You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MicroDexed/third-party/USBHost_t36/ehci.cpp

1468 lines
48 KiB

/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "USBHost_t36.h" // Read this header first for key info
// All USB EHCI controller hardware access is done from this file's code.
// Hardware services are made available to the rest of this library by
// three structures:
//
// Pipe_t: Every USB endpoint is accessed by a pipe. new_Pipe()
// sets up the EHCI to support the pipe/endpoint, and delete_Pipe()
// removes this configuration.
//
// Transfer_t: These are used for all communication. Data transfers
// are placed into work queues, to be executed by the EHCI in
// the future. Transfer_t only manages data. The actual data
// is stored in a separate buffer (usually from a device driver)
// which is referenced from Transfer_t. All data transfer is queued,
// never done with blocking functions that wait. When transfers
// complete, a driver-supplied callback function is called to notify
// the driver.
//
// USBDriverTimer: Some drivers require timers. These allow drivers
// to share the hardware timer, with each USBDriverTimer object
// able to schedule a callback function a configurable number of
// microseconds in the future.
//
// In addition to these 3 services, the EHCI interrupt also responds
// to changes on the main port, creating and deleting the root device.
// See enumeration.cpp for all device-level code.
// Size of the periodic list, in milliseconds. This determines the
// slowest rate we can poll interrupt endpoints. Each entry uses
// 12 bytes (4 for a pointer, 8 for bandwidth management).
// Supported values: 8, 16, 32, 64, 128, 256, 512, 1024
#if defined(USBHS_PERIODIC_LIST_SIZE)
#define PERIODIC_LIST_SIZE (USBHS_PERIODIC_LIST_SIZE)
#else
#define PERIODIC_LIST_SIZE 32
#endif
// The EHCI periodic schedule, used for interrupt pipes/endpoints
static uint32_t periodictable[PERIODIC_LIST_SIZE] __attribute__ ((aligned(4096), used));
static uint8_t uframe_bandwidth[PERIODIC_LIST_SIZE*8];
// State of the 1 and only physical USB host port on Teensy 3.6
static uint8_t port_state;
#define PORT_STATE_DISCONNECTED 0
#define PORT_STATE_DEBOUNCE 1
#define PORT_STATE_RESET 2
#define PORT_STATE_RECOVERY 3
#define PORT_STATE_ACTIVE 4
// The device currently connected, or NULL when no device
static Device_t *rootdev=NULL;
// List of all queued transfers in the asychronous schedule (control & bulk).
// When the EHCI completes these transfers, this list is how we locate them
// in memory.
static Transfer_t *async_followup_first=NULL;
static Transfer_t *async_followup_last=NULL;
// List of all queued transfers in the asychronous schedule (interrupt endpoints)
// When the EHCI completes these transfers, this list is how we locate them
// in memory.
static Transfer_t *periodic_followup_first=NULL;
static Transfer_t *periodic_followup_last=NULL;
// List of all pending timers. This double linked list is stored in
// chronological order. Each timer is stored with the number of
// microseconds which need to elapsed from the prior timer on this
// list, to allow efficient servicing from the timer interrupt.
static USBDriverTimer *active_timers=NULL;
static void init_qTD(volatile Transfer_t *t, void *buf, uint32_t len,
uint32_t pid, uint32_t data01, bool irq);
static void add_to_async_followup_list(Transfer_t *first, Transfer_t *last);
static void remove_from_async_followup_list(Transfer_t *transfer);
static void add_to_periodic_followup_list(Transfer_t *first, Transfer_t *last);
static void remove_from_periodic_followup_list(Transfer_t *transfer);
#define print USBHost::print_
#define println USBHost::println_
void USBHost::begin()
{
#if defined(__MK66FX1M0__)
// Teensy 3.6 has USB host power controlled by PTE6
PORTE_PCR6 = PORT_PCR_MUX(1);
GPIOE_PDDR |= (1<<6);
GPIOE_PSOR = (1<<6); // turn on USB host power
delay(10);
println("sizeof Device = ", sizeof(Device_t));
println("sizeof Pipe = ", sizeof(Pipe_t));
println("sizeof Transfer = ", sizeof(Transfer_t));
if ((sizeof(Pipe_t) & 0x1F) || (sizeof(Transfer_t) & 0x1F)) {
println("ERROR: Pipe_t & Transfer_t must be multiples of 32 bytes!");
while (1) ; // die here
}
// configure the MPU to allow USBHS DMA to access memory
MPU_RGDAAC0 |= 0x30000000;
//println("MPU_RGDAAC0 = ", MPU_RGDAAC0, HEX);
// turn on clocks
MCG_C1 |= MCG_C1_IRCLKEN; // enable MCGIRCLK 32kHz
OSC0_CR |= OSC_ERCLKEN;
SIM_SOPT2 |= SIM_SOPT2_USBREGEN; // turn on USB regulator
SIM_SOPT2 &= ~SIM_SOPT2_USBSLSRC; // use IRC for slow clock
println("power up USBHS PHY");
SIM_USBPHYCTL |= SIM_USBPHYCTL_USBDISILIM; // disable USB current limit
//SIM_USBPHYCTL = SIM_USBPHYCTL_USBDISILIM | SIM_USBPHYCTL_USB3VOUTTRG(6); // pg 237
SIM_SCGC3 |= SIM_SCGC3_USBHSDCD | SIM_SCGC3_USBHSPHY | SIM_SCGC3_USBHS;
USBHSDCD_CLOCK = 33 << 2;
//print("init USBHS PHY & PLL");
// init process: page 1681-1682
USBPHY_CTRL_CLR = (USBPHY_CTRL_SFTRST | USBPHY_CTRL_CLKGATE); // // CTRL pg 1698
USBPHY_CTRL_SET = USBPHY_CTRL_ENUTMILEVEL2 | USBPHY_CTRL_ENUTMILEVEL3;
//USBPHY_CTRL_SET = USBPHY_CTRL_FSDLL_RST_EN; // TODO: what does this do??
USBPHY_TRIM_OVERRIDE_EN_SET = 1;
USBPHY_PLL_SIC = USBPHY_PLL_SIC_PLL_POWER | USBPHY_PLL_SIC_PLL_ENABLE |
USBPHY_PLL_SIC_PLL_DIV_SEL(1) | USBPHY_PLL_SIC_PLL_EN_USB_CLKS;
// wait for the PLL to lock
int pll_count=0;
while ((USBPHY_PLL_SIC & USBPHY_PLL_SIC_PLL_LOCK) == 0) {
pll_count++;
}
//println("PLL locked, waited ", pll_count);
// turn on power to PHY
USBPHY_PWD = 0;
// sanity check, connect 470K pullup & 100K pulldown and watch D+ voltage change
//USBPHY_ANACTRL_CLR = (1<<10); // turn off both 15K pulldowns... works! :)
// sanity check, output clocks on pin 9 for testing
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(3); // LPO 1kHz
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(2); // Flash
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(6); // XTAL
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(7); // IRC 48MHz
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(4); // MCGIRCLK
//CORE_PIN9_CONFIG = PORT_PCR_MUX(5); // CLKOUT on PTC3 Alt5 (Arduino pin 9)
#elif defined(__IMXRT1052__) || defined(__IMXRT1062__)
// Teensy 4.0 PLL & USB PHY powerup
while (1) {
uint32_t n = CCM_ANALOG_PLL_USB2;
if (n & CCM_ANALOG_PLL_USB2_DIV_SELECT) {
CCM_ANALOG_PLL_USB2_CLR = 0xC000; // get out of 528 MHz mode
CCM_ANALOG_PLL_USB2_SET = CCM_ANALOG_PLL_USB2_BYPASS;
CCM_ANALOG_PLL_USB2_CLR = CCM_ANALOG_PLL_USB2_POWER |
CCM_ANALOG_PLL_USB2_DIV_SELECT |
CCM_ANALOG_PLL_USB2_ENABLE |
CCM_ANALOG_PLL_USB2_EN_USB_CLKS;
continue;
}
if (!(n & CCM_ANALOG_PLL_USB2_ENABLE)) {
CCM_ANALOG_PLL_USB2_SET = CCM_ANALOG_PLL_USB2_ENABLE; // enable
continue;
}
if (!(n & CCM_ANALOG_PLL_USB2_POWER)) {
CCM_ANALOG_PLL_USB2_SET = CCM_ANALOG_PLL_USB2_POWER; // power up
continue;
}
if (!(n & CCM_ANALOG_PLL_USB2_LOCK)) {
continue; // wait for lock
}
if (n & CCM_ANALOG_PLL_USB2_BYPASS) {
CCM_ANALOG_PLL_USB2_CLR = CCM_ANALOG_PLL_USB2_BYPASS; // turn off bypass
continue;
}
if (!(n & CCM_ANALOG_PLL_USB2_EN_USB_CLKS)) {
CCM_ANALOG_PLL_USB2_SET = CCM_ANALOG_PLL_USB2_EN_USB_CLKS; // enable
continue;
}
println("USB2 PLL running");
break; // USB2 PLL up and running
}
// turn on USB clocks (should already be on)
CCM_CCGR6 |= CCM_CCGR6_USBOH3(CCM_CCGR_ON);
// turn on USB2 PHY
USBPHY2_CTRL_CLR = USBPHY_CTRL_SFTRST | USBPHY_CTRL_CLKGATE;
USBPHY2_CTRL_SET = USBPHY_CTRL_ENUTMILEVEL2 | USBPHY_CTRL_ENUTMILEVEL3;
USBPHY2_PWD = 0;
#ifdef ARDUINO_TEENSY41
IOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_40 = 5;
IOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_40 = 0x0008; // slow speed, weak 150 ohm drive
GPIO8_GDIR |= 1<<26;
GPIO8_DR_SET = 1<<26;
#endif
#endif
delay(10);
// now with the PHY up and running, start up USBHS
//print("begin ehci reset");
USBHS_USBCMD |= USBHS_USBCMD_RST;
int reset_count = 0;
while (USBHS_USBCMD & USBHS_USBCMD_RST) {
reset_count++;
}
println(" reset waited ", reset_count);
init_Device_Pipe_Transfer_memory();
for (int i=0; i < PERIODIC_LIST_SIZE; i++) {
periodictable[i] = 1;
}
memset(uframe_bandwidth, 0, sizeof(uframe_bandwidth));
port_state = PORT_STATE_DISCONNECTED;
USBHS_USB_SBUSCFG = 1; // System Bus Interface Configuration
// turn on the USBHS controller
//USBHS_USBMODE = USBHS_USBMODE_TXHSD(5) | USBHS_USBMODE_CM(3); // host mode
USBHS_USBMODE = USBHS_USBMODE_CM(3); // host mode
USBHS_USBINTR = 0;
USBHS_PERIODICLISTBASE = (uint32_t)periodictable;
USBHS_FRINDEX = 0;
USBHS_ASYNCLISTADDR = 0;
USBHS_USBCMD = USBHS_USBCMD_ITC(1) | USBHS_USBCMD_RS |
USBHS_USBCMD_ASP(3) | USBHS_USBCMD_ASPE | USBHS_USBCMD_PSE |
#if PERIODIC_LIST_SIZE == 8
USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(3);
#elif PERIODIC_LIST_SIZE == 16
USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(2);
#elif PERIODIC_LIST_SIZE == 32
USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(1);
#elif PERIODIC_LIST_SIZE == 64
USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(0);
#elif PERIODIC_LIST_SIZE == 128
USBHS_USBCMD_FS(3);
#elif PERIODIC_LIST_SIZE == 256
USBHS_USBCMD_FS(2);
#elif PERIODIC_LIST_SIZE == 512
USBHS_USBCMD_FS(1);
#elif PERIODIC_LIST_SIZE == 1024
USBHS_USBCMD_FS(0);
#else
#error "Unsupported PERIODIC_LIST_SIZE"
#endif
// turn on the USB port
//USBHS_PORTSC1 = USBHS_PORTSC_PP;
USBHS_PORTSC1 |= USBHS_PORTSC_PP;
//USBHS_PORTSC1 |= USBHS_PORTSC_PFSC; // force 12 Mbit/sec
//USBHS_PORTSC1 |= USBHS_PORTSC_PHCD; // phy off
println("USBHS_ASYNCLISTADDR = ", USBHS_ASYNCLISTADDR, HEX);
println("USBHS_PERIODICLISTBASE = ", USBHS_PERIODICLISTBASE, HEX);
println("periodictable = ", (uint32_t)periodictable, HEX);
// enable interrupts, after this point interruts to all the work
attachInterruptVector(IRQ_USBHS, isr);
NVIC_ENABLE_IRQ(IRQ_USBHS);
USBHS_USBINTR = USBHS_USBINTR_PCE | USBHS_USBINTR_TIE0 | USBHS_USBINTR_TIE1;
USBHS_USBINTR |= USBHS_USBINTR_UEE | USBHS_USBINTR_SEE;
USBHS_USBINTR |= USBHS_USBINTR_UPIE | USBHS_USBINTR_UAIE;
}
// EHCI registers page default
// -------------- ---- -------
// USBHS_USBCMD 1599 00080000 USB Command
// USBHS_USBSTS 1602 00000000 USB Status
// USBHS_USBINTR 1606 00000000 USB Interrupt Enable
// USBHS_FRINDEX 1609 00000000 Frame Index Register
// USBHS_PERIODICLISTBASE 1610 undefine Periodic Frame List Base Address
// USBHS_ASYNCLISTADDR 1612 undefine Asynchronous List Address
// USBHS_PORTSC1 1619 00002000 Port Status and Control
// USBHS_USBMODE 1629 00005000 USB Mode
// USBHS_GPTIMERnCTL 1591 00000000 General Purpose Timer n Control
// PORT_STATE_DISCONNECTED 0
// PORT_STATE_DEBOUNCE 1
// PORT_STATE_RESET 2
// PORT_STATE_RECOVERY 3
// PORT_STATE_ACTIVE 4
void USBHost::isr()
{
uint32_t stat = USBHS_USBSTS;
USBHS_USBSTS = stat; // clear pending interrupts
//stat &= USBHS_USBINTR; // mask away unwanted interrupts
#if 0
println();
println("ISR: ", stat, HEX);
//if (stat & USBHS_USBSTS_UI) println(" USB Interrupt");
if (stat & USBHS_USBSTS_UEI) println(" USB Error");
if (stat & USBHS_USBSTS_PCI) println(" Port Change");
//if (stat & USBHS_USBSTS_FRI) println(" Frame List Rollover");
if (stat & USBHS_USBSTS_SEI) println(" System Error");
//if (stat & USBHS_USBSTS_AAI) println(" Async Advance (doorbell)");
if (stat & USBHS_USBSTS_URI) println(" Reset Recv");
//if (stat & USBHS_USBSTS_SRI) println(" SOF");
if (stat & USBHS_USBSTS_SLI) println(" Suspend");
if (stat & USBHS_USBSTS_HCH) println(" Host Halted");
//if (stat & USBHS_USBSTS_RCL) println(" Reclamation");
//if (stat & USBHS_USBSTS_PS) println(" Periodic Sched En");
//if (stat & USBHS_USBSTS_AS) println(" Async Sched En");
if (stat & USBHS_USBSTS_NAKI) println(" NAK");
if (stat & USBHS_USBSTS_UAI) println(" USB Async");
if (stat & USBHS_USBSTS_UPI) println(" USB Periodic");
if (stat & USBHS_USBSTS_TI0) println(" Timer0");
if (stat & USBHS_USBSTS_TI1) println(" Timer1");
#endif
if (stat & USBHS_USBSTS_UAI) { // completed qTD(s) from the async schedule
//println("Async Followup");
//print(async_followup_first, async_followup_last);
Transfer_t *p = async_followup_first;
while (p) {
if (followup_Transfer(p)) {
// transfer completed
Transfer_t *next = p->next_followup;
remove_from_async_followup_list(p);
free_Transfer(p);
p = next;
} else {
// transfer still pending
p = p->next_followup;
}
}
//print(async_followup_first, async_followup_last);
}
if (stat & USBHS_USBSTS_UPI) { // completed qTD(s) from the periodic schedule
//println("Periodic Followup");
Transfer_t *p = periodic_followup_first;
while (p) {
if (followup_Transfer(p)) {
// transfer completed
Transfer_t *next = p->next_followup;
remove_from_periodic_followup_list(p);
free_Transfer(p);
p = next;
} else {
// transfer still pending
p = p->next_followup;
}
}
}
if (stat & USBHS_USBSTS_UEI) {
followup_Error();
}
if (stat & USBHS_USBSTS_PCI) { // port change detected
const uint32_t portstat = USBHS_PORTSC1;
println("port change: ", portstat, HEX);
USBHS_PORTSC1 = portstat | (USBHS_PORTSC_OCC|USBHS_PORTSC_PEC|USBHS_PORTSC_CSC);
if (portstat & USBHS_PORTSC_OCC) {
println(" overcurrent change");
}
if (portstat & USBHS_PORTSC_CSC) {
if (portstat & USBHS_PORTSC_CCS) {
println(" connect");
if (port_state == PORT_STATE_DISCONNECTED
|| port_state == PORT_STATE_DEBOUNCE) {
// 100 ms debounce (USB 2.0: TATTDB, page 150 & 188)
port_state = PORT_STATE_DEBOUNCE;
USBHS_GPTIMER0LD = 100000; // microseconds
USBHS_GPTIMER0CTL =
USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
stat &= ~USBHS_USBSTS_TI0;
}
} else {
println(" disconnect");
port_state = PORT_STATE_DISCONNECTED;
USBPHY_CTRL_CLR = USBPHY_CTRL_ENHOSTDISCONDETECT;
disconnect_Device(rootdev);
rootdev = NULL;
}
}
if (portstat & USBHS_PORTSC_PEC) {
// PEC bit only detects disable
println(" disable");
} else if (port_state == PORT_STATE_RESET && portstat & USBHS_PORTSC_PE) {
println(" port enabled");
port_state = PORT_STATE_RECOVERY;
// 10 ms reset recover (USB 2.0: TRSTRCY, page 151 & 188)
USBHS_GPTIMER0LD = 10000; // microseconds
USBHS_GPTIMER0CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
if (USBHS_PORTSC1 & USBHS_PORTSC_HSP) {
// turn on high-speed disconnect detector
USBPHY_CTRL_SET = USBPHY_CTRL_ENHOSTDISCONDETECT;
}
}
if (portstat & USBHS_PORTSC_FPR) {
println(" force resume");
}
}
if (stat & USBHS_USBSTS_TI0) { // timer 0 - used for built-in port events
//println("timer0");
if (port_state == PORT_STATE_DEBOUNCE) {
port_state = PORT_STATE_RESET;
// Since we have only 1 port, no other device can
// be in reset or enumeration. If multiple ports
// are ever supported, we would need to remain in
// debounce if any other port was resetting or
// enumerating a device.
USBHS_PORTSC1 |= USBHS_PORTSC_PR; // begin reset sequence
println(" begin reset");
} else if (port_state == PORT_STATE_RECOVERY) {
port_state = PORT_STATE_ACTIVE;
println(" end recovery");
// HCSPARAMS TTCTRL page 1671
uint32_t speed = (USBHS_PORTSC1 >> 26) & 3;
rootdev = new_Device(speed, 0, 0);
}
}
if (stat & USBHS_USBSTS_TI1) { // timer 1 - used for USBDriverTimer
//println("timer1");
USBDriverTimer *list = NULL, *last = NULL;
USBDriverTimer *timer = active_timers;
while (timer) {
USBDriverTimer *next = timer->next;
active_timers = next;
// create a list of all timer_event() callbacks to do
if (list == NULL) {
list = timer;
last = timer;
} else {
last->next = timer;
last = timer;
}
timer->next = NULL;
if (!next) break;
next->prev = NULL;
if (next->usec >= 5) { // TODO: is 5us a safe minimum?
USBHS_GPTIMER1LD = next->usec - 1;
USBHS_GPTIMER1CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
break;
} else {
// next timer will be too soon for the hardware timer, so
// allow the next loop iteration to add it to the list
if (next->usec > 0 && next->next != NULL) {
// when we "lose" microseconds by calling early,
// adjust future timers so errors don't accumulate
next->next->usec += next->usec;
}
timer = next;
}
}
// do all callbacks after hardware timer is started, so time spent by
// the callback functions can't delay starting the hardware timer
while (list) {
USBDriverTimer *next = list->next;
list->prev = NULL;
list->next = NULL;
list->driver->timer_event(list);
list = next;
}
}
}
void USBDriverTimer::start(uint32_t microseconds)
{
#if 0
USBHost::print_("start_timer, us = ");
USBHost::print_(microseconds);
USBHost::print_(", driver = ");
USBHost::print_((uint32_t)driver, HEX);
USBHost::print_(", this = ");
USBHost::println_((uint32_t)this, HEX);
#endif
if (!driver) return;
if (microseconds < 100) return; // minimum timer duration
started_micros = micros();
if (active_timers == NULL) {
// schedule is empty, just add this timer
usec = microseconds;
next = NULL;
prev = NULL;
active_timers = this;
USBHS_GPTIMER1LD = microseconds - 1;
USBHS_GPTIMER1CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
return;
}
uint32_t remain = USBHS_GPTIMER1CTL & 0xFFFFFF;
//USBHDBGSerial.print("remain = ");
//USBHDBGSerial.println(remain);
if (microseconds < remain) {
// this timer event is before any on the schedule
__disable_irq();
USBHS_GPTIMER1CTL = 0;
USBHS_USBSTS = USBHS_USBSTS_TI1; // TODO: UPI & UAI safety?!
usec = microseconds;
next = active_timers;
prev = NULL;
active_timers->usec = remain - microseconds;
active_timers->prev = this;
active_timers = this;
USBHS_GPTIMER1LD = microseconds - 1;
USBHS_GPTIMER1CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
__enable_irq();
return;
}
// add this timer to the schedule, somewhere after the first timer
microseconds -= remain;
USBDriverTimer *list = active_timers;
while (list->next) {
list = list->next;
if (microseconds < list->usec) {
// add timer into middle of list
list->usec -= microseconds;
usec = microseconds;
next = list;
prev = list->prev;
list->prev = this;
prev->next = this;
return;
}
microseconds -= list->usec;
}
// add timer to the end of the schedule
usec = microseconds;
next = NULL;
prev = list;
list->next = this;
}
void USBDriverTimer::stop()
{
__disable_irq();
if (active_timers) {
if (active_timers == this) {
USBHS_GPTIMER1CTL = 0;
if (next) {
uint32_t usec_til_next = USBHS_GPTIMER1CTL & 0xFFFFFF;
usec_til_next += next->usec;
next->usec = usec_til_next;
USBHS_GPTIMER1LD = usec_til_next;
USBHS_GPTIMER1CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
next->prev = NULL;
active_timers = next;
} else {
active_timers = NULL;
}
} else {
for (USBDriverTimer *t = active_timers->next; t; t = t->next) {
if (t == this) {
t->prev->next = t->next;
if (t->next) {
t->next->usec += t->usec;
t->next->prev = t->prev;
}
break;
}
}
}
}
__enable_irq();
}
static uint32_t QH_capabilities1(uint32_t nak_count_reload, uint32_t control_endpoint_flag,
uint32_t max_packet_length, uint32_t head_of_list, uint32_t data_toggle_control,
uint32_t speed, uint32_t endpoint_number, uint32_t inactivate, uint32_t address)
{
return ( (nak_count_reload << 28) | (control_endpoint_flag << 27) |
(max_packet_length << 16) | (head_of_list << 15) |
(data_toggle_control << 14) | (speed << 12) | (endpoint_number << 8) |
(inactivate << 7) | (address << 0) );
}
static uint32_t QH_capabilities2(uint32_t high_bw_mult, uint32_t hub_port_number,
uint32_t hub_address, uint32_t split_completion_mask, uint32_t interrupt_schedule_mask)
{
return ( (high_bw_mult << 30) | (hub_port_number << 23) | (hub_address << 16) |
(split_completion_mask << 8) | (interrupt_schedule_mask << 0) );
}
// Create a new pipe. It's QH is added to the async or periodic schedule,
// and a halt qTD is added to the QH, so we can grow the qTD list later.
// dev: device owning this pipe/endpoint
// type: 0=control, 2=bulk, 3=interrupt
// endpoint: 0 for control, 1-15 for bulk or interrupt
// direction: 0=OUT, 1=IN (unused for control)
// maxlen: maximum packet size
// interval: polling interval for interrupt, power of 2, unused if control or bulk
//
Pipe_t * USBHost::new_Pipe(Device_t *dev, uint32_t type, uint32_t endpoint,
uint32_t direction, uint32_t maxlen, uint32_t interval)
{
Pipe_t *pipe;
Transfer_t *halt;
uint32_t c=0, dtc=0;
println("new_Pipe");
pipe = allocate_Pipe();
if (!pipe) return NULL;
halt = allocate_Transfer();
if (!halt) {
free_Pipe(pipe);
return NULL;
}
memset(pipe, 0, sizeof(Pipe_t));
memset(halt, 0, sizeof(Transfer_t));
halt->qtd.next = 1;
halt->qtd.token = 0x40;
pipe->device = dev;
pipe->qh.next = (uint32_t)halt;
pipe->qh.alt_next = 1;
pipe->direction = direction;
pipe->type = type;
if (type == 3) {
// interrupt transfers require bandwidth & microframe scheduling
if (!allocate_interrupt_pipe_bandwidth(pipe, maxlen, interval)) {
free_Transfer(halt);
free_Pipe(pipe);
return NULL;
}
}
if (endpoint > 0) {
// if non-control pipe, update dev->data_pipes list
Pipe_t *p = dev->data_pipes;
if (p == NULL) {
dev->data_pipes = pipe;
} else {
while (p->next) p = p->next;
p->next = pipe;
}
}
if (type == 0) {
// control
if (dev->speed < 2) c = 1;
dtc = 1;
} else if (type == 2) {
// bulk
} else if (type == 3) {
// interrupt
//pipe->qh.token = 0x80000000; // TODO: OUT starts with DATA0 or DATA1?
}
pipe->qh.capabilities[0] = QH_capabilities1(15, c, maxlen, 0,
dtc, dev->speed, endpoint, 0, dev->address);
pipe->qh.capabilities[1] = QH_capabilities2(1, dev->hub_port,
dev->hub_address, pipe->complete_mask, pipe->start_mask);
if (type == 0 || type == 2) {
// control or bulk: add to async queue
Pipe_t *list = (Pipe_t *)USBHS_ASYNCLISTADDR;
if (list == NULL) {
pipe->qh.capabilities[0] |= 0x8000; // H bit
pipe->qh.horizontal_link = (uint32_t)&(pipe->qh) | 2; // 2=QH
USBHS_ASYNCLISTADDR = (uint32_t)&(pipe->qh);
USBHS_USBCMD |= USBHS_USBCMD_ASE; // enable async schedule
//println(" first in async list");
} else {
// EHCI 1.0: section 4.8.1, page 72
pipe->qh.horizontal_link = list->qh.horizontal_link;
list->qh.horizontal_link = (uint32_t)&(pipe->qh) | 2;
//println(" added to async list");
}
} else if (type == 3) {
// interrupt: add to periodic schedule
add_qh_to_periodic_schedule(pipe);
}
return pipe;
}
// Fill in the qTD fields (token & data)
// t the Transfer qTD to initialize
// buf data to transfer
// len length of data
// pid type of packet: 0=OUT, 1=IN, 2=SETUP
// data01 value of DATA0/DATA1 toggle on 1st packet
// irq whether to generate an interrupt when transfer complete
//
static void init_qTD(volatile Transfer_t *t, void *buf, uint32_t len,
uint32_t pid, uint32_t data01, bool irq)
{
t->qtd.alt_next = 1; // 1=terminate
if (data01) data01 = 0x80000000;
t->qtd.token = data01 | (len << 16) | (irq ? 0x8000 : 0) | (pid << 8) | 0x80;
uint32_t addr = (uint32_t)buf;
t->qtd.buffer[0] = addr;
addr &= 0xFFFFF000;
t->qtd.buffer[1] = addr + 0x1000;
t->qtd.buffer[2] = addr + 0x2000;
t->qtd.buffer[3] = addr + 0x3000;
t->qtd.buffer[4] = addr + 0x4000;
}
// Create a Control Transfer and queue it
//
bool USBHost::queue_Control_Transfer(Device_t *dev, setup_t *setup, void *buf, USBDriver *driver)
{
Transfer_t *transfer, *data, *status;
uint32_t status_direction;
//println("new_Control_Transfer");
if (setup->wLength > 16384) return false; // max 16K data for control
transfer = allocate_Transfer();
if (!transfer) {
println(" error allocating setup transfer");
return false;
}
status = allocate_Transfer();
if (!status) {
println(" error allocating status transfer");
free_Transfer(transfer);
return false;
}
if (setup->wLength > 0) {
data = allocate_Transfer();
if (!data) {
println(" error allocating data transfer");
free_Transfer(transfer);
free_Transfer(status);
return false;
}
uint32_t pid = (setup->bmRequestType & 0x80) ? 1 : 0;
init_qTD(data, buf, setup->wLength, pid, 1, false);
transfer->qtd.next = (uint32_t)data;
data->qtd.next = (uint32_t)status;
status_direction = pid ^ 1;
} else {
transfer->qtd.next = (uint32_t)status;
status_direction = 1; // always IN, USB 2.0 page 226
}
//println("setup address ", (uint32_t)setup, HEX);
init_qTD(transfer, setup, 8, 2, 0, false);
init_qTD(status, NULL, 0, status_direction, 1, true);
status->pipe = dev->control_pipe;
status->buffer = buf;
status->length = setup->wLength;
status->setup.word1 = setup->word1;
status->setup.word2 = setup->word2;
status->driver = driver;
status->qtd.next = 1;
return queue_Transfer(dev->control_pipe, transfer);
}
// Create a Bulk or Interrupt Transfer and queue it
//
bool USBHost::queue_Data_Transfer(Pipe_t *pipe, void *buffer, uint32_t len, USBDriver *driver)
{
Transfer_t *transfer, *data, *next;
uint8_t *p = (uint8_t *)buffer;
uint32_t count;
bool last = false;
// We always want to do this while the interrupt is disabled.
// But only re-enable if it was enabled coming in.
bool irq_was_enabled = NVIC_IS_ENABLED(IRQ_USBHS);
NVIC_DISABLE_IRQ(IRQ_USBHS);
// TODO: option for zero length packet? Maybe in Pipe_t fields?
//println("new_Data_Transfer");
// allocate qTDs
transfer = allocate_Transfer();
if (!transfer) {
if (irq_was_enabled) NVIC_ENABLE_IRQ(IRQ_USBHS);
return false;
}
data = transfer;
for (count=((len-1) >> 14); count; count--) {
next = allocate_Transfer();
if (!next) {
// free already-allocated qTDs
while (1) {
next = (Transfer_t *)transfer->qtd.next;
free_Transfer(transfer);
if (transfer == data) break;
transfer = next;
}
if (irq_was_enabled) NVIC_ENABLE_IRQ(IRQ_USBHS);
return false;
}
data->qtd.next = (uint32_t)next;
data = next;
}
// last qTD needs info for followup
data->qtd.next = 1;
data->pipe = pipe;
data->buffer = buffer;
data->length = len;
data->setup.word1 = 0;
data->setup.word2 = 0;
data->driver = driver;
// initialize all qTDs
data = transfer;
while (1) {
uint32_t count = len;
if (count > 16384) {
count = 16384;
} else {
last = true;
}
init_qTD(data, p, count, pipe->direction, 0, last);
if (last) break;
p += count;
len -= count;
data = (Transfer_t *)(data->qtd.next);
}
bool return_value = queue_Transfer(pipe, transfer);
if (irq_was_enabled) NVIC_ENABLE_IRQ(IRQ_USBHS);
return return_value;
}
bool USBHost::queue_Transfer(Pipe_t *pipe, Transfer_t *transfer)
{
// find halt qTD
Transfer_t *halt = (Transfer_t *)(pipe->qh.next);
while (!(halt->qtd.token & 0x40)) halt = (Transfer_t *)(halt->qtd.next);
// transfer's token
uint32_t token = transfer->qtd.token;
// transfer becomes new halt qTD
transfer->qtd.token = 0x40;
// copy transfer non-token fields to halt
halt->qtd.next = transfer->qtd.next;
halt->qtd.alt_next = transfer->qtd.alt_next;
halt->qtd.buffer[0] = transfer->qtd.buffer[0]; // TODO: optimize memcpy, all
halt->qtd.buffer[1] = transfer->qtd.buffer[1]; // fields except token
halt->qtd.buffer[2] = transfer->qtd.buffer[2];
halt->qtd.buffer[3] = transfer->qtd.buffer[3];
halt->qtd.buffer[4] = transfer->qtd.buffer[4];
halt->pipe = pipe;
halt->buffer = transfer->buffer;
halt->length = transfer->length;
halt->setup = transfer->setup;
halt->driver = transfer->driver;
// find the last qTD we're adding
Transfer_t *last = halt;
while ((uint32_t)(last->qtd.next) != 1) last = (Transfer_t *)(last->qtd.next);
// last points to transfer (which becomes new halt)
last->qtd.next = (uint32_t)transfer;
transfer->qtd.next = 1;
// link all the new qTD by next_followup & prev_followup
Transfer_t *prev = NULL;
Transfer_t *p = halt;
while (p->qtd.next != (uint32_t)transfer) {
Transfer_t *next = (Transfer_t *)p->qtd.next;
p->prev_followup = prev;
p->next_followup = next;
prev = p;
p = next;
}
p->prev_followup = prev;
p->next_followup = NULL;
//print(halt, p);
// add them to a followup list
if (pipe->type == 0 || pipe->type == 2) {
// control or bulk
add_to_async_followup_list(halt, p);
} else {
// interrupt
add_to_periodic_followup_list(halt, p);
}
// old halt becomes new transfer, this commits all new qTDs to QH
halt->qtd.token = token;
return true;
}
bool USBHost::followup_Transfer(Transfer_t *transfer)
{
//print(" Followup ", (uint32_t)transfer, HEX);
//println(" token=", transfer->qtd.token, HEX);
if (!(transfer->qtd.token & 0x80)) {
// TODO: check error status
if (transfer->qtd.token & 0x8000) {
// this transfer caused an interrupt
if (transfer->pipe->callback_function) {
// do the callback
(*(transfer->pipe->callback_function))(transfer);
}
}
// do callback function...
//println(" completed");
return true;
}
return false;
}
void USBHost::followup_Error(void)
{
println("ERROR Followup");
Transfer_t *p = async_followup_first;
while (p) {
if (followup_Transfer(p)) {
// transfer completed
Transfer_t *next = p->next_followup;
remove_from_async_followup_list(p);
println(" remove from followup list");
if (p->qtd.token & 0x40) {
Pipe_t *haltedpipe = p->pipe;
free_Transfer(p);
// traverse the rest of the list for unfinished work
// from this halted pipe. Remove from the followup
// list and put onto our own temporary list
Transfer_t *first = NULL;
Transfer_t *last = NULL;
p = next;
while (p) {
Transfer_t *next2 = p->next_followup;
if (p->pipe == haltedpipe) {
println(" stray halted ", (uint32_t)p, HEX);
remove_from_async_followup_list(p);
if (first == NULL) {
first = p;
last = p;
} else {
last->next_followup = p;
}
p->next_followup = NULL;
if (next == p) next = next2;
}
p = next2;
}
// halted pipe (probably) still has unfinished transfers
// find the halted pipe's dummy halt transfer
p = (Transfer_t *)(haltedpipe->qh.next & ~0x1F);
while (p && ((p->qtd.token & 0x40) == 0)) {
print(" qtd: ", (uint32_t)p, HEX);
print(", token=", (uint32_t)p->qtd.token, HEX);
println(", next=", (uint32_t)p->qtd.next, HEX);
p = (Transfer_t *)(p->qtd.next & ~0x1F);
}
if (p) {
// unhalt the pipe, "forget" unfinished transfers
// hopefully they're all on the list we made!
println(" dummy halt: ", (uint32_t)p, HEX);
haltedpipe->qh.next = (uint32_t)p;
haltedpipe->qh.current = 0;
haltedpipe->qh.token = 0;
} else {
println(" no dummy halt found, yikes!");
// TODO: this should never happen, but what if it does?
}
// Do any driver callbacks belonging to the unfinished
// transfers. This is done last, after retoring the
// pipe to a working state (if possible) so the driver
// callback can use the pipe.
p = first;
while (p) {
uint32_t token = p->qtd.token;
if (token & 0x8000 && haltedpipe->callback_function) {
// driver expects a callback
p->qtd.token = token | 0x40;
(*(p->pipe->callback_function))(p);
}
Transfer_t *next2 = p->next_followup;
free_Transfer(p);
p = next2;
}
} else {
free_Transfer(p);
}
p = next;
} else {
// transfer still pending
println(" remain on followup list");
p = p->next_followup;
}
}
// TODO: handle errors from periodic schedule!
}
static void add_to_async_followup_list(Transfer_t *first, Transfer_t *last)
{
last->next_followup = NULL; // always add to end of list
if (async_followup_last == NULL) {
first->prev_followup = NULL;
async_followup_first = first;
} else {
first->prev_followup = async_followup_last;
async_followup_last->next_followup = first;
}
async_followup_last = last;
}
static void remove_from_async_followup_list(Transfer_t *transfer)
{
Transfer_t *next = transfer->next_followup;
Transfer_t *prev = transfer->prev_followup;
if (prev) {
prev->next_followup = next;
} else {
async_followup_first = next;
}
if (next) {
next->prev_followup = prev;
} else {
async_followup_last = prev;
}
}
static void add_to_periodic_followup_list(Transfer_t *first, Transfer_t *last)
{
last->next_followup = NULL; // always add to end of list
if (periodic_followup_last == NULL) {
first->prev_followup = NULL;
periodic_followup_first = first;
} else {
first->prev_followup = periodic_followup_last;
periodic_followup_last->next_followup = first;
}
periodic_followup_last = last;
}
static void remove_from_periodic_followup_list(Transfer_t *transfer)
{
Transfer_t *next = transfer->next_followup;
Transfer_t *prev = transfer->prev_followup;
if (prev) {
prev->next_followup = next;
} else {
periodic_followup_first = next;
}
if (next) {
next->prev_followup = prev;
} else {
periodic_followup_last = prev;
}
}
static uint32_t max4(uint32_t n1, uint32_t n2, uint32_t n3, uint32_t n4)
{
if (n1 > n2) {
// can't be n2
if (n1 > n3) {
// can't be n3
if (n1 > n4) return n1;
} else {
// can't be n1
if (n3 > n4) return n3;
}
} else {
// can't be n1
if (n2 > n3) {
// can't be n3
if (n2 > n4) return n2;
} else {
// can't be n2
if (n3 > n4) return n3;
}
}
return n4;
}
static uint32_t round_to_power_of_two(uint32_t n, uint32_t maxnum)
{
for (uint32_t pow2num=1; pow2num < maxnum; pow2num <<= 1) {
if (n <= (pow2num | (pow2num >> 1))) return pow2num;
}
return maxnum;
}
// Allocate bandwidth for an interrupt pipe. Given the packet size
// and other parameters, find the best place to schedule this pipe.
// Returns true if enough bandwidth is available, and the best
// frame offset, smask and cmask. Or returns false if no group
// of microframes has enough bandwidth available.
//
// pipe:
// device->speed [in] 0=full speed, 1=low speed, 2=high speed
// direction [in] 0=OUT, 1=IN
// start_mask [out] uframes to start transfer
// complete_mask [out] uframes to complete transfer (FS & LS only)
// periodic_interval [out] fream repeat level: 1, 2, 4, 8... PERIODIC_LIST_SIZE
// periodic_offset [out] frame repeat offset: 0 to periodic_interval-1
// maxlen: [in] maximum packet length
// interval: [in] polling interval: LS+FS: frames, HS: 2^(n-1) uframes
//
bool USBHost::allocate_interrupt_pipe_bandwidth(Pipe_t *pipe, uint32_t maxlen, uint32_t interval)
{
println("allocate_interrupt_pipe_bandwidth");
if (interval == 0) interval = 1;
maxlen = (maxlen * 76459) >> 16; // worst case bit stuffing
if (pipe->device->speed == 2) {
// high speed 480 Mbit/sec
println(" ep interval = ", interval);
if (interval > 15) interval = 15;
interval = 1 << (interval - 1);
if (interval > PERIODIC_LIST_SIZE*8) interval = PERIODIC_LIST_SIZE*8;
println(" interval = ", interval);
uint32_t pinterval = interval >> 3;
pipe->periodic_interval = (pinterval > 0) ? pinterval : 1;
uint32_t stime = (55 + 32 + maxlen) >> 5; // time units: 32 bytes or 533 ns
uint32_t best_offset = 0xFFFFFFFF;
uint32_t best_bandwidth = 0xFFFFFFFF;
for (uint32_t offset=0; offset < interval; offset++) {
// for each possible uframe offset, find the worst uframe bandwidth
uint32_t max_bandwidth = 0;
for (uint32_t i=offset; i < PERIODIC_LIST_SIZE*8; i += interval) {
uint32_t bandwidth = uframe_bandwidth[i] + stime;
if (bandwidth > max_bandwidth) max_bandwidth = bandwidth;
}
// remember which uframe offset is the best
if (max_bandwidth < best_bandwidth) {
best_bandwidth = max_bandwidth;
best_offset = offset;
}
}
print(" best_bandwidth = ", best_bandwidth);
//print(best_bandwidth);
println(", at offset = ", best_offset);
//println(best_offset);
// a 125 us micro frame can fit 7500 bytes, or 234 of our 32-byte units
// fail if the best found needs more than 80% (234 * 0.8) in any uframe
if (best_bandwidth > 187) return false;
// save essential bandwidth specs, for cleanup in delete_Pipe
pipe->bandwidth_interval = interval;
pipe->bandwidth_offset = best_offset;
pipe->bandwidth_stime = stime;
for (uint32_t i=best_offset; i < PERIODIC_LIST_SIZE*8; i += interval) {
uframe_bandwidth[i] += stime;
}
if (interval == 1) {
pipe->start_mask = 0xFF;
} else if (interval == 2) {
pipe->start_mask = 0x55 << (best_offset & 1);
} else if (interval <= 4) {
pipe->start_mask = 0x11 << (best_offset & 3);
} else {
pipe->start_mask = 0x01 << (best_offset & 7);
}
pipe->periodic_offset = best_offset >> 3;
pipe->complete_mask = 0;
} else {
// full speed 12 Mbit/sec or low speed 1.5 Mbit/sec
interval = round_to_power_of_two(interval, PERIODIC_LIST_SIZE);
pipe->periodic_interval = interval;
uint32_t stime, ctime;
if (pipe->direction == 0) {
// for OUT direction, SSPLIT will carry the data payload
// TODO: how much time to SSPLIT & CSPLIT actually take?
// they're not documented in 5.7 or 5.11.3.
stime = (100 + 32 + maxlen) >> 5;
ctime = (55 + 32) >> 5;
} else {
// for IN direction, data payload in CSPLIT
stime = (40 + 32) >> 5;
ctime = (70 + 32 + maxlen) >> 5;
}
// TODO: should we take Single-TT hubs into account, avoid
// scheduling overlapping SSPLIT & CSPLIT to the same hub?
// TODO: even if Multi-TT, do we need to worry about packing
// too many into the same uframe?
uint32_t best_shift = 0;
uint32_t best_offset = 0xFFFFFFFF;
uint32_t best_bandwidth = 0xFFFFFFFF;
for (uint32_t offset=0; offset < interval; offset++) {
// for each 1ms frame offset, compute the worst uframe usage
uint32_t max_bandwidth = 0;
for (uint32_t i=offset; i < PERIODIC_LIST_SIZE; i += interval) {
for (uint32_t j=0; j <= 3; j++) { // max 3 without FSTN
// at each location, find worst uframe usage
// for SSPLIT+CSPLITs
uint32_t n = (i << 3) + j;
uint32_t bw1 = uframe_bandwidth[n+0] + stime;
uint32_t bw2 = uframe_bandwidth[n+2] + ctime;
uint32_t bw3 = uframe_bandwidth[n+3] + ctime;
uint32_t bw4 = uframe_bandwidth[n+4] + ctime;
max_bandwidth = max4(bw1, bw2, bw3, bw4);
// remember the best usage found
if (max_bandwidth < best_bandwidth) {
best_bandwidth = max_bandwidth;
best_offset = i;
best_shift = j;
}
}
}
}
print(" best_bandwidth = ", best_bandwidth);
//println(best_bandwidth);
print(", at offset = ", best_offset);
//print(best_offset);
println(", shift= ", best_shift);
//println(best_shift);
// a 125 us micro frame can fit 7500 bytes, or 234 of our 32-byte units
// fail if the best found needs more than 80% (234 * 0.8) in any uframe
if (best_bandwidth > 187) return false;
// save essential bandwidth specs, for cleanup in delete_Pipe
pipe->bandwidth_interval = interval;
pipe->bandwidth_offset = best_offset;
pipe->bandwidth_shift = best_shift;
pipe->bandwidth_stime = stime;
pipe->bandwidth_ctime = ctime;
for (uint32_t i=best_offset; i < PERIODIC_LIST_SIZE; i += interval) {
uint32_t n = (i << 3) + best_shift;
uframe_bandwidth[n+0] += stime;
uframe_bandwidth[n+2] += ctime;
uframe_bandwidth[n+3] += ctime;
uframe_bandwidth[n+4] += ctime;
}
pipe->start_mask = 0x01 << best_shift;
pipe->complete_mask = 0x1C << best_shift;
pipe->periodic_offset = best_offset;
}
return true;
}
// put a new pipe into the periodic schedule tree
// according to periodic_interval and periodic_offset
//
void USBHost::add_qh_to_periodic_schedule(Pipe_t *pipe)
{
// quick hack for testing, just put it into the first table entry
//println("add_qh_to_periodic_schedule: ", (uint32_t)pipe, HEX);
#if 0
pipe->qh.horizontal_link = periodictable[0];
periodictable[0] = (uint32_t)&(pipe->qh) | 2; // 2=QH
println("init periodictable with ", periodictable[0], HEX);
#else
uint32_t interval = pipe->periodic_interval;
uint32_t offset = pipe->periodic_offset;
//println(" interval = ", interval);
//println(" offset = ", offset);
// By an interative miracle, hopefully make an inverted tree of EHCI figure 4-18, page 93
for (uint32_t i=offset; i < PERIODIC_LIST_SIZE; i += interval) {
//print(" old slot ", i);
//print(": ");
//print_qh_list((Pipe_t *)(periodictable[i] & 0xFFFFFFE0));
uint32_t num = periodictable[i];
Pipe_t *node = (Pipe_t *)(num & 0xFFFFFFE0);
if ((num & 1) || ((num & 6) == 2 && node->periodic_interval < interval)) {
//println(" add to slot ", i);
pipe->qh.horizontal_link = num;
periodictable[i] = (uint32_t)&(pipe->qh) | 2; // 2=QH
} else {
//println(" traverse list ", i);
// TODO: skip past iTD, siTD when/if we support isochronous
while (node->periodic_interval >= interval) {
if (node == pipe) goto nextslot;
//print(" num ", num, HEX);
//print(" node ", (uint32_t)node, HEX);
//println("->", node->qh.horizontal_link, HEX);
if (node->qh.horizontal_link & 1) break;
num = node->qh.horizontal_link;
node = (Pipe_t *)(num & 0xFFFFFFE0);
}
Pipe_t *n = node;
do {
if (n == pipe) goto nextslot;
n = (Pipe_t *)(n->qh.horizontal_link & 0xFFFFFFE0);
} while (n != NULL);
//print(" adding at node ", (uint32_t)node, HEX);
//print(", num=", num, HEX);
//println(", node->qh.horizontal_link=", node->qh.horizontal_link, HEX);
pipe->qh.horizontal_link = node->qh.horizontal_link;
node->qh.horizontal_link = (uint32_t)pipe | 2; // 2=QH
// TODO: is it really necessary to keep doing the outer
// loop? Does adding it here satisfy all cases? If so
// we could avoid extra work by just returning here.
}
nextslot:
//print(" new slot ", i);
//print(": ");
//print_qh_list((Pipe_t *)(periodictable[i] & 0xFFFFFFE0));
{}
}
#endif
#if 0
println("Periodic Schedule:");
for (uint32_t i=0; i < PERIODIC_LIST_SIZE; i++) {
if (i < 10) print(" ");
print(i);
print(": ");
print_qh_list((Pipe_t *)(periodictable[i] & 0xFFFFFFE0));
}
#endif
}
void USBHost::delete_Pipe(Pipe_t *pipe)
{
println("delete_Pipe ", (uint32_t)pipe, HEX);
// halt pipe, find and free all Transfer_t
// EHCI 1.0, 4.8.2 page 72: "Software should first deactivate
// all active qTDs, wait for the queue head to go inactive"
//
// http://www.spinics.net/lists/linux-usb/msg131607.html
// http://www.spinics.net/lists/linux-usb/msg131936.html
//
// In practice it's not feasible to wait for an active QH to become
// inactive before removing it, for several reasons. For one, the QH may
// _never_ become inactive (if the endpoint NAKs indefinitely). For
// another, the procedure given in the spec (deactivate the qTDs on the
// queue) is racy, since the controller can perform a new overlay or
// writeback at any time.
bool isasync = (pipe->type == 0 || pipe->type == 2);
if (isasync) {
// find the next QH in the async schedule loop
Pipe_t *next = (Pipe_t *)(pipe->qh.horizontal_link & 0xFFFFFFE0);
if (next == pipe) {
// removing the only QH, so just shut down the async schedule
println(" shut down async schedule");
USBHS_USBCMD &= ~USBHS_USBCMD_ASE; // disable async schedule
while (USBHS_USBSTS & USBHS_USBSTS_AS) ; // busy loop wait
USBHS_ASYNCLISTADDR = 0;
} else {
// find the previous QH in the async schedule loop
println(" remove QH from async schedule");
Pipe_t *prev = next;
while (1) {
Pipe_t *n = (Pipe_t *)(prev->qh.horizontal_link & 0xFFFFFFE0);
if (n == pipe) break;
prev = n;
}
// if removing the one with H bit, set another
if (pipe->qh.capabilities[0] & 0x8000) {
prev->qh.capabilities[0] |= 0x8000; // set H bit
}
// link the previous QH, we're no longer in the loop
prev->qh.horizontal_link = pipe->qh.horizontal_link;
// do the Async Advance Doorbell handshake to wait to be
// sure the EHCI no longer references the removed QH
USBHS_USBCMD |= USBHS_USBCMD_IAA;
while (!(USBHS_USBSTS & USBHS_USBSTS_AAI)) ; // busy loop wait
USBHS_USBSTS = USBHS_USBSTS_AAI;
// TODO: does this write interfere UPI & UAI (bits 18 & 19) ??
}
// find & free all the transfers which completed
println(" Free transfers");
Transfer_t *t = async_followup_first;
while (t) {
print(" * ", (uint32_t)t);
Transfer_t *next = t->next_followup;
if (t->pipe == pipe) {
print(" * remove");
remove_from_async_followup_list(t);
// Only free if not in QH list
Transfer_t *tr = (Transfer_t *)(pipe->qh.next);
while (((uint32_t)tr & 0xFFFFFFE0) && (tr != t)){
tr = (Transfer_t *)(tr->qtd.next);
}
if (tr == t) {
println(" * defer free until QH");
} else {
println(" * free");
free_Transfer(t); // The later code should actually free it...
}
} else {
println("");
}
t = next;
}
} else {
// remove from the periodic schedule
for (uint32_t i=0; i < PERIODIC_LIST_SIZE; i++) {
uint32_t num = periodictable[i];
if (num & 1) continue;
Pipe_t *node = (Pipe_t *)(num & 0xFFFFFFE0);
if (node == pipe) {
periodictable[i] = pipe->qh.horizontal_link;
continue;
}
Pipe_t *prev = node;
while (1) {
num = node->qh.horizontal_link;
if (num & 1) break;
node = (Pipe_t *)(num & 0xFFFFFFE0);
if (node == pipe) {
prev->qh.horizontal_link = node->qh.horizontal_link;
break;
}
prev = node;
}
}
// subtract bandwidth from uframe_bandwidth array
if (pipe->device->speed == 2) {
uint32_t interval = pipe->bandwidth_interval;
uint32_t offset = pipe->bandwidth_offset;
uint32_t stime = pipe->bandwidth_stime;
for (uint32_t i=offset; i < PERIODIC_LIST_SIZE*8; i += interval) {
uframe_bandwidth[i] -= stime;
}
} else {
uint32_t interval = pipe->bandwidth_interval;
uint32_t offset = pipe->bandwidth_offset;
uint32_t shift = pipe->bandwidth_shift;
uint32_t stime = pipe->bandwidth_stime;
uint32_t ctime = pipe->bandwidth_ctime;
for (uint32_t i=offset; i < PERIODIC_LIST_SIZE; i += interval) {
uint32_t n = (i << 3) + shift;
uframe_bandwidth[n+0] -= stime;
uframe_bandwidth[n+2] -= ctime;
uframe_bandwidth[n+3] -= ctime;
uframe_bandwidth[n+4] -= ctime;
}
}
// find & free all the transfers which completed
println(" Free transfers");
Transfer_t *t = periodic_followup_first;
while (t) {
print(" * ", (uint32_t)t);
Transfer_t *next = t->next_followup;
if (t->pipe == pipe) {
print(" * remove");
remove_from_periodic_followup_list(t);
// Only free if not in QH list
Transfer_t *tr = (Transfer_t *)(pipe->qh.next);
while (((uint32_t)tr & 0xFFFFFFE0) && (tr != t)){
tr = (Transfer_t *)(tr->qtd.next);
}
if (tr == t) {
println(" * defer free until QH");
} else {
println(" * free");
free_Transfer(t); // The later code should actually free it...
}
} else {
println("");
}
t = next;
}
}
//
// TODO: do we need to look at pipe->qh.current ??
//
// free all the transfers still attached to the QH
println(" Free transfers attached to QH");
Transfer_t *tr = (Transfer_t *)(pipe->qh.next);
while ((uint32_t)tr & 0xFFFFFFE0) {
println(" * ", (uint32_t)tr);
Transfer_t *next = (Transfer_t *)(tr->qtd.next);
free_Transfer(tr);
tr = next;
}
// hopefully we found everything...
free_Pipe(pipe);
println("* Delete Pipe completed");
}