/** Copyright (c) 2016-2018 Holger Wirtz This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "synth.h" #include "dexed.h" #include "EngineMkI.h" #include "EngineOpl.h" #include "fm_core.h" #include "exp2.h" #include "sin.h" #include "freqlut.h" #include "controllers.h" #include "trace.h" #include #include Dexed::Dexed(int rate) { uint8_t i; Exp2::init(); Tanh::init(); Sin::init(); Freqlut::init(rate); Lfo::init(rate); PitchEnv::init(rate); Env::init_sr(rate); engineMkI = new EngineMkI; engineOpl = new EngineOpl; engineMsfa = new FmCore; /* if(!(engineMkI=new (std::nothrow) EngineMkI)) TRACE("Cannot not create engine EngineMkI"); if(!(engineOpl=new (std::nothrow) EngineOpl)) { delete(engineMkI); TRACE("Cannot not create engine EngineOpl"); } if(!(engineMsfa=new (std::nothrow) FmCore)) { delete(engineMkI); delete(engineOpl); TRACE("Cannot create engine FmCore"); } */ for (i = 0; i < MAX_ACTIVE_NOTES; i++) { voices[i].dx7_note = new Dx7Note; voices[i].keydown = false; voices[i].sustained = false; voices[i].live = false; } max_notes = 16; currentNote = 0; controllers.values_[kControllerPitch] = 0x2000; controllers.values_[kControllerPitchRange] = 0; controllers.values_[kControllerPitchStep] = 0; controllers.modwheel_cc = 0; controllers.foot_cc = 0; controllers.breath_cc = 0; controllers.aftertouch_cc = 0; controllers.masterTune = 0; controllers.opSwitch = 0x3f; // enable all operators //controllers.opSwitch=0x00; lfo.reset(data + 137); setMonoMode(false); sustain = false; setEngineType(DEXED_ENGINE_MODERN); } Dexed::~Dexed() { currentNote = -1; for (uint8_t note = 0; note < MAX_ACTIVE_NOTES; note++) delete voices[note].dx7_note; delete(engineMsfa); delete(engineOpl); delete(engineMkI); } void Dexed::activate(void) { panic(); controllers.values_[kControllerPitchRange] = data[155]; controllers.values_[kControllerPitchStep] = data[156]; controllers.refresh(); } void Dexed::deactivate(void) { panic(); } void Dexed::GetSamples(uint16_t n_samples, int16_t* buffer) { uint16_t i; if (refreshVoice) { for (i = 0; i < max_notes; i++) { if ( voices[i].live ) voices[i].dx7_note->update(data, voices[i].midi_note, voices[i].velocity); } lfo.reset(data + 137); refreshVoice = false; } for (i = 0; i < n_samples; i += _N_) { AlignedBuf audiobuf; float sumbuf[_N_]; for (uint8_t j = 0; j < _N_; ++j) { audiobuf.get()[j] = 0; sumbuf[j] = 0.0; } int32_t lfovalue = lfo.getsample(); int32_t lfodelay = lfo.getdelay(); for (uint8_t note = 0; note < max_notes; ++note) { if (voices[note].live) { voices[note].dx7_note->compute(audiobuf.get(), lfovalue, lfodelay, &controllers); for (uint8_t j = 0; j < _N_; ++j) { int32_t val = audiobuf.get()[j]; val = val >> 4; int32_t clip_val = val < -(1 << 24) ? 0x8000 : val >= (1 << 24) ? 0x7fff : val >> 9; float f = static_cast(clip_val >> 1) / 0x8000; if (f > 1) f = 1; if (f < -1) f = -1; sumbuf[j] += f; audiobuf.get()[j] = 0; } } } for (uint8_t j = 0; j < _N_; ++j) { buffer[i + j] = static_cast(sumbuf[j] * 0x8000); } } } bool Dexed::ProcessMidiMessage(uint8_t type, uint8_t data1, uint8_t data2) { switch (type & 0xf0) { case 0x80 : //TRACE("MIDI keyup event: %d", data1); keyup(data1); return (false); break; case 0x90 : //TRACE("MIDI keydown event: %d %d", data1, data2); keydown(data1, data2); return (false); break; case 0xb0 : { uint8_t ctrl = data1; uint8_t value = data2; switch (ctrl) { case 1: //TRACE("MIDI modwheel event: %d %d", ctrl, value); controllers.modwheel_cc = value; controllers.refresh(); break; case 2: //TRACE("MIDI breath event: %d %d", ctrl, value); controllers.breath_cc = value; controllers.refresh(); break; case 4: //TRACE("MIDI footsw event: %d %d", ctrl, value); controllers.foot_cc = value; controllers.refresh(); break; case 64: //TRACE("MIDI sustain event: %d %d", ctrl, value); sustain = value > 63; if (!sustain) { for (uint8_t note = 0; note < max_notes; note++) { if (voices[note].sustained && !voices[note].keydown) { voices[note].dx7_note->keyup(); voices[note].sustained = false; } } } break; case 120: //TRACE("MIDI all-sound-off: %d %d", ctrl, value); panic(); return (true); break; case 123: //TRACE("MIDI all-notes-off: %d %d", ctrl, value); notes_off(); return (true); break; } break; } // case 0xc0 : // setCurrentProgram(data1); // break; // channel aftertouch case 0xd0 : //TRACE("MIDI aftertouch 0xd0 event: %d %d", data1); controllers.aftertouch_cc = data1; controllers.refresh(); break; // pitchbend case 0xe0 : //TRACE("MIDI pitchbend 0xe0 event: %d %d", data1, data2); controllers.values_[kControllerPitch] = data1 | (data2 << 7); break; default: //TRACE("MIDI event unknown: cmd=%d, val1=%d, val2=%d", cmd, data1, data2); break; } TRACE("Bye"); return (false); } void Dexed::keydown(uint8_t pitch, uint8_t velo) { TRACE("Hi"); TRACE("pitch=%d, velo=%d\n", pitch, velo); if ( velo == 0 ) { keyup(pitch); return; } pitch += data[144] - 24; uint8_t note = currentNote; uint8_t keydown_counter = 0; for (uint8_t i = 0; i < max_notes; i++) { if (!voices[note].keydown) { currentNote = (note + 1) % max_notes; voices[note].midi_note = pitch; voices[note].velocity = velo; voices[note].sustained = sustain; voices[note].keydown = true; voices[note].dx7_note->init(data, (int)pitch, (int)velo); if ( data[136] ) voices[note].dx7_note->oscSync(); break; } else keydown_counter++; note = (note + 1) % max_notes; } if (keydown_counter == 0) lfo.keydown(); if ( monoMode ) { for (uint8_t i = 0; i < max_notes; i++) { if ( voices[i].live ) { // all keys are up, only transfer signal if ( ! voices[i].keydown ) { voices[i].live = false; voices[note].dx7_note->transferSignal(*voices[i].dx7_note); break; } if ( voices[i].midi_note < pitch ) { voices[i].live = false; voices[note].dx7_note->transferState(*voices[i].dx7_note); break; } return; } } } voices[note].live = true; TRACE("Bye"); } void Dexed::keyup(uint8_t pitch) { TRACE("Hi"); TRACE("pitch=%d\n", pitch); pitch += data[144] - 24; uint8_t note; for (note = 0; note < max_notes; ++note) { if ( voices[note].midi_note == pitch && voices[note].keydown ) { voices[note].keydown = false; break; } } // note not found ? if ( note >= max_notes ) { TRACE("note-off not found???"); return; } if ( monoMode ) { int8_t highNote = -1; int8_t target = 0; for (int8_t i = 0; i < max_notes; i++) { if ( voices[i].keydown && voices[i].midi_note > highNote ) { target = i; highNote = voices[i].midi_note; } } if ( highNote != -1 && voices[note].live ) { voices[note].live = false; voices[target].live = true; voices[target].dx7_note->transferState(*voices[note].dx7_note); } } if ( sustain ) { voices[note].sustained = true; } else { voices[note].dx7_note->keyup(); } TRACE("Bye"); } void Dexed::doRefreshVoice(void) { refreshVoice = true; } void Dexed::setOPs(uint8_t ops) { controllers.opSwitch = ops; } /* void Dexed::onParam(uint8_t param_num, float param_val) { int32_t tune; if (param_val != data_float[param_num]) { TRACE("Parameter %d change from %f to %f", param_num, data_float[param_num], param_val); #ifdef DEBUG uint8_t tmp = data[param_num]; #endif _param_change_counter++; if (param_num == 144 || param_num == 134 || param_num == 172) panic(); refreshVoice = true; data[param_num] = static_cast(param_val); data_float[param_num] = param_val; switch (param_num) { case 155: controllers.values_[kControllerPitchRange] = data[param_num]; break; case 156: controllers.values_[kControllerPitchStep] = data[param_num]; break; case 157: controllers.wheel.setRange(data[param_num]); controllers.wheel.setTarget(data[param_num + 1]); controllers.refresh(); break; case 158: controllers.wheel.setRange(data[param_num - 1]); controllers.wheel.setTarget(data[param_num]); controllers.refresh(); break; case 159: controllers.foot.setRange(data[param_num]); controllers.foot.setTarget(data[param_num + 1]); controllers.refresh(); break; case 160: controllers.foot.setRange(data[param_num - 1]); controllers.foot.setTarget(data[param_num]); controllers.refresh(); break; case 161: controllers.breath.setRange(data[param_num]); controllers.breath.setTarget(data[param_num + 1]); controllers.refresh(); break; case 162: controllers.breath.setRange(data[param_num - 1]); controllers.breath.setTarget(data[param_num]); controllers.refresh(); break; case 163: controllers.at.setRange(data[param_num]); controllers.at.setTarget(data[param_num + 1]); controllers.refresh(); break; case 164: controllers.at.setRange(data[param_num - 1]); controllers.at.setTarget(data[param_num]); controllers.refresh(); break; case 165: tune = param_val * 0x4000; controllers.masterTune = (tune << 11) * (1.0 / 12); break; case 166: case 167: case 168: case 169: case 170: case 171: controllers.opSwitch = (data[166] << 5) | (data[167] << 4) | (data[168] << 3) | (data[169] << 2) | (data[170] << 1) | data[171]; break; case 172: max_notes = data[param_num]; break; } TRACE("Done: Parameter %d changed from %d to %d", param_num, tmp, data[param_num]); } } */ uint8_t Dexed::getEngineType() { return engineType; } void Dexed::setEngineType(uint8_t tp) { TRACE("settings engine %d", tp); if (engineType == tp && controllers.core != NULL) return; switch (tp) { case DEXED_ENGINE_MARKI: TRACE("DEXED_ENGINE_MARKI:%d", DEXED_ENGINE_MARKI); controllers.core = engineMkI; break; case DEXED_ENGINE_OPL: TRACE("DEXED_ENGINE_OPL:%d", DEXED_ENGINE_OPL); controllers.core = engineOpl; break; default: TRACE("DEXED_ENGINE_MODERN:%d", DEXED_ENGINE_MODERN); controllers.core = engineMsfa; tp = DEXED_ENGINE_MODERN; break; } engineType = tp; panic(); controllers.refresh(); } bool Dexed::isMonoMode(void) { return monoMode; } void Dexed::setMonoMode(bool mode) { if (monoMode == mode) return; monoMode = mode; } void Dexed::panic(void) { for (uint8_t i = 0; i < MAX_ACTIVE_NOTES; i++) { if (voices[i].live == true) { voices[i].keydown = false; voices[i].live = false; voices[i].sustained = false; if ( voices[i].dx7_note != NULL ) { voices[i].dx7_note->oscSync(); } } } } void Dexed::notes_off(void) { for (uint8_t i = 0; i < MAX_ACTIVE_NOTES; i++) { if (voices[i].live == true && voices[i].keydown == true) { voices[i].keydown = false; } } } void Dexed::setMaxNotes(uint8_t n) { if (n <= MAX_ACTIVE_NOTES) { notes_off(); max_notes = n; panic(); controllers.refresh(); } } void Dexed::set_params(void) { /* //TRACE("Hi"); _param_change_counter=0; bool polymono=bool(*p(p_polymono)); uint8_t engine=uint8_t(*p(p_engine)); float f_gain=*p(p_output); float f_cutoff=*p(p_cutoff); float f_reso=*p(p_resonance); // Dexed-Unisono if(isMonoMode()!=polymono) setMonoMode(polymono); // Dexed-Engine if(controllers.core==NULL || getEngineType()!=engine) { setEngineType(engine); refreshVoice=true; } // Dexed-Filter if(fx.uiCutoff!=f_cutoff) { fx.uiCutoff=f_cutoff; refreshVoice=true; } if(fx.uiReso!=f_reso) { fx.uiReso=f_reso; refreshVoice=true; } if(fx.uiGain!=f_gain) { fx.uiGain=f_gain; refreshVoice=true; } // OP6 onParam(0,*p(p_op6_eg_rate_1)); onParam(1,*p(p_op6_eg_rate_2)); onParam(2,*p(p_op6_eg_rate_3)); onParam(3,*p(p_op6_eg_rate_4)); onParam(4,*p(p_op6_eg_level_1)); onParam(5,*p(p_op6_eg_level_2)); onParam(6,*p(p_op6_eg_level_3)); onParam(7,*p(p_op6_eg_level_4)); onParam(8,*p(p_op6_kbd_lev_scl_brk_pt)); onParam(9,*p(p_op6_kbd_lev_scl_lft_depth)); onParam(10,*p(p_op6_kbd_lev_scl_rht_depth)); onParam(11,*p(p_op6_kbd_lev_scl_lft_curve)); onParam(12,*p(p_op6_kbd_lev_scl_rht_curve)); onParam(13,*p(p_op6_kbd_rate_scaling)); onParam(14,*p(p_op6_amp_mod_sensitivity)); onParam(15,*p(p_op6_key_vel_sensitivity)); onParam(16,*p(p_op6_operator_output_level)); onParam(17,*p(p_op6_osc_mode)); onParam(18,*p(p_op6_osc_freq_coarse)); onParam(19,*p(p_op6_osc_freq_fine)); onParam(20,*p(p_op6_osc_detune)+7); // OP5 onParam(21,*p(p_op5_eg_rate_1)); onParam(22,*p(p_op5_eg_rate_2)); onParam(23,*p(p_op5_eg_rate_3)); onParam(24,*p(p_op5_eg_rate_4)); onParam(25,*p(p_op5_eg_level_1)); onParam(26,*p(p_op5_eg_level_2)); onParam(27,*p(p_op5_eg_level_3)); onParam(28,*p(p_op5_eg_level_4)); onParam(29,*p(p_op5_kbd_lev_scl_brk_pt)); onParam(30,*p(p_op5_kbd_lev_scl_lft_depth)); onParam(31,*p(p_op5_kbd_lev_scl_rht_depth)); onParam(32,*p(p_op5_kbd_lev_scl_lft_curve)); onParam(33,*p(p_op5_kbd_lev_scl_rht_curve)); onParam(34,*p(p_op5_kbd_rate_scaling)); onParam(35,*p(p_op5_amp_mod_sensitivity)); onParam(36,*p(p_op5_key_vel_sensitivity)); onParam(37,*p(p_op5_operator_output_level)); onParam(38,*p(p_op5_osc_mode)); onParam(39,*p(p_op5_osc_freq_coarse)); onParam(40,*p(p_op5_osc_freq_fine)); onParam(41,*p(p_op5_osc_detune)+7); // OP4 onParam(42,*p(p_op4_eg_rate_1)); onParam(43,*p(p_op4_eg_rate_2)); onParam(44,*p(p_op4_eg_rate_3)); onParam(45,*p(p_op4_eg_rate_4)); onParam(46,*p(p_op4_eg_level_1)); onParam(47,*p(p_op4_eg_level_2)); onParam(48,*p(p_op4_eg_level_3)); onParam(49,*p(p_op4_eg_level_4)); onParam(50,*p(p_op4_kbd_lev_scl_brk_pt)); onParam(51,*p(p_op4_kbd_lev_scl_lft_depth)); onParam(52,*p(p_op4_kbd_lev_scl_rht_depth)); onParam(53,*p(p_op4_kbd_lev_scl_lft_curve)); onParam(54,*p(p_op4_kbd_lev_scl_rht_curve)); onParam(55,*p(p_op4_kbd_rate_scaling)); onParam(56,*p(p_op4_amp_mod_sensitivity)); onParam(57,*p(p_op4_key_vel_sensitivity)); onParam(58,*p(p_op4_operator_output_level)); onParam(59,*p(p_op4_osc_mode)); onParam(60,*p(p_op4_osc_freq_coarse)); onParam(61,*p(p_op4_osc_freq_fine)); onParam(62,*p(p_op4_osc_detune)+7); // OP3 onParam(63,*p(p_op3_eg_rate_1)); onParam(64,*p(p_op3_eg_rate_2)); onParam(65,*p(p_op3_eg_rate_3)); onParam(66,*p(p_op3_eg_rate_4)); onParam(67,*p(p_op3_eg_level_1)); onParam(68,*p(p_op3_eg_level_2)); onParam(69,*p(p_op3_eg_level_3)); onParam(70,*p(p_op3_eg_level_4)); onParam(71,*p(p_op3_kbd_lev_scl_brk_pt)); onParam(72,*p(p_op3_kbd_lev_scl_lft_depth)); onParam(73,*p(p_op3_kbd_lev_scl_rht_depth)); onParam(74,*p(p_op3_kbd_lev_scl_lft_curve)); onParam(75,*p(p_op3_kbd_lev_scl_rht_curve)); onParam(76,*p(p_op3_kbd_rate_scaling)); onParam(77,*p(p_op3_amp_mod_sensitivity)); onParam(78,*p(p_op3_key_vel_sensitivity)); onParam(79,*p(p_op3_operator_output_level)); onParam(80,*p(p_op3_osc_mode)); onParam(81,*p(p_op3_osc_freq_coarse)); onParam(82,*p(p_op3_osc_freq_fine)); onParam(83,*p(p_op3_osc_detune)+7); // OP2 onParam(84,*p(p_op2_eg_rate_1)); onParam(85,*p(p_op2_eg_rate_2)); onParam(86,*p(p_op2_eg_rate_3)); onParam(87,*p(p_op2_eg_rate_4)); onParam(88,*p(p_op2_eg_level_1)); onParam(89,*p(p_op2_eg_level_2)); onParam(90,*p(p_op2_eg_level_3)); onParam(91,*p(p_op2_eg_level_4)); onParam(92,*p(p_op2_kbd_lev_scl_brk_pt)); onParam(93,*p(p_op2_kbd_lev_scl_lft_depth)); onParam(94,*p(p_op2_kbd_lev_scl_rht_depth)); onParam(95,*p(p_op2_kbd_lev_scl_lft_curve)); onParam(96,*p(p_op2_kbd_lev_scl_rht_curve)); onParam(97,*p(p_op2_kbd_rate_scaling)); onParam(98,*p(p_op2_amp_mod_sensitivity)); onParam(99,*p(p_op2_key_vel_sensitivity)); onParam(100,*p(p_op2_operator_output_level)); onParam(101,*p(p_op2_osc_mode)); onParam(102,*p(p_op2_osc_freq_coarse)); onParam(103,*p(p_op2_osc_freq_fine)); onParam(104,*p(p_op2_osc_detune)+7); // OP1 onParam(105,*p(p_op1_eg_rate_1)); onParam(106,*p(p_op1_eg_rate_2)); onParam(107,*p(p_op1_eg_rate_3)); onParam(108,*p(p_op1_eg_rate_4)); onParam(109,*p(p_op1_eg_level_1)); onParam(110,*p(p_op1_eg_level_2)); onParam(111,*p(p_op1_eg_level_3)); onParam(112,*p(p_op1_eg_level_4)); onParam(113,*p(p_op1_kbd_lev_scl_brk_pt)); onParam(114,*p(p_op1_kbd_lev_scl_lft_depth)); onParam(115,*p(p_op1_kbd_lev_scl_rht_depth)); onParam(116,*p(p_op1_kbd_lev_scl_lft_curve)); onParam(117,*p(p_op1_kbd_lev_scl_rht_curve)); onParam(118,*p(p_op1_kbd_rate_scaling)); onParam(119,*p(p_op1_amp_mod_sensitivity)); onParam(120,*p(p_op1_key_vel_sensitivity)); onParam(121,*p(p_op1_operator_output_level)); onParam(122,*p(p_op1_osc_mode)); onParam(123,*p(p_op1_osc_freq_coarse)); onParam(124,*p(p_op1_osc_freq_fine)); onParam(125,*p(p_op1_osc_detune)+7); // Global for all OPs onParam(126,*p(p_pitch_eg_rate_1)); onParam(127,*p(p_pitch_eg_rate_2)); onParam(128,*p(p_pitch_eg_rate_3)); onParam(129,*p(p_pitch_eg_rate_4)); onParam(130,*p(p_pitch_eg_level_1)); onParam(131,*p(p_pitch_eg_level_2)); onParam(132,*p(p_pitch_eg_level_3)); onParam(133,*p(p_pitch_eg_level_4)); onParam(134,*p(p_algorithm_num)-1); onParam(135,*p(p_feedback)); onParam(136,*p(p_oscillator_sync)); onParam(137,*p(p_lfo_speed)); onParam(138,*p(p_lfo_delay)); onParam(139,*p(p_lfo_pitch_mod_depth)); onParam(140,*p(p_lfo_amp_mod_depth)); onParam(141,*p(p_lfo_sync)); onParam(142,*p(p_lfo_waveform)); onParam(143,*p(p_pitch_mod_sensitivity)); onParam(144,*p(p_transpose)); // 10 bytes (145-154) are the name of the patch // Controllers (added at the end of the data[]) onParam(155,*p(p_pitch_bend_range)); onParam(156,*p(p_pitch_bend_step)); onParam(157,*p(p_mod_wheel_range)); onParam(158,*p(p_mod_wheel_assign)); onParam(159,*p(p_foot_ctrl_range)); onParam(160,*p(p_foot_ctrl_assign)); onParam(161,*p(p_breath_ctrl_range)); onParam(162,*p(p_breath_ctrl_assign)); onParam(163,*p(p_aftertouch_range)); onParam(164,*p(p_aftertouch_assign)); onParam(165,*p(p_master_tune)); onParam(166,*p(p_op1_enable)); onParam(167,*p(p_op2_enable)); onParam(168,*p(p_op3_enable)); onParam(169,*p(p_op4_enable)); onParam(170,*p(p_op5_enable)); onParam(171,*p(p_op6_enable)); onParam(172,*p(p_number_of_voices)); if(_param_change_counter>PARAM_CHANGE_LEVEL) { panic(); controllers.refresh(); } //TRACE("Bye"); */ ; }