// // MicroDexed // // A port of the Dexed sound engine (https://github.com/asb2m10/dexed) for the Teensy-3.5/3.6 with audio shield // (c)2018 H. Wirtz // #include #include #include #include #include #include #include #include #include #include "dexed.h" #define AUDIO_MEM 32 #define AUDIO_BUFFER_SIZE 128 #define SAMPLEAUDIO_BUFFER_SIZE 44100 #define MIDI_QUEUE_LOCK_TIMEOUT_MS 0 #define INIT_AUDIO_QUEUE 1 #define SHOW_DEXED_TIMING 1 #define TEST_MIDI 1 #define TEST_NOTE1 60 #define TEST_NOTE2 68 typedef struct { uint8_t cmd; uint8_t data1; uint8_t data2; } midi_queue_t; // GUItool: begin automatically generated code AudioPlayQueue queue1; //xy=266,484 AudioOutputI2S i2s1; //xy=739,486 AudioConnection patchCord2(queue1, 0, i2s1, 0); AudioConnection patchCord3(queue1, 0, i2s1, 1); AudioControlSGTL5000 sgtl5000_1; //xy=384,610 // GUItool: end automatically generated code MIDI_CREATE_INSTANCE(HardwareSerial, Serial1, MIDI); Dexed* dexed = new Dexed(SAMPLEAUDIO_BUFFER_SIZE); QueueArray midi_queue; Threads::Mutex midi_queue_lock; looper sched; void setup() { while (!Serial) ; // wait for Arduino Serial Monitor Serial.begin(115200); Serial.println(F("MicroDexed based on https://github.com/asb2m10/dexed")); Serial.println(F("(c)2018 H. Wirtz")); Serial.println(F("setup start")); MIDI.begin(MIDI_CHANNEL_OMNI); // Audio connections require memory to work. For more // detailed information, see the MemoryAndCpuUsage example AudioMemory(AUDIO_MEM); sgtl5000_1.enable(); sgtl5000_1.volume(0.2); // Initialize processor and memory measurements AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); #ifdef INIT_AUDIO_QUEUE // initial fill audio buffer with empty data while (queue1.available()) { int16_t* audio_buffer = queue1.getBuffer(); if (audio_buffer != NULL) { memset(audio_buffer, 0, sizeof(int16_t)*AUDIO_BUFFER_SIZE); queue1.playBuffer(); } } #endif dexed->activate(); #ifdef TEST_MIDI threads.addThread(midi_test_thread, 1); #endif threads.addThread(midi_thread, 1); sched.addJob(cpu_and_mem_usage, 1000); Serial.println(F("setup end")); } void loop() { int16_t* audio_buffer; // pointer to 128 * int16_t bool break_for_calculation; audio_buffer = queue1.getBuffer(); if (audio_buffer == NULL) { Serial.println(F("audio_buffer allocation problems!")); return; } while (!midi_queue.isEmpty()) { if (midi_queue_lock.lock(MIDI_QUEUE_LOCK_TIMEOUT_MS)) { midi_queue_t m = midi_queue.dequeue(); break_for_calculation = dexed->ProcessMidiMessage(m.cmd, m.data1, m.data2); midi_queue_lock.unlock(); if (break_for_calculation == true) break; } else break; } #ifdef SHOW_DEXED_TIMING elapsedMicros t1; #endif dexed->GetSamples(AUDIO_BUFFER_SIZE, audio_buffer); #ifdef SHOW_DEXED_TIMING Serial.println(t1, DEC); #endif queue1.playBuffer(); sched.scheduler(); } void midi_test_thread(void) { delay(100); /*queue_midi_event(0x90, TEST_NOTE1, 100); queue_midi_event(0x90, TEST_NOTE2, 100); delay(1000); queue_midi_event(0x80, TEST_NOTE1, 100); delay(1000); queue_midi_event(0x80, TEST_NOTE2, 100); delay(500);*/ for (uint8_t i = 0; i < 3; i++) { queue_midi_event(0x90, 55 + i, 100); delay(2000); } delay(1000); for (uint8_t i = 0; i < 3; i++) { queue_midi_event(0x80, 55 + i, 100); } threads.yield(); } void midi_thread(void) { Serial.println(F("midi thread start")); while (42 == 42) // Don't panic! { while (MIDI.read()) { queue_midi_event(MIDI.getType(), MIDI.getData1(), MIDI.getData2()); } } } bool queue_midi_event(uint8_t type, uint8_t data1, uint8_t data2) { midi_queue_t m; m.cmd = type; m.data1 = data1; m.data2 = data2; if (midi_queue_lock.lock(MIDI_QUEUE_LOCK_TIMEOUT_MS)) { midi_queue.enqueue(m); midi_queue_lock.unlock(); return (true); } return (false); } void cpu_and_mem_usage(void) { Serial.print(F("CPU:")); Serial.print(AudioProcessorUsage(), DEC); Serial.print(F(" CPU MAX:")); Serial.print(AudioProcessorUsageMax(), DEC); Serial.print(F(" MEM:")); Serial.print(AudioMemoryUsage(), DEC); Serial.print(F(" MEM MAX:")); Serial.print(AudioMemoryUsageMax(), DEC); Serial.println(); }