#include "ResamplingArrayReader.h" #include "interpolation.h" #include "waveheaderparser.h" // read n samples into each buffer (1 buffer per channel) unsigned int ResamplingArrayReader::read(void **buf, uint16_t nsamples) { if (!_playing) return 0; int16_t *index[_numChannels]; unsigned int count = 0; for (int channel=0; channel < _numChannels; channel++) { index[channel] = (int16_t*)buf[channel]; } while (count < nsamples) { for (int channel=0; channel < _numChannels; channel++) { if (readNextValue(index[channel], channel)) { if (channel == _numChannels - 1) count++; index[channel]++; } else { // we have reached the end of the file switch (_loopType) { case looptype_repeat: { if (_playbackRate >= 0.0) _bufferPosition = _loop_start; else _bufferPosition = _loop_finish - _numChannels; break; } case looptype_pingpong: { if (_playbackRate >= 0.0) { _bufferPosition = _loop_finish - _numChannels; //printf("switching to reverse playback...\n"); } else { _bufferPosition = _header_offset; //printf("switching to forward playback...\n"); } _playbackRate = -_playbackRate; break; } case looptype_none: default: { //Serial.printf("end of loop...\n"); /* no looping - return the number of (resampled) bytes returned... */ _playing = false; return count; } } } } } return count; } // read the sample value for given channel and store it at the location pointed to by the pointer 'value' bool ResamplingArrayReader::readNextValue(int16_t *value, uint16_t channel) { if (_playbackRate >= 0 ) { //forward playback if (_bufferPosition >= _loop_finish ) return false; } else if (_playbackRate < 0) { // reverse playback if (_bufferPosition < _header_offset) return false; } int16_t result = _sourceBuffer[_bufferPosition + channel]; if (_interpolationType == ResampleInterpolationType::resampleinterpolation_linear) { double abs_remainder = abs(_remainder); if (abs_remainder > 0.0) { if (_playbackRate > 0) { if (_remainder - _playbackRate < 0.0){ // we crossed over a whole number, make sure we update the samples for interpolation if (_playbackRate > 1.0) { // need to update last sample _interpolationPoints[channel][1].y = _sourceBuffer[_bufferPosition-_numChannels]; } _interpolationPoints[channel][0].y = _interpolationPoints[channel][1].y; _interpolationPoints[channel][1].y = result; if (_numInterpolationPoints < 2) _numInterpolationPoints++; } } else if (_playbackRate < 0) { if (_remainder - _playbackRate > 0.0){ // we crossed over a whole number, make sure we update the samples for interpolation if (_playbackRate < -1.0) { // need to update last sample _interpolationPoints[channel][1].y = _sourceBuffer[_bufferPosition+_numChannels]; } _interpolationPoints[channel][0].y = _interpolationPoints[channel][1].y; _interpolationPoints[channel][1].y = result; if (_numInterpolationPoints < 2) _numInterpolationPoints++; } } if (_numInterpolationPoints > 1) { result = abs_remainder * _interpolationPoints[channel][1].y + (1.0 - abs_remainder) * _interpolationPoints[channel][0].y; //Serial.printf("[%f]\n", interpolation); } } else { _interpolationPoints[channel][0].y = _interpolationPoints[channel][1].y; _interpolationPoints[channel][1].y = result; if (_numInterpolationPoints < 2) _numInterpolationPoints++; result =_interpolationPoints[channel][0].y; //Serial.printf("%f\n", result); } } else if (_interpolationType == ResampleInterpolationType::resampleinterpolation_quadratic) { double abs_remainder = abs(_remainder); if (abs_remainder > 0.0) { if (_playbackRate > 0) { if (_remainder - _playbackRate < 0.0){ // we crossed over a whole number, make sure we update the samples for interpolation int numberOfSamplesToUpdate = - floor(_remainder - _playbackRate); if (numberOfSamplesToUpdate > 4) numberOfSamplesToUpdate = 4; // if playbackrate > 4, only need to pop last 4 samples for (int i=numberOfSamplesToUpdate; i > 0; i--) { _interpolationPoints[channel][0].y = _interpolationPoints[channel][1].y; _interpolationPoints[channel][1].y = _interpolationPoints[channel][2].y; _interpolationPoints[channel][2].y = _interpolationPoints[channel][3].y; _interpolationPoints[channel][3].y = _sourceBuffer[_bufferPosition-(i*_numChannels)+1+channel]; if (_numInterpolationPoints < 4) _numInterpolationPoints++; } } } else if (_playbackRate < 0) { if (_remainder - _playbackRate > 0.0){ // we crossed over a whole number, make sure we update the samples for interpolation int numberOfSamplesToUpdate = ceil(_remainder - _playbackRate); if (numberOfSamplesToUpdate > 4) numberOfSamplesToUpdate = 4; // if playbackrate > 4, only need to pop last 4 samples for (int i=numberOfSamplesToUpdate; i > 0; i--) { _interpolationPoints[channel][0].y = _interpolationPoints[channel][1].y; _interpolationPoints[channel][1].y = _interpolationPoints[channel][2].y; _interpolationPoints[channel][2].y = _interpolationPoints[channel][3].y; _interpolationPoints[channel][3].y = _sourceBuffer[_bufferPosition+(i*_numChannels)-1+channel]; if (_numInterpolationPoints < 4) _numInterpolationPoints++; } } } if (_numInterpolationPoints >= 4) { //int16_t interpolation = interpolate(_interpolationPoints, 1.0 + abs_remainder, 4); int16_t interpolation = fastinterpolate( _interpolationPoints[channel][0].y, _interpolationPoints[channel][1].y, _interpolationPoints[channel][2].y, _interpolationPoints[channel][3].y, 1.0 + abs_remainder); result = interpolation; //Serial.printf("[%f]\n", interpolation); } else result = 0; } else { _interpolationPoints[channel][0].y = _interpolationPoints[channel][1].y; _interpolationPoints[channel][1].y = _interpolationPoints[channel][2].y; _interpolationPoints[channel][2].y = _interpolationPoints[channel][3].y; _interpolationPoints[channel][3].y = result; if (_numInterpolationPoints < 4) { _numInterpolationPoints++; result = 0; } else result = _interpolationPoints[channel][1].y; //Serial.printf("%f\n", result); } } if (channel == _numChannels - 1) { _remainder += _playbackRate; auto delta = static_cast(_remainder); _remainder -= static_cast(delta); _bufferPosition += (delta * _numChannels); } *value = result; return true; } void ResamplingArrayReader::initializeInterpolationPoints(void) { if (_numChannels < 0) return; deleteInterpolationPoints(); _interpolationPoints = new InterpolationData*[_numChannels]; for (int channel=0; channel < _numChannels; channel++) { InterpolationData *interpolation = new InterpolationData[4]; interpolation[0].y = 0.0; interpolation[1].y = 0.0; interpolation[2].y = 0.0; interpolation[3].y = 0.0; _interpolationPoints[channel] = interpolation ; } _numInterpolationPointsChannels = _numChannels; } void ResamplingArrayReader::deleteInterpolationPoints(void) { if (!_interpolationPoints) return; for (int i=0; i<_numInterpolationPointsChannels; i++) { delete [] _interpolationPoints[i]; } delete [] _interpolationPoints; _interpolationPoints = nullptr; _numInterpolationPointsChannels = 0; } void ResamplingArrayReader::begin(void) { if (_interpolationType != ResampleInterpolationType::resampleinterpolation_none) { initializeInterpolationPoints(); } _playing = false; _bufferPosition = _header_offset; _file_size = 0; } bool ResamplingArrayReader::playRaw(int16_t *array, uint32_t length, uint16_t numChannels) { _sourceBuffer = array; stop(); _header_offset = 0; _file_size = length * 2; _loop_start = 0; _loop_finish = length; setNumChannels(numChannels); reset(); //updateBuffers(); _playing = true; return true; } bool ResamplingArrayReader::playWav(int16_t *array, uint32_t length) // length == total number of 16-bit samples for all channels, including header { _sourceBuffer = array; stop(); wav_header wav_header; wav_data_header data_header; WaveHeaderParser wavHeaderParser; if (!wavHeaderParser.readWaveHeaderFromBuffer((const char *) array, wav_header)) { Serial.println("Not able to read header! Aborting.... "); return false; } if (wav_header.bit_depth != 16) { Serial.printf("Needs 16 bit audio! Aborting.... (got %d)\n", wav_header.bit_depth); return false; } setNumChannels(wav_header.num_channels); unsigned infoTagsSize; if (!wavHeaderParser.readInfoTags((unsigned char *)array, 36, infoTagsSize)) { Serial.println("Not able to read header! Aborting..."); return false; } if (!wavHeaderParser.readDataHeader((unsigned char *)array, 36 + infoTagsSize, data_header)) { Serial.println("Not able to read header! Aborting..."); return false; } _header_offset = (44 + infoTagsSize) / 2; _file_size = data_header.data_bytes + 44 + infoTagsSize; //2 bytes per sample if (_file_size > length * 2){ Serial.printf("TeensyVariablePlayback: warning: length of array in bytes (%d) is smaller than the file data size in bytes (%d) according to the header - defaulting length to filesize...", length * 2, _file_size); _loop_finish = length; } else _loop_finish = _file_size / 2; _loop_start = _header_offset; reset(); _playing = true; return true; } bool ResamplingArrayReader::play() { stop(); reset(); _playing = true; return true; } void ResamplingArrayReader::reset(){ _numInterpolationPoints = 0; if (_playbackRate > 0.0) { // forward playabck - set _file_offset to first audio block in file _bufferPosition = _header_offset; } else { // reverse playback - forward _file_offset to last audio block in file _bufferPosition = _loop_finish - _numChannels; } } void ResamplingArrayReader::stop() { if (_playing) { _playing = false; } } int ResamplingArrayReader::available(void) { return _playing; } void ResamplingArrayReader::close(void) { if (_playing) { stop(); deleteInterpolationPoints(); } }