You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MicroDexed/MicroDexed.ino

1090 lines
33 KiB

/*
MicroDexed
MicroDexed is a port of the Dexed sound engine
(https://github.com/asb2m10/dexed) for the Teensy-3.5/3.6 with audio shield.
Dexed ist heavily based on https://github.com/google/music-synthesizer-for-android
(c)2018 H. Wirtz <wirtz@parasitstudio.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <Audio.h>
#include <Wire.h>
#include <SPI.h>
#include <SD.h>
#include <MIDI.h>
#include <EEPROM.h>
#include <limits.h>
#include "dexed.h"
#include "dexed_sysex.h"
#include "config.h"
#ifdef USE_ONBOARD_USB_HOST
#include <USBHost_t36.h>
#endif
#ifdef I2C_DISPLAY // selecting sounds by encoder, button and display
#include "UI.h"
#include <Bounce.h>
#include "Encoder4.h"
#include "LiquidCrystalPlus_I2C.h"
LiquidCrystalPlus_I2C lcd(LCD_I2C_ADDRESS, LCD_CHARS, LCD_LINES);
Encoder4 enc[2] = {Encoder4(ENC_L_PIN_A, ENC_L_PIN_B), Encoder4(ENC_R_PIN_A, ENC_R_PIN_B)};
int32_t enc_val[2] = {INITIAL_ENC_L_VALUE, INITIAL_ENC_R_VALUE};
Bounce but[2] = {Bounce(BUT_L_PIN, BUT_DEBOUNCE_MS), Bounce(BUT_R_PIN, BUT_DEBOUNCE_MS)};
elapsedMillis master_timer;
uint8_t ui_state = UI_MAIN;
uint8_t ui_main_state = UI_MAIN_VOICE;
#endif
// GUItool: begin automatically generated code
AudioPlayQueue queue1; //xy=179,325
AudioAnalyzePeak peak1; //xy=348,478
AudioFilterStateVariable filter1; //xy=415,334
AudioEffectDelay delay1; //xy=732,485
AudioMixer4 mixer1; //xy=734,245
AudioMixer4 mixer2; //xy=1055,317
AudioConnection patchCord1(queue1, peak1);
AudioConnection patchCord2(queue1, 0, filter1, 0);
AudioConnection patchCord3(filter1, 0, delay1, 0);
AudioConnection patchCord4(filter1, 0, mixer1, 0);
AudioConnection patchCord5(delay1, 0, mixer1, 1);
AudioConnection patchCord6(delay1, 0, mixer2, 1);
AudioConnection patchCord7(mixer1, delay1);
#ifdef TEENSY_AUDIO_BOARD
AudioOutputI2S i2s1; //xy=1200,432
AudioControlSGTL5000 sgtl5000_1; //xy=197,554
AudioConnection patchCord8(mixer1, 0, mixer2, 0);
AudioConnection patchCord9(mixer2, 0, i2s1, 0);
AudioConnection patchCord10(mixer2, 0, i2s1, 1);
#else
AudioOutputPT8211 pt8211_1; //xy=1079,320
AudioAmplifier volume_master; //xy=678,393
AudioAmplifier volume_r; //xy=818,370
AudioAmplifier volume_l; //xy=818,411
AudioConnection patchCord7(mixer1, 0, mixer2, 0);
AudioConnection patchCord8(mixer2, 0, volume_master, 0);
AudioConnection patchCord9(volume_master, volume_r);
AudioConnection patchCord10(volume_master, volume_l);
AudioConnection patchCord11(volume_r, 0, pt8211_1, 0);
AudioConnection patchCord12(volume_l, 0, pt8211_1, 1);
#endif
// GUItool: end automatically generated code
Dexed* dexed = new Dexed(SAMPLE_RATE);
bool sd_card_available = false;
uint8_t midi_channel = DEFAULT_MIDI_CHANNEL;
uint32_t xrun = 0;
uint32_t overload = 0;
uint32_t peak = 0;
uint16_t render_time_max = 0;
uint8_t bank = 0;
uint8_t max_loaded_banks = 0;
uint8_t voice = 0;
float vol = VOLUME;
float vol_right = 1.0;
float vol_left = 1.0;
char bank_name[BANK_NAME_LEN];
char voice_name[VOICE_NAME_LEN];
char bank_names[MAX_BANKS][BANK_NAME_LEN];
char voice_names[MAX_VOICES][VOICE_NAME_LEN];
elapsedMillis autostore;
uint8_t eeprom_update_status = 0;
uint16_t autostore_value = AUTOSTORE_MS;
uint8_t midi_timing_counter = 0; // 24 per qarter
elapsedMillis midi_timing_timestep;
uint16_t midi_timing_quarter = 0;
elapsedMillis long_button_pressed;
uint8_t effect_filter_frq = ENC_FILTER_FRQ_STEPS;
uint8_t effect_filter_resonance = (0.07 * ENC_FILTER_RES_STEPS / 4.3) + 0.5;
uint8_t effect_filter_octave = (1.0 * ENC_FILTER_RES_STEPS / 8.0) + 0.5;
uint8_t effect_delay_time = 0;
uint8_t effect_delay_feedback = 0;
uint8_t effect_delay_volume = 0;
bool effect_delay_sync = 0;
#ifdef MASTER_KEY_MIDI
bool master_key_enabled = false;
#endif
#ifdef SHOW_CPU_LOAD_MSEC
elapsedMillis cpu_mem_millis;
#endif
#ifdef MIDI_DEVICE
MIDI_CREATE_INSTANCE(HardwareSerial, MIDI_DEVICE, midi_serial);
#endif
#ifdef USE_ONBOARD_USB_HOST
USBHost usb_host;
MIDIDevice midi_usb(usb_host);
#endif
#ifdef TEST_NOTE
IntervalTimer sched_note_on;
IntervalTimer sched_note_off;
uint8_t _voice_counter = 0;
#endif
void setup()
{
//while (!Serial) ; // wait for Arduino Serial Monitor
Serial.begin(SERIAL_SPEED);
#ifdef I2C_DISPLAY
lcd.init();
lcd.blink_off();
lcd.cursor_off();
lcd.backlight();
lcd.noAutoscroll();
lcd.clear();
lcd.display();
lcd.show(0, 0, 16, " MicroDexed");
lcd.show(1, 0, 16, "(c)parasiTstudio");
pinMode(BUT_L_PIN, INPUT_PULLUP);
pinMode(BUT_R_PIN, INPUT_PULLUP);
#endif
delay(220);
Serial.println(F("MicroDexed based on https://github.com/asb2m10/dexed"));
Serial.println(F("(c)2018 H. Wirtz <wirtz@parasitstudio.de>"));
Serial.println(F("https://github.com/dcoredump/MicroDexed"));
Serial.println(F("<setup start>"));
initial_values_from_eeprom();
// start up USB host
#ifdef USE_ONBOARD_USB_HOST
usb_host.begin();
Serial.println(F("USB-MIDI enabled."));
#endif
#ifdef MIDI_DEVICE
// Start serial MIDI
midi_serial.begin(DEFAULT_MIDI_CHANNEL);
Serial.println(F("Serial MIDI enabled"));
#endif
// start audio card
AudioMemory(AUDIO_MEM);
#ifdef TEENSY_AUDIO_BOARD
sgtl5000_1.enable();
sgtl5000_1.dacVolumeRamp();
//sgtl5000_1.dacVolumeRampLinear();
sgtl5000_1.unmuteHeadphone();
sgtl5000_1.unmuteLineout();
sgtl5000_1.autoVolumeDisable(); // turn off AGC
sgtl5000_1.volume(1.0, 1.0);
sgtl5000_1.lineOutLevel(31);
Serial.println(F("Teensy-Audio-Board enabled."));
#else
Serial.println(F("PT8211 enabled."));
#endif
set_volume(vol, vol_left, vol_right);
// start SD card
SPI.setMOSI(SDCARD_MOSI_PIN);
SPI.setSCK(SDCARD_SCK_PIN);
if (!SD.begin(SDCARD_CS_PIN))
{
Serial.println(F("SD card not accessable."));
strcpy(bank_name, "Default");
strcpy(voice_name, "Default");
}
else
{
Serial.println(F("SD card found."));
sd_card_available = true;
// read all bank names
max_loaded_banks = get_bank_names();
strip_extension(bank_names[bank], bank_name);
// read all voice name for actual bank
get_voice_names_from_bank(bank);
#ifdef DEBUG
Serial.print(F("Bank ["));
Serial.print(bank_names[bank]);
Serial.print(F("/"));
Serial.print(bank_name);
Serial.println(F("]"));
for (uint8_t n = 0; n < MAX_VOICES; n++)
{
if (n < 10)
Serial.print(F(" "));
Serial.print(F(" "));
Serial.print(n, DEC);
Serial.print(F("["));
Serial.print(voice_names[n]);
Serial.println(F("]"));
}
#endif
// Init effects
filter1.frequency(EXP_FUNC((float)map(effect_filter_frq, 0, ENC_FILTER_FRQ_STEPS, 0, 1024) / 150.0) * 10.0 + 80.0);
filter1.resonance(mapfloat(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0.7, 5.0));
filter1.octaveControl(mapfloat(effect_filter_octave, 0, ENC_FILTER_OCT_STEPS, 0.0, 7.0));
delay1.delay(0, mapfloat(effect_delay_feedback, 0, ENC_DELAY_TIME_STEPS, 0.0, DELAY_MAX_TIME));
// mixer1 is the feedback-adding mixer, mixer2 the whole delay (with/without feedback) mixer
mixer1.gain(0, 1.0); // original signal
mixer1.gain(1, mapfloat(effect_delay_feedback, 0, 99, 0.0, 1.0)); // delay tap1 signal (feedback loop)
mixer2.gain(0, 1.0); // original signal
mixer2.gain(1, mapfloat(effect_delay_volume, 0, 99, 0.0, 1.0)); // delay tap1 signal (with added feedback)
// load default SYSEX data
load_sysex(bank, voice);
}
#ifdef I2C_DISPLAY
enc[0].write(map(vol * 100, 0, 100, 0, ENC_VOL_STEPS));
enc_val[0] = enc[0].read();
enc[1].write(voice);
enc_val[1] = enc[1].read();
but[0].update();
but[1].update();
#endif
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
// Initialize processor and memory measurements
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
#endif
#ifdef DEBUG
Serial.print(F("Bank/Voice from EEPROM ["));
Serial.print(EEPROM.read(EEPROM_OFFSET + EEPROM_BANK_ADDR), DEC);
Serial.print(F("/"));
Serial.print(EEPROM.read(EEPROM_OFFSET + EEPROM_VOICE_ADDR), DEC);
Serial.println(F("]"));
show_patch();
#endif
Serial.print(F("AUDIO_BLOCK_SAMPLES="));
Serial.print(AUDIO_BLOCK_SAMPLES);
Serial.print(F(" (Time per block="));
Serial.print(1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES));
Serial.println(F("ms)"));
#ifdef TEST_NOTE
Serial.println(F("MIDI test enabled"));
sched_note_on.begin(note_on, 2000000);
sched_note_off.begin(note_off, 6333333);
#endif
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
show_cpu_and_mem_usage();
#endif
#ifdef I2C_DISPLAY
lcd.clear();
ui_show_main();
#endif
Serial.println(F("<setup end>"));
#ifdef TEST_NOTE
//dexed->data[DEXED_VOICE_OFFSET+DEXED_LFO_PITCH_MOD_DEP] = 99; // full pitch mod depth
//dexed->data[DEXED_VOICE_OFFSET+DEXED_LFO_PITCH_MOD_SENS] = 99; // full pitch mod sense
//dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET+DEXED_MODWHEEL_ASSIGN] = 7; // mod wheel assign all
//dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET+DEXED_FOOTCTRL_ASSIGN] = 7; // foot ctrl assign all
//dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET+DEXED_BREATHCTRL_ASSIGN] = 7; // breath ctrl assign all
//dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET+AT_ASSIGN] = 7; // at ctrl assign all
//queue_midi_event(0xb0, 1, 99); // test mod wheel
//queue_midi_event(0xb0, 2, 99); // test breath ctrl
//queue_midi_event(0xb0, 4, 99); // test food switch
//queue_midi_event(0xd0, 4, 99); // test at
//queue_midi_event(0xe0, 0xff, 0xff); // test pitch bend
#endif
}
void loop()
{
int16_t* audio_buffer; // pointer to AUDIO_BLOCK_SAMPLES * int16_t
const uint16_t audio_block_time_ms = 1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES);
// Main sound calculation
if (queue1.available())
{
audio_buffer = queue1.getBuffer();
elapsedMicros t1;
dexed->getSamples(AUDIO_BLOCK_SAMPLES, audio_buffer);
if (t1 > audio_block_time_ms) // everything greater 2.9ms is a buffer underrun!
xrun++;
if (t1 > render_time_max)
render_time_max = t1;
if (peak1.available())
{
if (peak1.read() > 0.99)
peak++;
}
#ifndef TEENSY_AUDIO_BOARD
for (uint8_t i = 0; i < AUDIO_BLOCK_SAMPLES; i++)
audio_buffer[i] *= vol;
#endif
queue1.playBuffer();
}
// EEPROM update handling
if (eeprom_update_status > 0 && autostore >= autostore_value)
{
autostore = 0;
eeprom_update();
}
// MIDI input handling
handle_input();
#ifdef I2C_DISPLAY
// UI
if (master_timer >= TIMER_UI_HANDLING_MS)
{
master_timer -= TIMER_UI_HANDLING_MS;
handle_ui();
}
#endif
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
if (cpu_mem_millis >= SHOW_CPU_LOAD_MSEC)
{
cpu_mem_millis -= SHOW_CPU_LOAD_MSEC;
show_cpu_and_mem_usage();
}
#endif
}
void handle_input(void)
{
#ifdef USE_ONBOARD_USB_HOST
usb_host.Task();
while (midi_usb.read())
{
#ifdef DEBUG
Serial.println(F("[MIDI-USB]"));
#endif
if (midi_usb.getType() >= 0xf0) // SysEX
{
handle_sysex_parameter(midi_usb.getSysExArray(), midi_usb.getSysExArrayLength());
}
else if (queue_midi_event(midi_usb.getType(), midi_usb.getData1(), midi_usb.getData2()))
return;
}
#endif
#ifdef MIDI_DEVICE
while (midi_serial.read())
{
#ifdef DEBUG
Serial.print(F("[MIDI-Serial] "));
#endif
if (midi_serial.getType() >= 0xf0) // SYSEX
{
handle_sysex_parameter(midi_serial.getSysExArray(), midi_serial.getSysExArrayLength());
}
else if (queue_midi_event(midi_serial.getType(), midi_serial.getData1(), midi_serial.getData2()))
return;
}
#endif
}
#ifdef DEBUG
#ifdef SHOW_MIDI_EVENT
void print_midi_event(uint8_t type, uint8_t data1, uint8_t data2)
{
Serial.print(F("Listen MIDI-Channel: "));
if (midi_channel == MIDI_CHANNEL_OMNI)
Serial.print(F("OMNI"));
else
Serial.print(midi_channel, DEC);
Serial.print(F(", MIDI event type: 0x"));
if (type < 16)
Serial.print(F("0"));
Serial.print(type, HEX);
Serial.print(F(", incoming MIDI channel: "));
Serial.print((type & 0x0f) + 1, DEC);
Serial.print(F(", data1: "));
Serial.print(data1, DEC);
Serial.print(F(", data2: "));
Serial.println(data2, DEC);
}
#endif
#endif
#ifdef MASTER_KEY_MIDI
bool handle_master_key(uint8_t data)
{
int8_t num = num_key_base_c(data);
#ifdef DEBUG
Serial.print(F("Master-Key: "));
Serial.println(num, DEC);
#endif
if (num > 0)
{
// a white key!
if (num <= 32)
{
if (load_sysex(bank, num))
{
#ifdef DEBUG
Serial.print(F("Loading voice number "));
Serial.println(num, DEC);
#endif
eeprom_write(EEPROM_UPDATE_VOICE);
#ifdef I2C_DISPLAY
lcd.show(1, 0, 2, voice + 1);
lcd.show(1, 2, 1, " ");
lcd.show(1, 3, 10, voice_names[voice]);
#endif
}
#ifdef DEBUG
else
{
Serial.print(F("E: cannot load voice number "));
Serial.println(num, DEC);
}
#endif
}
return (true);
}
else
{
// a black key!
num = abs(num);
if (num <= 10)
{
set_volume(float(num * 0.1), vol_left, vol_right);
}
else if (num > 10 && num <= 20)
{
bank = num - 10;
#ifdef DEBUG
Serial.print(F("Bank switch to: "));
Serial.println(bank, DEC);
#endif
eeprom_write(EEPROM_UPDATE_BANK);
#ifdef I2C_DISPLAY
if (get_voice_names_from_bank(bank))
{
strip_extension(bank_names[bank], bank_name);
lcd.show(0, 0, 2, bank);
lcd.show(0, 2, 1, " ");
lcd.show(0, 3, 10, bank_name);
}
else
{
lcd.show(0, 0, 2, bank);
lcd.show(0, 2, 10, " *ERROR*");
}
#endif
return (true);
}
}
return (false);
}
#endif
bool queue_midi_event(uint8_t type, uint8_t data1, uint8_t data2)
{
bool ret = false;
#if defined(DEBUG) && defined(SHOW_MIDI_EVENT)
print_midi_event(type, data1, data2);
#endif
// check for MIDI channel
if (midi_channel != MIDI_CHANNEL_OMNI)
{
uint8_t c = type & 0x0f;
if (c != midi_channel - 1)
{
#ifdef DEBUG
Serial.print(F("Ignoring MIDI data on channel "));
Serial.print(c);
Serial.print(F("(listening on "));
Serial.print(midi_channel);
Serial.println(F(")"));
#endif
return (false);
}
}
// now throw away the MIDI channel information
type &= 0xf0;
#ifdef MASTER_KEY_MIDI
if (type == 0x80 && data1 == MASTER_KEY_MIDI) // Master key released
{
master_key_enabled = false;
#ifdef DEBUG
Serial.println(F("Master key disabled"));
#endif
}
else if (type == 0x90 && data1 == MASTER_KEY_MIDI) // Master key pressed
{
master_key_enabled = true;
#ifdef DEBUG
Serial.println(F("Master key enabled"));
#endif
}
else
{
if (master_key_enabled)
{
if (type == 0x80) // handle when note is released
{
dexed->notesOff();
handle_master_key(data1);
}
}
else
#endif
ret = dexed->processMidiMessage(type, data1, data2);
#ifdef MASTER_KEY_MIDI
}
#endif
return (ret);
}
#ifdef MASTER_KEY_MIDI
int8_t num_key_base_c(uint8_t midi_note)
{
int8_t num = 0;
switch (midi_note % 12)
{
// positive numbers are white keys, negative black ones
case 0:
num = 1;
break;
case 1:
num = -1;
break;
case 2:
num = 2;
break;
case 3:
num = -2;
break;
case 4:
num = 3;
break;
case 5:
num = 4;
break;
case 6:
num = -3;
break;
case 7:
num = 5;
break;
case 8:
num = -4;
break;
case 9:
num = 6;
break;
case 10:
num = -5;
break;
case 11:
num = 7;
break;
}
if (num > 0)
return (num + (((midi_note - MASTER_NUM1) / 12) * 7));
else
return (num + ((((midi_note - MASTER_NUM1) / 12) * 5) * -1));
}
#endif
void set_volume(float v, float vr, float vl)
{
vol = v;
vol_right = vr;
vol_left = vl;
#ifdef DEBUG
uint8_t tmp;
Serial.print(F("Setting volume: VOL="));
Serial.print(v, DEC);
Serial.print(F("["));
tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR);
Serial.print(tmp, DEC);
Serial.print(F("/"));
Serial.print(float(tmp) / UCHAR_MAX, DEC);
Serial.print(F("] VOL_L="));
Serial.print(vl, DEC);
Serial.print(F("["));
tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR);
Serial.print(tmp, DEC);
Serial.print(F("/"));
Serial.print(float(tmp) / UCHAR_MAX, DEC);
Serial.print(F("] VOL_R="));
Serial.print(vr, DEC);
Serial.print(F("["));
tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR);
Serial.print(tmp, DEC);
Serial.print(F("/"));
Serial.print(float(tmp) / UCHAR_MAX, DEC);
Serial.println(F("]"));
#endif
#ifdef TEENSY_AUDIO_BOARD
//sgtl5000_1.dacVolume(vol * vol_left, vol * vol_right);
sgtl5000_1.dacVolume(pow(vol * vol_left, 0.2), pow(vol * vol_right, 0.2));
#else
volume_master.gain(pow(vol, 0.2));
volume_r.gain(pow(vr, 0.2));
volume_l.gain(pow(vl, 0.2));
#endif
}
void handle_sysex_parameter(const uint8_t* sysex, uint8_t len)
{
if (sysex[0] != 240)
{
switch (sysex[0])
{
case 241: // MIDI Time Code Quarter Frame
break;
case 248: // Timing Clock (24 frames per quarter note)
midi_timing_counter++;
if (midi_timing_counter % 24 == 0)
{
midi_timing_quarter = midi_timing_timestep;
midi_timing_counter = 0;
midi_timing_timestep = 0;
// Adjust delay control here
#ifdef DEBUG
Serial.print(F("MIDI Timing: "));
Serial.print(60000 / midi_timing_quarter, DEC);
Serial.print(F("bpm ("));
Serial.print(midi_timing_quarter, DEC);
Serial.println(F("ms per quarter)"));
#endif
}
break;
case 255: // Reset To Power Up
#ifdef DEBUG
Serial.println(F("MIDI SYSEX RESET"));
#endif
dexed->notesOff();
dexed->panic();
dexed->resetControllers();
break;
}
}
else
{
if (sysex[1] != 0x43) // check for Yamaha sysex
{
#ifdef DEBUG
Serial.println(F("E: SysEx vendor not Yamaha."));
#endif
return;
}
// parse parameter change
if (len == 7)
{
if ((sysex[3] & 0x7c) != 0 || (sysex[3] & 0x7c) != 2)
{
#ifdef DEBUG
Serial.println(F("E: Not a SysEx parameter or function parameter change."));
#endif
return;
}
if (sysex[6] != 0xf7)
{
#ifdef DEBUG
Serial.println(F("E: SysEx end status byte not detected."));
#endif
return;
}
if ((sysex[3] & 0x7c) == 0)
{
dexed->data[sysex[4]] = sysex[5]; // set parameter
dexed->doRefreshVoice();
}
else
{
dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET - 63 + sysex[4]] = sysex[5]; // set function parameter
dexed->controllers.values_[kControllerPitchRange] = dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_RANGE];
dexed->controllers.values_[kControllerPitchStep] = dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_STEP];
dexed->controllers.wheel.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_RANGE]);
dexed->controllers.wheel.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_ASSIGN]);
dexed->controllers.foot.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_RANGE]);
dexed->controllers.foot.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_ASSIGN]);
dexed->controllers.breath.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_RANGE]);
dexed->controllers.breath.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_ASSIGN]);
dexed->controllers.at.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_RANGE]);
dexed->controllers.at.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_ASSIGN]);
dexed->controllers.masterTune = (dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MASTER_TUNE] * 0x4000 << 11) * (1.0 / 12);
dexed->controllers.refresh();
}
#ifdef DEBUG
Serial.print(F("SysEx"));
if ((sysex[3] & 0x7c) == 0)
Serial.print(F(" function"));
Serial.print(F(" parameter "));
Serial.print(sysex[4], DEC);
Serial.print(F(" = "));
Serial.println(sysex[5], DEC);
#endif
}
#ifdef DEBUG
else
Serial.println(F("E: SysEx parameter length wrong."));
#endif
}
}
void initial_values_from_eeprom(void)
{
uint32_t crc_eeprom = read_eeprom_checksum();
uint32_t crc = eeprom_crc32(EEPROM_OFFSET, EEPROM_DATA_LENGTH);
#ifdef DEBUG
Serial.print(F("EEPROM checksum: 0x"));
Serial.print(crc_eeprom, HEX);
Serial.print(F(" / 0x"));
Serial.print(crc, HEX);
#endif
if (crc_eeprom != crc)
{
#ifdef DEBUG
Serial.print(F(" - mismatch -> initializing EEPROM!"));
#endif
eeprom_write(EEPROM_UPDATE_BANK & EEPROM_UPDATE_VOICE & EEPROM_UPDATE_VOL & EEPROM_UPDATE_VOL_R & EEPROM_UPDATE_VOL_L & EEPROM_UPDATE_MIDICHANNEL);
}
else
{
bank = EEPROM.read(EEPROM_OFFSET + EEPROM_BANK_ADDR);
voice = EEPROM.read(EEPROM_OFFSET + EEPROM_VOICE_ADDR);
vol = float(EEPROM.read(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR)) / UCHAR_MAX;
vol_right = float(EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR)) / UCHAR_MAX;
vol_left = float(EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR)) / UCHAR_MAX;
midi_channel = EEPROM.read(EEPROM_OFFSET + EEPROM_MIDICHANNEL_ADDR);
}
#ifdef DEBUG
Serial.println();
#endif
}
uint32_t read_eeprom_checksum(void)
{
return (EEPROM.read(EEPROM_CRC32_ADDR) << 24 | EEPROM.read(EEPROM_CRC32_ADDR + 1) << 16 | EEPROM.read(EEPROM_CRC32_ADDR + 2) << 8 | EEPROM.read(EEPROM_CRC32_ADDR + 3));
}
void update_eeprom_checksum(void)
{
write_eeprom_checksum(eeprom_crc32(EEPROM_OFFSET, EEPROM_DATA_LENGTH)); // recalculate crc and write to eeprom
}
void write_eeprom_checksum(uint32_t crc)
{
EEPROM.update(EEPROM_CRC32_ADDR, (crc & 0xff000000) >> 24);
EEPROM.update(EEPROM_CRC32_ADDR + 1, (crc & 0x00ff0000) >> 16);
EEPROM.update(EEPROM_CRC32_ADDR + 2, (crc & 0x0000ff00) >> 8);
EEPROM.update(EEPROM_CRC32_ADDR + 3, crc & 0x000000ff);
}
uint32_t eeprom_crc32(uint16_t calc_start, uint16_t calc_bytes) // base code from https://www.arduino.cc/en/Tutorial/EEPROMCrc
{
const uint32_t crc_table[16] =
{
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
};
uint32_t crc = ~0L;
if (calc_start + calc_bytes > EEPROM.length())
calc_bytes = EEPROM.length() - calc_start;
for (uint16_t index = calc_start ; index < (calc_start + calc_bytes) ; ++index)
{
crc = crc_table[(crc ^ EEPROM[index]) & 0x0f] ^ (crc >> 4);
crc = crc_table[(crc ^ (EEPROM[index] >> 4)) & 0x0f] ^ (crc >> 4);
crc = ~crc;
}
return (crc);
}
void eeprom_write(uint8_t status)
{
eeprom_update_status |= status;
if (eeprom_update_status != 0)
autostore = 0;
#ifdef DEBUG
Serial.print(F("Updating EEPROM to state to: "));
Serial.println(eeprom_update_status);
#endif
}
void eeprom_update(void)
{
autostore_value = AUTOSTORE_FAST_MS;
if (eeprom_update_status & EEPROM_UPDATE_BANK)
{
EEPROM.update(EEPROM_OFFSET + EEPROM_BANK_ADDR, bank);
#ifdef DEBUG
Serial.println(F("Bank written to EEPROM"));
#endif
eeprom_update_status &= ~EEPROM_UPDATE_BANK;
}
else if (eeprom_update_status & EEPROM_UPDATE_VOICE)
{
EEPROM.update(EEPROM_OFFSET + EEPROM_VOICE_ADDR, voice);
#ifdef DEBUG
Serial.println(F("Voice written to EEPROM"));
#endif
eeprom_update_status &= ~EEPROM_UPDATE_VOICE;
}
else if (eeprom_update_status & EEPROM_UPDATE_VOL)
{
EEPROM.update(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR, uint8_t(vol * UCHAR_MAX));
#ifdef DEBUG
Serial.println(F("Volume written to EEPROM"));
#endif
eeprom_update_status &= ~EEPROM_UPDATE_VOL;
}
else if (eeprom_update_status & EEPROM_UPDATE_VOL_R)
{
EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR, uint8_t(vol_right * UCHAR_MAX));
#ifdef DEBUG
Serial.println(F("Volume right written to EEPROM"));
#endif
eeprom_update_status &= ~EEPROM_UPDATE_VOL_R;
}
else if (eeprom_update_status & EEPROM_UPDATE_VOL_L)
{
EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR, uint8_t(vol_left * UCHAR_MAX));
#ifdef DEBUG
Serial.println(F("Volume left written to EEPROM"));
#endif
eeprom_update_status &= ~EEPROM_UPDATE_VOL_L;
}
else if (eeprom_update_status & EEPROM_UPDATE_MIDICHANNEL )
{
EEPROM.update(EEPROM_OFFSET + EEPROM_MIDICHANNEL_ADDR, midi_channel);
update_eeprom_checksum();
#ifdef DEBUG
Serial.println(F("MIDI channel written to EEPROM"));
#endif
eeprom_update_status &= ~EEPROM_UPDATE_MIDICHANNEL;
}
else if (eeprom_update_status & EEPROM_UPDATE_CHECKSUM)
{
update_eeprom_checksum();
#ifdef DEBUG
Serial.println(F("Checksum written to EEPROM"));
#endif
eeprom_update_status &= ~EEPROM_UPDATE_CHECKSUM;
autostore_value = AUTOSTORE_MS;
return;
}
if (eeprom_update_status == 0)
eeprom_update_status |= EEPROM_UPDATE_CHECKSUM;
}
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
void show_cpu_and_mem_usage(void)
{
Serial.print(F("CPU: "));
Serial.print(AudioProcessorUsage(), 2);
Serial.print(F("% CPU MAX: "));
Serial.print(AudioProcessorUsageMax(), 2);
Serial.print(F("% MEM: "));
Serial.print(AudioMemoryUsage(), DEC);
Serial.print(F(" MEM MAX: "));
Serial.print(AudioMemoryUsageMax(), DEC);
Serial.print(F(" RENDER_TIME_MAX: "));
Serial.print(render_time_max, DEC);
Serial.print(F(" XRUN: "));
Serial.print(xrun, DEC);
Serial.print(F(" OVERLOAD: "));
Serial.print(overload, DEC);
Serial.print(F(" PEAK: "));
Serial.print(peak, DEC);
Serial.print(F(" BLOCKSIZE: "));
Serial.print(AUDIO_BLOCK_SAMPLES, DEC);
Serial.println();
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
render_time_max = 0;
}
#endif
#ifdef DEBUG
void show_patch(void)
{
uint8_t i;
char voicename[VOICE_NAME_LEN];
memset(voicename, 0, sizeof(voicename));
for (i = 0; i < 6; i++)
{
Serial.print(F("OP"));
Serial.print(6 - i, DEC);
Serial.println(F(": "));
Serial.println(F("R1 | R2 | R3 | R4 | L1 | L2 | L3 | L4 LEV_SCL_BRK_PT | SCL_LEFT_DEPTH | SCL_RGHT_DEPTH"));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R1], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R2], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R3], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R4], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L1], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L2], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L3], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L4], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_LEV_SCL_BRK_PT], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_SCL_LEFT_DEPTH], DEC);
Serial.print(F(" "));
Serial.println(dexed->data[(i * 21) + DEXED_OP_SCL_RGHT_DEPTH], DEC);
Serial.println(F("SCL_L_CURVE | SCL_R_CURVE | RT_SCALE | AMS | KVS | OUT_LEV | OP_MOD | FRQ_C | FRQ_F | DETUNE"));
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_SCL_LEFT_CURVE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_SCL_RGHT_CURVE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_OSC_RATE_SCALE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_AMP_MOD_SENS], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_KEY_VEL_SENS], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_OUTPUT_LEV], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_OSC_MODE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_FREQ_COARSE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_FREQ_FINE], DEC);
Serial.print(F(" "));
Serial.println(dexed->data[(i * 21) + DEXED_OP_OSC_DETUNE], DEC);
}
Serial.println(F("PR1 | PR2 | PR3 | PR4 | PL1 | PL2 | PL3 | PL4"));
Serial.print(F(" "));
for (i = 0; i < 8; i++)
{
Serial.print(dexed->data[DEXED_VOICE_OFFSET + i], DEC);
Serial.print(F(" "));
}
Serial.println();
Serial.print(F("ALG: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_ALGORITHM], DEC);
Serial.print(F("FB: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_FEEDBACK], DEC);
Serial.print(F("OKS: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_OSC_KEY_SYNC], DEC);
Serial.print(F("LFO SPD: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_SPEED], DEC);
Serial.print(F("LFO_DLY: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_DELAY], DEC);
Serial.print(F("LFO PMD: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_DEP], DEC);
Serial.print(F("LFO_AMD: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_AMP_MOD_DEP], DEC);
Serial.print(F("LFO_SYNC: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_SYNC], DEC);
Serial.print(F("LFO_WAVEFRM: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_WAVE], DEC);
Serial.print(F("LFO_PMS: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_SENS], DEC);
Serial.print(F("TRNSPSE: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_TRANSPOSE], DEC);
Serial.print(F("NAME: "));
strncpy(voicename, (char *)&dexed->data[DEXED_VOICE_OFFSET + DEXED_NAME], sizeof(voicename) - 1);
Serial.print(F("["));
Serial.print(voicename);
Serial.println(F("]"));
for (i = DEXED_GLOBAL_PARAMETER_OFFSET; i <= DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MAX_NOTES; i++)
{
Serial.print(i, DEC);
Serial.print(F(": "));
Serial.println(dexed->data[i]);
}
Serial.println();
}
#endif
#ifdef TEST_NOTE
void note_on(void)
{
randomSeed(analogRead(A0));
queue_midi_event(0x90, TEST_NOTE, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 1
queue_midi_event(0x90, TEST_NOTE + 5, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 2
queue_midi_event(0x90, TEST_NOTE + 8, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 3
queue_midi_event(0x90, TEST_NOTE + 12, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 4
queue_midi_event(0x90, TEST_NOTE + 17, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 5
queue_midi_event(0x90, TEST_NOTE + 20, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 6
queue_midi_event(0x90, TEST_NOTE + 24, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 7
queue_midi_event(0x90, TEST_NOTE + 29, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 8
queue_midi_event(0x90, TEST_NOTE + 32, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 9
queue_midi_event(0x90, TEST_NOTE + 37, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 10
queue_midi_event(0x90, TEST_NOTE + 40, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 11
queue_midi_event(0x90, TEST_NOTE + 46, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 12
queue_midi_event(0x90, TEST_NOTE + 49, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 13
queue_midi_event(0x90, TEST_NOTE + 52, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 14
queue_midi_event(0x90, TEST_NOTE + 57, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 15
queue_midi_event(0x90, TEST_NOTE + 60, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 16
}
void note_off(void)
{
queue_midi_event(0x80, TEST_NOTE, 0); // 1
queue_midi_event(0x80, TEST_NOTE + 5, 0); // 2
queue_midi_event(0x80, TEST_NOTE + 8, 0); // 3
queue_midi_event(0x80, TEST_NOTE + 12, 0); // 4
queue_midi_event(0x80, TEST_NOTE + 17, 0); // 5
queue_midi_event(0x80, TEST_NOTE + 20, 0); // 6
queue_midi_event(0x80, TEST_NOTE + 24, 0); // 7
queue_midi_event(0x80, TEST_NOTE + 29, 0); // 8
queue_midi_event(0x80, TEST_NOTE + 32, 0); // 9
queue_midi_event(0x80, TEST_NOTE + 37, 0); // 10
queue_midi_event(0x80, TEST_NOTE + 40, 0); // 11
queue_midi_event(0x80, TEST_NOTE + 46, 0); // 12
queue_midi_event(0x80, TEST_NOTE + 49, 0); // 13
queue_midi_event(0x80, TEST_NOTE + 52, 0); // 14
queue_midi_event(0x80, TEST_NOTE + 57, 0); // 15
queue_midi_event(0x80, TEST_NOTE + 60, 0); // 16
bool success = load_sysex(DEFAULT_SYSEXBANK, (++_voice_counter) - 1);
if (success == false)
#ifdef DEBUG
Serial.println(F("E: Cannot load SYSEX data"));
#endif
else
show_patch();
}
#endif