You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MicroDexed/third-party/USBHost_t36/keyboard.cpp

792 lines
24 KiB

/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "USBHost_t36.h" // Read this header first for key info
#include "keylayouts.h" // from Teensyduino core library
typedef struct {
KEYCODE_TYPE code;
uint8_t ascii;
} keycode_extra_t;
typedef struct {
KEYCODE_TYPE code;
KEYCODE_TYPE codeNumlockOff;
uint8_t charNumlockOn; // We will assume when num lock is on we have all characters...
} keycode_numlock_t;
typedef struct {
uint16_t idVendor; // vendor id of keyboard
uint16_t idProduct; // product id - 0 implies all of the ones from vendor;
} vid_pid_t; // list of products to force into boot protocol
#ifdef M
#undef M
#endif
#define M(n) ((n) & KEYCODE_MASK)
static const keycode_extra_t keycode_extras[] = {
{M(KEY_ENTER), '\n'},
{M(KEY_ESC), 0x1b},
{M(KEY_TAB), 0x9 },
{M(KEY_UP), KEYD_UP },
{M(KEY_DOWN), KEYD_DOWN },
{M(KEY_LEFT), KEYD_LEFT },
{M(KEY_RIGHT), KEYD_RIGHT },
{M(KEY_INSERT), KEYD_INSERT },
{M(KEY_DELETE), KEYD_DELETE },
{M(KEY_PAGE_UP), KEYD_PAGE_UP },
{M(KEY_PAGE_DOWN), KEYD_PAGE_DOWN },
{M(KEY_HOME), KEYD_HOME },
{M(KEY_END), KEYD_END },
{M(KEY_F1), KEYD_F1 },
{M(KEY_F2), KEYD_F2 },
{M(KEY_F3), KEYD_F3 },
{M(KEY_F4), KEYD_F4 },
{M(KEY_F5), KEYD_F5 },
{M(KEY_F6), KEYD_F6 },
{M(KEY_F7), KEYD_F7 },
{M(KEY_F8), KEYD_F8 },
{M(KEY_F9), KEYD_F9 },
{M(KEY_F10), KEYD_F10 },
{M(KEY_F11), KEYD_F11 },
{M(KEY_F12), KEYD_F12 }
};
// Some of these mapped to key + shift.
static const keycode_numlock_t keycode_numlock[] = {
{M(KEYPAD_SLASH), '/', '/'},
{M(KEYPAD_ASTERIX), '*', '*'},
{M(KEYPAD_MINUS), '-', '-'},
{M(KEYPAD_PLUS), '+', '+'},
{M(KEYPAD_ENTER), '\n', '\n'},
{M(KEYPAD_1), 0x80 | M(KEY_END), '1'},
{M(KEYPAD_2), 0x80 | M(KEY_DOWN), '2'},
{M(KEYPAD_3), 0x80 | M(KEY_PAGE_DOWN), '3'},
{M(KEYPAD_4), 0x80 | M(KEY_LEFT), '4'},
{M(KEYPAD_5), 0x00, '5'},
{M(KEYPAD_6), 0x80 | M(KEY_RIGHT), '6'},
{M(KEYPAD_7), 0x80 | M(KEY_HOME), '7'},
{M(KEYPAD_8), 0x80 | M(KEY_UP), '8'},
{M(KEYPAD_9), 0x80 | M(KEY_PAGE_UP), '9'},
{M(KEYPAD_0), 0x80 | M(KEY_INSERT), '0'},
{M(KEYPAD_PERIOD), 0x80 | M(KEY_DELETE), '.'}
};
//============================================================
// Items in the list we will try to force into Boot mode.
//============================================================
static const vid_pid_t keyboard_forceBootMode[] = {
{0x04D9, 0}
};
//============================================================
// Items in the list allow HID Parser to claim
//============================================================
bool KeyboardController::s_forceHIDMode = false;
static const vid_pid_t keyboard_use_hid_mode[] = {
{0x04D9, 0},
{0x046D, 0xC547}
};
#define print USBHost::print_
#define println USBHost::println_
void KeyboardController::init()
{
USBHIDParser::driver_ready_for_hid_collection(this);
BluetoothController::driver_ready_for_bluetooth(this);
}
void KeyboardController::forceBootProtocol()
{
// handle bluetooth connection
if (btdriver_) btdriver_->updateHIDProtocol(0x00);
if (driver_[0] != nullptr) {
// Only do it this way if we are a standard USB device
driver_[0]->sendControlPacket(0x21, 11, 0, 0, 0, nullptr); // 11=SET_PROTOCOL BOOT
}
#if 0
if (device && !control_queued) {
mk_setup(setup, 0x21, 11, 0, 0, 0); // 11=SET_PROTOCOL BOOT
control_queued = true;
queue_Control_Transfer(device, &setup, NULL, this);
} else {
force_boot_protocol = true; // let system know we want to force this.
}
#endif
}
void KeyboardController::forceHIDProtocol()
{
if (btdriver_) btdriver_->updateHIDProtocol(0x01);
}
// Arduino defined this static weak symbol callback, and their
// examples use it as the only way to detect new key presses,
// so unfortunate as static weak callbacks are, it probably
// needs to be supported for compatibility
extern "C" {
void __keyboardControllerEmptyCallback() { }
}
void keyPressed() __attribute__ ((weak, alias("__keyboardControllerEmptyCallback")));
void keyReleased() __attribute__ ((weak, alias("__keyboardControllerEmptyCallback")));
static bool contains(uint8_t b, const uint8_t *data)
{
if (data[2] == b || data[3] == b || data[4] == b) return true;
if (data[5] == b || data[6] == b || data[7] == b) return true;
return false;
}
void KeyboardController::numLock(bool f) {
if (leds_.numLock != f) {
leds_.numLock = f;
updateLEDS();
}
}
void KeyboardController::capsLock(bool f) {
if (leds_.capsLock != f) {
leds_.capsLock = f;
updateLEDS();
}
}
void KeyboardController::scrollLock(bool f) {
if (leds_.scrollLock != f) {
leds_.scrollLock = f;
updateLEDS();
}
}
void KeyboardController::key_press(uint32_t mod, uint32_t key)
{
// TODO: queue events, perform callback from Task
println(" press, key=", key);
//USBHDBGSerial.printf("key_press: %x %x\n", mod, key);
modifiers_ = mod;
keyOEM_ = key;
keyCode = convert_to_unicode(mod, key);
println(" unicode = ", keyCode);
if (keyPressedFunction) {
keyPressedFunction(keyCode);
} else {
keyPressed();
}
}
void KeyboardController::key_release(uint32_t mod, uint32_t key)
{
// TODO: queue events, perform callback from Task
println(" release, key=", key);
modifiers_ = mod;
keyOEM_ = key;
// Look for modifier keys
if (key == M(KEY_NUM_LOCK)) {
numLock(!leds_.numLock);
// Lets toggle Numlock
} else if (key == M(KEY_CAPS_LOCK)) {
capsLock(!leds_.capsLock);
} else if (key == M(KEY_SCROLL_LOCK)) {
scrollLock(!leds_.scrollLock);
} else {
keyCode = convert_to_unicode(mod, key);
if (keyReleasedFunction) {
keyReleasedFunction(keyCode);
} else {
keyReleased();
}
}
}
uint16_t KeyboardController::convert_to_unicode(uint32_t mod, uint32_t key)
{
// WIP: special keys
// TODO: dead key sequences
if (key & SHIFT_MASK) {
// Many of these keys will look like they are other keys with shift mask...
// Check for any of our mapped extra keys
for (uint8_t i = 0; i < (sizeof(keycode_numlock)/sizeof(keycode_numlock[0])); i++) {
if (keycode_numlock[i].code == key) {
// See if the user is using numlock or not...
if (leds_.numLock) {
return keycode_numlock[i].charNumlockOn;
} else {
key = keycode_numlock[i].codeNumlockOff;
if (!(key & 0x80)) return key; // we have hard coded value
key &= 0x7f; // mask off the extra and break out to process as other characters...
break;
}
}
}
}
// Check for any of our mapped extra keys - Done early as some of these keys are
// above and some below the SHIFT_MASK value
for (uint8_t i = 0; i < (sizeof(keycode_extras)/sizeof(keycode_extras[0])); i++) {
if (keycode_extras[i].code == key) {
return keycode_extras[i].ascii;
}
}
// If we made it here without doing something then return 0;
if (key & SHIFT_MASK) return 0;
if ((mod & 0x02) || (mod & 0x20)) key |= SHIFT_MASK;
if (leds_.capsLock) key ^= SHIFT_MASK; // Caps lock will switch the Shift;
for (int i=0; i < 96; i++) {
if (keycodes_ascii[i] == key) {
if ((mod & 1) || (mod & 0x10)) return (i+32) & 0x1f; // Control key is down
return i + 32;
}
}
#ifdef ISO_8859_1_A0
for (int i=0; i < 96; i++) {
if (keycodes_iso_8859_1[i] == key) return i + 160;
}
#endif
return 0;
}
void KeyboardController::LEDS(uint8_t leds) {
println("Keyboard setLEDS ", leds, HEX);
leds_.byte = leds;
updateLEDS();
}
void KeyboardController::updateLEDS() {
// Now lets tell keyboard new state.
if (driver_[0] != nullptr) {
// Only do it this way if we are a standard USB device
driver_[0]->sendControlPacket(0x21, 9, 0x200, 0, sizeof(leds_.byte), (void*) &leds_.byte);
} else if (btdriver_ != nullptr) {
// Bluetooth, need to setup back channel to Bluetooth controller.
uint8_t packet[3];
packet[0] = 0xA2; // HID BT DATA_request (0xA0) | Report Type (Output 0x02)
packet[1] = 0x01; // Report ID
packet[2] = leds_.byte;
delay(1);
btdriver_->sendL2CapCommand(packet, sizeof(packet), BluetoothController::INTERRUPT_SCID);
}
}
void KeyboardController::process_boot_keyboard_format(const uint8_t *report, bool process_mod_keys)
{
//USBHDBGSerial.printf("** Process boot keyboard format **\n");
for (int i=2; i < 8; i++) {
uint32_t key = prev_report_[i];
if (key >= 4 && !contains(key, report)) {
key_release(prev_report_[0], key);
if (rawKeyReleasedFunction) {
rawKeyReleasedFunction(key);
}
}
}
if (process_mod_keys && rawKeyReleasedFunction) {
// each modifier key is represented by a bit in the first byte
for (int i = 0; i < 8; ++i)
{
uint8_t keybit = 1 << i;
if ((prev_report_[0] & keybit) && !(report[0] & keybit)) {
rawKeyReleasedFunction(103 + i);
}
}
}
for (int i=2; i < 8; i++) {
uint32_t key = report[i];
if (key >= 4 && !contains(key, prev_report_)) {
key_press(report[0], key);
if (rawKeyPressedFunction) {
rawKeyPressedFunction(key);
}
}
}
if (process_mod_keys && rawKeyPressedFunction) {
for (int i = 0; i < 8; ++i)
{
uint8_t keybit = 1 << i;
if (!(prev_report_[0] & keybit) && (report[0] & keybit)) {
rawKeyPressedFunction(103 + i);
}
}
}
memcpy(prev_report_, report, 8);
}
//=============================================================================
// Keyboard Extras - Combined from other object
//=============================================================================
#define TOPUSAGE_SYS_CONTROL 0x10080
#define TOPUSAGE_CONSUMER_CONTROL 0x0c0001
#define TOPUSAGE_KEYBOARD 0X10006
hidclaim_t KeyboardController::claim_collection(USBHIDParser *driver, Device_t *dev, uint32_t topusage)
{
// Lets try to claim a few specific Keyboard related collection/reports
//USBHDBGSerial.printf("KeyboardController::claim_collection(%p) Driver:%p(%u %u) Dev:%p Top:%x\n", this, driver,
// driver->interfaceSubClass(), driver->interfaceProtocol(), dev, topusage);
//USBHDBGSerial.printf("KeyboardController::claim_collection(%p) Driver:%p Dev:%p Top:%x\n", this, driver, dev, topusage);
// only claim from one physical device
// Lets only claim if this is the same device as claimed Keyboard...
//USBHDBGSerial.printf("\tdev=%p mydevice=%p\n", dev, mydevice);
if (mydevice != NULL && dev != mydevice) return CLAIM_NO;
// We will not claim mouse protocol
if (driver && (driver->interfaceProtocol() == 2)) return CLAIM_NO;
// We will claim if BOOT Keyboard.
if ((driver &&(driver->interfaceSubClass() == 1) && (driver->interfaceProtocol() == 1))
|| (topusage == TOPUSAGE_KEYBOARD))
{
// OK boot keyboard or what we think is top level keyboard.
// Note only set the driver 0 o
if (driver_[0] == nullptr) {
driver_[0] = driver;
//USBHDBGSerial.printf("\t$$Send SET_IDLE\n");
if (driver) driver_[0]->sendControlPacket(0x21, 10, 0, 0, 0, nullptr); //10=SET_IDLE
}
} else if ((topusage == TOPUSAGE_CONSUMER_CONTROL)
|| (topusage == TOPUSAGE_SYS_CONTROL) ) {
driver_[1] = driver;
} else {
return CLAIM_NO;
}
mydevice = dev;
collections_claimed_++;
//USBHDBGSerial.printf("\tKeyboardController claim collection\n");
return CLAIM_REPORT;
}
void KeyboardController::disconnect_collection(Device_t *dev)
{
if (--collections_claimed_ == 0) {
mydevice = NULL;
driver_[0] = NULL;
keyboard_uses_boot_format_ = false;
}
}
bool KeyboardController::hid_process_in_data(const Transfer_t *transfer)
{
const uint8_t *buffer = (const uint8_t *)transfer->buffer;
/*
uint16_t len = transfer->length;
const uint8_t *p = buffer;
USBHDBGSerial.printf("HPID(%p, %u):", transfer->driver, len);
if (len > 32) len = 32;
while (len--) USBHDBGSerial.printf(" %02X", *p++); */
// Probably need to do some more checking of the data, but
// first pass if length == 8 assume boot format:
// Hoped driver would be something I could check but...
if ((transfer->driver == driver_[0]) && (transfer->length == 8)) {
/*USBHDBGSerial.printf(" (boot)\n"); */
process_boot_keyboard_format(buffer, true);
keyboard_uses_boot_format_ = true;
return true;
}
//USBHDBGSerial.printf("\n");
return false;
}
void KeyboardController::hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax)
{
//USBHDBGSerial.printf("KPC:hid_input_begin TUSE: %x TYPE: %x Range:%x %x\n", topusage, type, lgmin, lgmax);
topusage_ = topusage; // remember which report we are processing.
topusage_type_ = type;
lgmin_ = lgmin;
lgmax_ = lgmax;
topusage_index_ = 2; // hack we ignore first two bytes
hid_input_begin_ = true;
hid_input_data_ = false;
}
void KeyboardController::hid_input_data(uint32_t usage, int32_t value)
{
// Hack ignore 0xff00 high words as these are user values...
USBHDBGSerial.printf("KeyboardController: topusage= %x usage=%X, value=%d\n", topusage_, usage, value);
if ((usage & 0xffff0000) == 0xff000000) return;
// If this is the TOPUSAGE_KEYBOARD do in it's own function
if (process_hid_keyboard_data(usage, value))
return;
// Special case if this is a battery level message
if ((topusage_ == 0xc0000) && (usage == 0x60020)) {
battery_level_ = map (value, lgmin_, lgmax_, 0, 100);
USBHDBGSerial.printf("\tBattery level: %d min: %u max: %u percent: %u\n", value, lgmin_, lgmax_, battery_level_);
return;
}
// See if the value is in our keys_down list
usage &= 0xffff; // only keep the actual key
if (usage == 0) return; // lets not process 0, if only 0 happens, we will handle it on the end to remove existing pressed items.
// Remember if we have received any logical key up events. Some keyboard appear to send them
// others do no...
hid_input_data_ = true;
uint8_t key_index;
for (key_index = 0; key_index < count_keys_down_; key_index++) {
if (keys_down[key_index] == usage) {
if (value) return; // still down
if (extrasKeyReleasedFunction) {
extrasKeyReleasedFunction(topusage_, usage);
}
// Remove from list
count_keys_down_--;
for (;key_index < count_keys_down_; key_index++) {
keys_down[key_index] = keys_down[key_index+1];
}
return;
}
}
// Was not in list
if (!value) return; // still 0
if (extrasKeyPressedFunction) {
extrasKeyPressedFunction(topusage_, usage);
}
if (count_keys_down_ < MAX_KEYS_DOWN) {
keys_down[count_keys_down_++] = usage;
}
}
bool KeyboardController::process_hid_keyboard_data(uint32_t usage, int32_t value)
{
print("process_hid_keyboard_data Usage: ", usage, HEX);
println(" value: ", value);
//USBHDBGSerial.printf("process_hid_keyboard_data %x=%d\n", usage, value);
if ((topusage_ & 0xffff0000) != (TOPUSAGE_KEYBOARD & 0xffff0000)) {
//USBHDBGSerial.printf("\tNot TopUsage %x %x\n", topusage_, TOPUSAGE_KEYBOARD);
return false;
}
// Lets first process modifier keys...
// usage=700E0, value=0 (Left Control)
// usage=700E1, value=0 (Left Shift)
// usage=700E2, value=0 (Left Alt)
// usage=700E3, value=0 (Left GUI)
// usage=700E4, value=0 (Right Control)
// usage=700E5, value=0 (Right Shift)
// usage=700E6, value=0 (Right Alt)
// usage=700E7, value=0 (Right GUI)
if ((usage >= 0x700E0) && (usage <= 0x700E7)) {
usage &= 7;
uint8_t keybit = 1 << usage;
if (value) {
if (!(modifiers_ & keybit)) {
if (rawKeyPressedFunction) rawKeyPressedFunction(103 + usage);
modifiers_ |= keybit;
}
} else {
if (modifiers_ & keybit) {
if (rawKeyReleasedFunction) rawKeyReleasedFunction(103 + usage);
modifiers_ &= ~keybit;
}
}
//USBHDBGSerial.printf("\tUpdated Modifer %x\n", modifiers_);
return true;
}
// normal keys to be processed here.
// but two ways: for N key we receive an index per item
// with Boot, we get an array of these items:
if ((usage >= 0x70000) && (usage <= 0x70073)) {
usage &= 0xff; // only use the low byte
if (keyboard_uses_boot_format_ || (topusage_type_ & 0x2)) {
//normal variable - so use bitindex array to figure out what is new and what is old
uint8_t key_byte_index = usage >> 3; //which byte in key_states_.
uint8_t key_bit_mask = 1 << (usage & 0x7);
if (value) {
if (!(key_states_[key_byte_index] & key_bit_mask)) {
key_press(modifiers_, usage);
if (rawKeyPressedFunction) rawKeyPressedFunction(usage);
key_states_[key_byte_index] |= key_bit_mask;
}
} else {
if (key_states_[key_byte_index] & key_bit_mask) {
key_release(modifiers_, usage);
if (rawKeyReleasedFunction) rawKeyReleasedFunction(usage);
key_states_[key_byte_index] &= ~key_bit_mask;
}
}
} else {
// So array, We only see what keys are down.
if (topusage_index_ < 8) {
report_[topusage_index_++] = usage;
}
}
return true;
}
return false;
}
void KeyboardController::hid_input_end()
{
//USBHDBGSerial.printf("KPC:hid_input_end %u %u\n", hid_input_begin_, hid_input_data_);
if (hid_input_begin_) {
if (!keyboard_uses_boot_format_ && ((topusage_type_ & 0x2) == 0) && (topusage_index_ > 2)) {
// we have boot data.
process_boot_keyboard_format(report_, false);
}
else if (!hid_input_data_ ) {
if (extrasKeyReleasedFunction) {
while (count_keys_down_) {
count_keys_down_--;
extrasKeyReleasedFunction(topusage_, keys_down[count_keys_down_]);
}
}
count_keys_down_ = 0;
}
hid_input_begin_ = false;
}
}
// now with connection type.
hidclaim_t KeyboardController::claim_bluetooth(BluetoothConnection *btconnection, uint32_t bluetooth_class, uint8_t *remoteName, int type)
{
USBHDBGSerial.printf("Keyboard Controller::claim_bluetooth - Class %x\n", bluetooth_class);
// If we are already in use than don't grab another one. Likewise don't grab if it is used as USB or HID object
if (btconnect && (btconnection != btconnect)) return CLAIM_NO;
if (mydevice != NULL) return CLAIM_NO;
if ((bluetooth_class & 0x0f00) == 0x500) {
// This is a peripheral class
// Special case out PS3
if (remoteName && (strncmp((const char *)remoteName, "PLAYSTATION(R)3", 15) == 0)) {
//USBHDBGSerial.printf("KeyboardController::claim_bluetooth Reject PS3 hack\n");
btdevice = nullptr; // remember this way
return CLAIM_NO;
}
if (bluetooth_class & 0x40) {
// We will claim this now
// Test to link in BT HID parser code
btconnection->useHIDProtocol(true);
if (type == 1) {
// They are telling me to grab it now. SO say yes
USBHDBGSerial.printf("KeyboardController::claim_bluetooth TRUE\n");
btconnect = btconnection;
btdevice = (Device_t*)btconnect->btController_; // remember this way
btdriver_ = btconnect->btController_;
return CLAIM_INTERFACE;
}
}
return CLAIM_REPORT; // let them know we may be interested if there is a HID REport Descriptor
}
return CLAIM_NO;
}
hidclaim_t KeyboardController::bt_claim_collection(BluetoothConnection *btconnection, uint32_t bluetooth_class, uint32_t topusage)
{
USBHDBGSerial.printf("KeyboardController::bt_claim_collection(%p) Connection:%p class:%x Top:%x\n", this, btconnection, bluetooth_class, topusage);
if (mydevice != NULL) return CLAIM_NO; // claimed by some other...
if (btconnect && (btconnect != btconnection)) return CLAIM_NO;
// We will claim if BOOT Keyboard.
switch (topusage) {
case TOPUSAGE_KEYBOARD:
case TOPUSAGE_CONSUMER_CONTROL:
case TOPUSAGE_SYS_CONTROL:
collections_claimed_++;
USBHDBGSerial.printf("\tKeyboardController claim collection\n");
btconnect = btconnection;
btdevice = (Device_t*)btconnect->btController_; // remember this way
return CLAIM_REPORT;
}
return CLAIM_NO;
}
void KeyboardController::bt_hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax)
{
hid_input_begin(topusage, type, lgmin, lgmax);
}
void KeyboardController::bt_hid_input_data(uint32_t usage, int32_t value)
{
hid_input_data(usage, value);
}
void KeyboardController::bt_hid_input_end()
{
hid_input_end();
}
void KeyboardController::bt_disconnect_collection(Device_t *dev)
{
disconnect_collection(dev);
}
bool KeyboardController::remoteNameComplete(const uint8_t *remoteName)
{
// Real Hack some PS3 controllers bluetoot class is keyboard...
if (strncmp((const char *)remoteName, "PLAYSTATION(R)3", 15) == 0) {
USBHDBGSerial.printf(" KeyboardController::remoteNameComplete %s - Oops PS3 unclaim\n", remoteName);
return false;
}
return true;
}
bool KeyboardController::process_bluetooth_HID_data(const uint8_t *data, uint16_t length)
{
// Example DATA from bluetooth keyboard:
// 0 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7
// LEN D
//BT rx2_data(18): 48 20 e 0 a 0 70 0 a1 1 2 0 0 0 0 0 0 0
//BT rx2_data(18): 48 20 e 0 a 0 70 0 a1 1 2 0 4 0 0 0 0 0
//BT rx2_data(18): 48 20 e 0 a 0 70 0 a1 1 2 0 0 0 0 0 0 0
// So Len=9 passed in data starting at report ID=1...
USBHDBGSerial.printf("KBD::process_bluetooth_HID_data: ");
for (uint8_t i = 0; i < length; i++) USBHDBGSerial.printf(" %02X", data[i]);
USBHDBGSerial.printf("\n");
// BUGBUG - assume boot format
keyboard_uses_boot_format_ = true;
//if (bthids_.process_bluetooth_HID_data(data, length)) return true;
if (data[0] != 1) return false;
// See if we can simply use our boot format code to process skip the report ID.
process_boot_keyboard_format(&data[1], true);
return true;
}
void KeyboardController::release_bluetooth()
{
btdevice = nullptr;
}
//=============================================================================
// More bluetooth stuff!
//=============================================================================
void KeyboardController::connectionComplete(void)
{
// here is where I am going to try to get data...
println("\n$$$ connectionComplete" );
//connection_complete_ = true;
// if (bthids_.startRetrieveHIDReportDescriptor())
// println("*** Loaded Bluetooth Report Descriptor ***");
}
void KeyboardController::sdp_command_completed (bool success) {
// if (bthids_.completeSDPRequest(success))
// println("*** Loaded Bluetooth Report Descriptor ***");
// else
// println("*** Failed Bluetooth Report Descriptor ***");
}
//*****************************************************************************
// Some simple query functions depend on which interface we are using...
//*****************************************************************************
uint16_t KeyboardController::idVendor()
{
if (mydevice != nullptr) return mydevice->idVendor;
if (btdevice != nullptr) return btdevice->idVendor;
return 0;
}
uint16_t KeyboardController::idProduct()
{
if (mydevice != nullptr) return mydevice->idProduct;
if (btdevice != nullptr) return btdevice->idProduct;
return 0;
}
const uint8_t *KeyboardController::manufacturer()
{
if ((btdevice != nullptr) && (btdevice->strbuf != nullptr)) return &btdevice->strbuf->buffer[btdevice->strbuf->iStrings[strbuf_t::STR_ID_MAN]];
if ((mydevice != nullptr) && (mydevice->strbuf != nullptr)) return &mydevice->strbuf->buffer[mydevice->strbuf->iStrings[strbuf_t::STR_ID_MAN]];
return nullptr;
}
const uint8_t *KeyboardController::product()
{
if ((mydevice != nullptr) && (mydevice->strbuf != nullptr)) return &mydevice->strbuf->buffer[mydevice->strbuf->iStrings[strbuf_t::STR_ID_PROD]];
if ((btdevice != nullptr) && (btdevice->strbuf != nullptr)) return &btdevice->strbuf->buffer[btdevice->strbuf->iStrings[strbuf_t::STR_ID_PROD]];
return nullptr;
}
const uint8_t *KeyboardController::serialNumber()
{
if ((mydevice != nullptr) && (mydevice->strbuf != nullptr)) return &mydevice->strbuf->buffer[mydevice->strbuf->iStrings[strbuf_t::STR_ID_SERIAL]];
if ((btdevice != nullptr) && (btdevice->strbuf != nullptr)) return &btdevice->strbuf->buffer[btdevice->strbuf->iStrings[strbuf_t::STR_ID_SERIAL]];
return nullptr;
}