You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MicroDexed/MicroDexed.ino

177 lines
4.1 KiB

//
// MicroDexed
//
// A port of the Dexed sound engine (https://github.com/asb2m10/dexed) for the Teensy-3.5/3.6 with audio shield
// (c)2018 H. Wirtz <wirtz@parasitstudio.de>
//
#include <Audio.h>
#include <Wire.h>
#include <SPI.h>
#include <SD.h>
#include <SerialFlash.h>
#include <TeensyThreads.h>
#include <QueueArray.h>
#include <MIDI.h>
#include <looper.h>
#include "dexed.h"
#define AUDIO_MEM 8
#define AUDIO_BUFFER_SIZE 128
#define SAMPLEAUDIO_BUFFER_SIZE 44100
#define MIDI_QUEUE_LOCK_TIMEOUT_MS 5
//#define INIT_AUDIO_QUEUE 1
#define TEST_MIDI 1
#define TEST_NOTE1 60
#define TEST_NOTE2 68
typedef struct
{
uint8_t cmd;
uint8_t data1;
uint8_t data2;
} midi_queue_t;
// GUItool: begin automatically generated code
AudioPlayQueue queue1; //xy=266,484
AudioOutputI2S i2s1; //xy=739,486
AudioConnection patchCord2(queue1, 0, i2s1, 0);
AudioConnection patchCord3(queue1, 0, i2s1, 1);
AudioControlSGTL5000 sgtl5000_1; //xy=384,610
// GUItool: end automatically generated code
MIDI_CREATE_INSTANCE(HardwareSerial, Serial1, MIDI);
Dexed* dexed = new Dexed(SAMPLEAUDIO_BUFFER_SIZE);
QueueArray <midi_queue_t> midi_queue;
Threads::Mutex midi_queue_lock;
looper sched;
void setup()
{
while (!Serial) ; // wait for Arduino Serial Monitor
Serial.begin(115200);
Serial.println(F("MicroDexed based on https://github.com/asb2m10/dexed"));
Serial.println(F("(c)2018 H. Wirtz"));
Serial.println(F("setup start"));
MIDI.begin(MIDI_CHANNEL_OMNI);
// Audio connections require memory to work. For more
// detailed information, see the MemoryAndCpuUsage example
AudioMemory(AUDIO_MEM);
sgtl5000_1.enable();
sgtl5000_1.volume(0.4);
// Initialize processor and memory measurements
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
#ifdef INIT_AUDIO_QUEUE
// initial fill audio buffer with empty data
while (queue1.available())
{
int16_t* audio_buffer = queue1.getBuffer();
if (audio_buffer != NULL)
{
memset(audio_buffer, 0, sizeof(int16_t)*AUDIO_BUFFER_SIZE);
queue1.playBuffer();
}
}
#endif
dexed->activate();
#ifdef TEST_MIDI
midi_queue_t m;
m.cmd = 0x90;
m.data1 = TEST_NOTE1;
m.data2 = 100;
midi_queue.enqueue(m);
m.data1 = TEST_NOTE2;
midi_queue.enqueue(m);
m.cmd = 0xb0;
#endif
threads.addThread(audio_thread, 1);
sched.addJob(cpu_and_mem_usage, 1000);
Serial.println(F("setup end"));
}
void loop()
{
#ifdef TEST_MIDI
if (millis() > 3000 && millis() < 3050)
dexed->ProcessMidiMessage(0x80, TEST_NOTE1, 0);
if (millis() > 5000 && millis() < 5050)
dexed->ProcessMidiMessage(0x80, TEST_NOTE2, 0);
#endif
// process midi->audio
while (MIDI.read())
{
midi_queue_t m;
m.cmd = MIDI.getType();
m.data1 = MIDI.getData1();
m.data2 = MIDI.getData2();
if (midi_queue_lock.lock(MIDI_QUEUE_LOCK_TIMEOUT_MS))
{
midi_queue.enqueue(m);
midi_queue_lock.unlock();
}
}
sched.scheduler();
}
void audio_thread(void)
{
int16_t* audio_buffer; // pointer to 128 * int16_t
bool break_for_calculation;
Serial.println(F("audio thread start"));
while (42 == 42) // Don't panic!
{
audio_buffer = queue1.getBuffer();
if (audio_buffer == NULL)
{
Serial.println(F("audio_buffer allocation problems!"));
continue;
}
while (!midi_queue.isEmpty())
{
if (midi_queue_lock.lock(MIDI_QUEUE_LOCK_TIMEOUT_MS))
{
midi_queue_t m = midi_queue.dequeue();
break_for_calculation = dexed->ProcessMidiMessage(m.cmd, m.data1, m.data2);
midi_queue_lock.unlock();
if (break_for_calculation == true)
break;
}
else
break;
}
dexed->GetSamples(AUDIO_BUFFER_SIZE, audio_buffer);
queue1.playBuffer();
}
}
void cpu_and_mem_usage(void)
{
Serial.print(F("CPU:"));
Serial.print(AudioProcessorUsage(), DEC);
Serial.print(F(" CPU MAX:"));
Serial.print(AudioProcessorUsageMax(), DEC);
Serial.print(F(" MEM:"));
Serial.print(AudioMemoryUsage(), DEC);
Serial.print(F(" MEM MAX:"));
Serial.print(AudioMemoryUsageMax(), DEC);
Serial.println();
}