Begin interpolation
b=x[i+1]-x[i];
a=p-x[i];
r=y[i]+Z[i]*a+(3.0*XM[i+2]-2.0*Z[i]-Z[i+1])*a*a/b;
r=r+(Z[i]+Z[i+1]-2.0*XM[i+2])*a*a*a/(b*b);
return(r);
}

@ -0,0 +1,79 @@
/*
* interpolation.h
*
* interpolation - An interpolation library for Arduino.
* Author: Jose Gama 2015
*
* This library is free software; you can redistribute it
* and/or modify it under the terms of the GNU Lesser
* General Public License as published by the Free Software
* Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This library is distributed in the hope that it will
* be useful, but WITHOUT ANY WARRANTY; without even the
* implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser
* General Public License along with this library; if not,
* write to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/*
* From: https://github.com/tuxcell/interpolationArduino
* replaced all doubles by float (wirtz@parasitstudio.de)
*/
#ifndef interpolation_h
#define interpolation_h
#if defined(ARDUINO) && ARDUINO >= 100
#include <Arduino.h>
#else
#include <WProgram.h>
#endif
class interpolation
{
public:
// constructor
interpolation( void );
interpolation( float x[], float y[], int lenXY);
interpolation( float x[], float y[], int lenXY, float valInterp);
void valueI( float valInterp );
void valuelenXY( int lenXY );
void valueX( float x[]);
void valueY( float y[]);
void valueXM( float XM[]);
void valueZ( float Z[]);
float LinearInterpolate();
float CosineInterpolate();
float CubicInterpolate();
float LagrangeInterpolate();
float QuadraticInterpolate();
float AkimaInterpolate();
private:
float* _x;
float* _y;
float* _XM;
float* _Z;
int _lenXY;
float _valInterp;
float LinearInterp( float x[], float y[], int n, float p );
float CosineInterp( float x[], float y[], int n, float p );
float CubicInterp( float x[], float y[], int n, float p );
float LagrangeInterp( float x[], float y[], int n, float p );
float QuadraticInterp( float x[], float y[], int n, float p );
float AkimaInterp( float x[], float y[], float XM[], float Z[], int n, float p );
};
#endif

@ -1,124 +0,0 @@
/*
From: https://raw.githubusercontent.com/kerinin/arduino-splines
*/
#include "Arduino.h"
#include "spline.h"
#include <math.h>
Spline::Spline(void) {
_prev_point = 0;
}
Spline::Spline( float x[], float y[], int numPoints, int degree )
{
setPoints(x, y, numPoints);
setDegree(degree);
_prev_point = 0;
}
Spline::Spline( float x[], float y[], float m[], int numPoints )
{
setPoints(x, y, m, numPoints);
setDegree(Hermite);
_prev_point = 0;
}
void Spline::setPoints( float x[], float y[], int numPoints ) {
_x = x;
_y = y;
_length = numPoints;
}
void Spline::setPoints( float x[], float y[], float m[], int numPoints ) {
_x = x;
_y = y;
_m = m;
_length = numPoints;
}
void Spline::setDegree( int degree ) {
_degree = degree;
}
float Spline::value( float x )
{
if ( _x[0] > x ) {
return _y[0];
}
else if ( _x[_length - 1] < x ) {
return _y[_length - 1];
}
else {
for (int i = 0; i < _length; i++ )
{
int index = ( i + _prev_point ) % _length;
if ( _x[index] == x ) {
_prev_point = index;
return _y[index];
} else if ( (_x[index] < x) && (x < _x[index + 1]) ) {
_prev_point = index;
return calc( x, index );
}
}
}
return (0.0);
}
float Spline::calc( float x, int i )
{
switch ( _degree ) {
case 0:
return _y[i];
case 1:
if ( _x[i] == _x[i + 1] ) {
// Avoids division by 0
return _y[i];
} else {
return _y[i] + (_y[i + 1] - _y[i]) * ( x - _x[i]) / ( _x[i + 1] - _x[i] );
}
case Hermite:
return hermite( ((x - _x[i]) / (_x[i + 1] - _x[i])), _y[i], _y[i + 1], _m[i], _m[i + 1], _x[i], _x[i + 1] );
case Catmull:
if ( i == 0 ) {
// x prior to spline start - first point used to determine tangent
return _y[1];
} else if ( i == _length - 2 ) {
// x after spline end - last point used to determine tangent
return _y[_length - 2];
} else {
float t = (x - _x[i]) / (_x[i + 1] - _x[i]);
float m0 = (i == 0 ? 0 : catmull_tangent(i) );
float m1 = (i == _length - 1 ? 0 : catmull_tangent(i + 1) );
return hermite( t, _y[i], _y[i + 1], m0, m1, _x[i], _x[i + 1]);
}
}
return(0.0);
}
float Spline::hermite( float t, float p0, float p1, float m0, float m1, float x0, float x1 ) {
return (hermite_00(t) * p0) + (hermite_10(t) * (x1 - x0) * m0) + (hermite_01(t) * p1) + (hermite_11(t) * (x1 - x0) * m1);
}
float Spline::hermite_00( float t ) {
return (2 * pow(t, 3)) - (3 * pow(t, 2)) + 1;
}
float Spline::hermite_10( float t ) {
return pow(t, 3) - (2 * pow(t, 2)) + t;
}
float Spline::hermite_01( float t ) {
return (3 * pow(t, 2)) - (2 * pow(t, 3));
}
float Spline::hermite_11( float t ) {
return pow(t, 3) - pow(t, 2);
}
float Spline::catmull_tangent( int i )
{
if ( _x[i + 1] == _x[i - 1] ) {
// Avoids division by 0
return 0;
} else {
return (_y[i + 1] - _y[i - 1]) / (_x[i + 1] - _x[i - 1]);
}
}

@ -1,45 +0,0 @@
/*
From: https://github.com/kerinin/arduino-splines
Library for 1-d splines
Copyright Ryan Michael
Licensed under the LGPLv3
*/
#ifndef spline_h
#define spline_h
#include "Arduino.h"
#define Hermite 10
#define Catmull 11
class Spline
{
public:
Spline( void );
Spline( float x[], float y[], int numPoints, int degree = 1 );
Spline( float x[], float y[], float m[], int numPoints );
float value( float x );
void setPoints( float x[], float y[], int numPoints );
void setPoints( float x[], float y[], float m[], int numPoints );
void setDegree( int degree );
private:
float calc( float, int);
float* _x;
float* _y;
float* _m;
int _degree;
int _length;
int _prev_point;
float hermite( float t, float p0, float p1, float m0, float m1, float x0, float x1 );
float hermite_00( float t );
float hermite_10( float t );
float hermite_01( float t );
float hermite_11( float t );
float catmull_tangent( int i );
};
#endif
Loading…
Cancel
Save