/* MicroDexed MicroDexed is a port of the Dexed sound engine (https://github.com/asb2m10/dexed) for the Teensy-3.5/3.6 with audio shield. Dexed ist heavily based on https://github.com/google/music-synthesizer-for-android (c)2018 H. Wirtz This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include "config.h" #include "dexed.h" #include "dexed_sysex.h" #include "UI.h" #ifdef I2C_DISPLAY // selecting sounds by encoder, button and display elapsedMillis ui_back_to_main; void handle_ui(void) { if (ui_back_to_main >= UI_AUTO_BACK_MS && (ui_state != UI_MAIN && ui_state != UI_EFFECTS_FILTER && ui_state != UI_EFFECTS_DELAY)) { enc[0].write(map(vol * 100, 0, 100, 0, ENC_VOL_STEPS)); enc_val[0] = enc[0].read(); ui_show_main(); } if (autostore >= AUTOSTORE_MS && (ui_main_state == UI_MAIN_VOICE_SELECTED || ui_main_state == UI_MAIN_BANK_SELECTED)) { ui_show_main(); switch (ui_main_state) { case UI_MAIN_VOICE_SELECTED: ui_main_state = UI_MAIN_VOICE; break; case UI_MAIN_BANK_SELECTED: ui_main_state = UI_MAIN_BANK; break; } } for (uint8_t i = 0; i < NUM_ENCODER; i++) { but[i].update(); if (but[i].fallingEdge()) long_button_pressed = 0; if (but[i].risingEdge()) { uint32_t button_released = long_button_pressed; if (button_released > LONG_BUTTON_PRESS) { // long pressing of button detected #ifdef DEBUG Serial.print(F("Long button pressing detected for button ")); Serial.println(i, DEC); switch (i) { case 0: // long press for left button break; case 1: // long press for right button switch (ui_state) { case UI_MAIN: ui_main_state = UI_MAIN_FILTER_FRQ; enc[i].write(effect_filter_frq); enc_val[i] = enc[i].read(); ui_show_effects_filter(); break; case UI_EFFECTS_FILTER: ui_main_state = UI_MAIN_DELAY_TIME; enc[i].write(effect_delay_time); enc_val[i] = enc[i].read(); ui_show_effects_delay(); break; case UI_EFFECTS_DELAY: ui_main_state = UI_MAIN_VOICE; enc[i].write(voice); enc_val[i] = enc[i].read(); ui_show_main(); break; } break; } #endif } else { // Button pressed switch (i) { case 0: // left button pressed switch (ui_state) { case UI_MAIN: enc[i].write(map(vol * 100, 0, 100, 0, ENC_VOL_STEPS)); enc_val[i] = enc[i].read(); ui_show_volume(); break; case UI_VOLUME: enc[i].write(midi_channel); enc_val[i] = enc[i].read(); ui_show_midichannel(); break; case UI_MIDICHANNEL: enc[i].write(map(vol * 100, 0, 100, 0, ENC_VOL_STEPS)); enc_val[i] = enc[i].read(); ui_show_main(); break; } break; case 1: // right button pressed switch (ui_state) { case UI_MAIN: switch (ui_main_state) { case UI_MAIN_BANK: case UI_MAIN_BANK_SELECTED: ui_main_state = UI_MAIN_VOICE; enc[i].write(voice); enc_val[i] = enc[i].read(); break; case UI_MAIN_VOICE: case UI_MAIN_VOICE_SELECTED: ui_main_state = UI_MAIN_BANK; enc[i].write(bank); enc_val[i] = enc[i].read(); break; } ui_show_main(); break; case UI_EFFECTS_FILTER: case UI_EFFECTS_DELAY: switch (ui_main_state) { case UI_MAIN_FILTER_FRQ: ui_main_state = UI_MAIN_FILTER_RES; enc[i].write(effect_filter_resonance); enc_val[i] = enc[i].read(); ui_show_effects_filter(); break; case UI_MAIN_FILTER_RES: ui_main_state = UI_MAIN_FILTER_OCT; enc[i].write(effect_filter_octave); enc_val[i] = enc[i].read(); ui_show_effects_filter(); break; case UI_MAIN_FILTER_OCT: ui_main_state = UI_MAIN_FILTER_FRQ; enc[i].write(effect_filter_frq); enc_val[i] = enc[i].read(); ui_show_effects_filter(); break; case UI_MAIN_DELAY_TIME: ui_main_state = UI_MAIN_DELAY_FEEDBACK; enc[i].write(effect_delay_feedback); enc_val[i] = enc[i].read(); ui_show_effects_delay(); break; case UI_MAIN_DELAY_VOLUME: ui_main_state = UI_MAIN_DELAY_TIME; enc[i].write(effect_delay_time); enc_val[i] = enc[i].read(); ui_show_effects_delay(); break; case UI_MAIN_DELAY_FEEDBACK: ui_main_state = UI_MAIN_DELAY_VOLUME; enc[i].write(effect_delay_volume); enc_val[i] = enc[i].read(); ui_show_effects_delay(); break; } break; } } } #ifdef DEBUG Serial.print(F("Button ")); Serial.println(i, DEC); #endif } if (enc[i].read() == enc_val[i]) continue; else { switch (i) { case 0: // left encoder moved switch (ui_state) { case UI_MAIN: case UI_VOLUME: if (enc[i].read() <= 0) enc[i].write(0); else if (enc[i].read() >= ENC_VOL_STEPS) enc[i].write(ENC_VOL_STEPS); set_volume(float(map(enc[i].read(), 0, ENC_VOL_STEPS, 0, 100)) / 100, vol_left, vol_right); eeprom_write(EEPROM_UPDATE_VOL); ui_show_volume(); break; case UI_MIDICHANNEL: if (enc[i].read() <= 0) enc[i].write(0); else if (enc[i].read() >= 16) enc[i].write(16); midi_channel = enc[i].read(); eeprom_write(EEPROM_UPDATE_MIDICHANNEL); ui_show_midichannel(); break; } break; case 1: // right encoder moved switch (ui_state) { case UI_MAIN: switch (ui_main_state) { case UI_MAIN_BANK: ui_main_state = UI_MAIN_BANK_SELECTED; case UI_MAIN_BANK_SELECTED: if (enc[i].read() <= 0) enc[i].write(0); else if (enc[i].read() > max_loaded_banks - 1) enc[i].write(max_loaded_banks - 1); bank = enc[i].read(); get_voice_names_from_bank(bank); load_sysex(bank, voice); eeprom_write(EEPROM_UPDATE_BANK); break; case UI_MAIN_VOICE: ui_main_state = UI_MAIN_VOICE_SELECTED; case UI_MAIN_VOICE_SELECTED: if (enc[i].read() <= 0) { if (bank > 0) { enc[i].write(MAX_VOICES - 1); bank--; get_voice_names_from_bank(bank); } else enc[i].write(0); } else if (enc[i].read() > MAX_VOICES - 1) { if (bank < MAX_BANKS - 1) { enc[i].write(0); bank++; get_voice_names_from_bank(bank); } else enc[i].write(MAX_VOICES - 1); } voice = enc[i].read(); load_sysex(bank, voice); eeprom_write(EEPROM_UPDATE_VOICE); break; } ui_show_main(); break; case UI_EFFECTS_FILTER: switch (ui_main_state) { case UI_MAIN_FILTER_FRQ: if (enc[i].read() <= 0) enc[i].write(0); else if (enc[i].read() > ENC_FILTER_FRQ_STEPS) enc[i].write(ENC_FILTER_FRQ_STEPS); effect_filter_frq = enc[i].read(); if (effect_filter_frq == ENC_FILTER_FRQ_STEPS) { // turn "off" filter mixer1.gain(0, 0.0); // filtered signal off mixer1.gain(3, 1.0); // original signal on } else { // turn "on" filter mixer1.gain(0, 1.0); // filtered signal on mixer1.gain(3, 0.0); // original signal off } filter1.frequency(EXP_FUNC((float)map(effect_filter_frq, 0, ENC_FILTER_FRQ_STEPS, 0, 1024) / 150.0) * 10.0 + 80.0); #ifdef DEBUG Serial.print(F("Setting filter frequency to: ")); Serial.println(EXP_FUNC((float)map(effect_filter_frq, 0, ENC_FILTER_FRQ_STEPS, 0, 1024) / 150.0) * 10.0 + 80.0, DEC); #endif break; case UI_MAIN_FILTER_RES: if (enc[i].read() <= 0) enc[i].write(0); else if (enc[i].read() > ENC_FILTER_RES_STEPS) enc[i].write(ENC_FILTER_RES_STEPS); effect_filter_resonance = enc[i].read(); //filter1.resonance(mapfloat(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0.7, 5.0)); filter1.resonance(EXP_FUNC(mapfloat(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0.7, 5.0)) * 0.044 + 0.61); #ifdef DEBUG Serial.print(F("Setting filter resonance to: ")); Serial.println(EXP_FUNC(mapfloat(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0.7, 5.0)) * 0.044 + 0.61, 2); #endif break; case UI_MAIN_FILTER_OCT: if (enc[i].read() <= 0) enc[i].write(0); else if (enc[i].read() > ENC_FILTER_OCT_STEPS) enc[i].write(ENC_FILTER_OCT_STEPS); effect_filter_octave = enc[i].read(); filter1.octaveControl(mapfloat(effect_filter_octave, 0, ENC_FILTER_OCT_STEPS, 0.0, 7.0)); #ifdef DEBUG Serial.print(F("Setting filter octave control to: ")); Serial.println(mapfloat(effect_filter_octave, 0, ENC_FILTER_OCT_STEPS, 0.0, 7.0), 2); #endif break; } ui_show_effects_filter(); break; case UI_EFFECTS_DELAY: switch (ui_main_state) { case UI_MAIN_DELAY_TIME: if (enc[i].read() <= 0) enc[i].write(0); else if (enc[i].read() > ENC_DELAY_TIME_STEPS) enc[i].write(ENC_DELAY_TIME_STEPS); effect_delay_time = enc[i].read();; delay1.delay(0, mapfloat(effect_delay_time, 0, ENC_DELAY_TIME_STEPS, 0.0, DELAY_MAX_TIME)); #ifdef DEBUG Serial.print(F("Setting delay time to: ")); Serial.println(map(effect_delay_time, 0, ENC_DELAY_TIME_STEPS, 0, DELAY_MAX_TIME)); #endif break; case UI_MAIN_DELAY_FEEDBACK: if (enc[i].read() <= 0) enc[i].write(0); else if (enc[i].read() > ENC_DELAY_FB_STEPS) enc[i].write(ENC_DELAY_FB_STEPS); effect_delay_feedback = enc[i].read(); mixer1.gain(1, mapfloat(float(effect_delay_feedback), 0, ENC_DELAY_FB_STEPS, 0.0, 1.0)); #ifdef DEBUG Serial.print(F("Setting delay feedback to: ")); Serial.println(mapfloat(float(effect_delay_feedback), 0, ENC_DELAY_FB_STEPS, 0.0, 1.0)); #endif break; case UI_MAIN_DELAY_VOLUME: if (enc[i].read() <= 0) enc[i].write(0); else if (enc[i].read() > ENC_DELAY_VOLUME_STEPS) enc[i].write(ENC_DELAY_VOLUME_STEPS); effect_delay_volume = enc[i].read(); mixer2.gain(1, mapfloat(effect_delay_volume, 0, ENC_DELAY_VOLUME_STEPS, 0.0, 1.0)); // delay tap1 signal (with added feedback) #ifdef DEBUG Serial.print(F("Setting delay volume to: ")); Serial.println(effect_delay_volume); #endif break; } ui_show_effects_delay(); break; } break; } #ifdef DEBUG Serial.print(F("Encoder ")); Serial.print(i, DEC); Serial.print(F(": ")); Serial.println(enc[i].read(), DEC); #endif } enc_val[i] = enc[i].read(); } } void ui_show_main(void) { if (ui_state != UI_MAIN) { lcd.clear(); } lcd.show(0, 0, 2, bank); lcd.show(0, 2, 1, " "); strip_extension(bank_names[bank], bank_name); if (ui_main_state == UI_MAIN_BANK || ui_main_state == UI_MAIN_BANK_SELECTED) { lcd.show(0, 2, 1, "["); lcd.show(0, 3, 8, bank_name); lcd.show(0, 11, 1, "]"); } else { lcd.show(0, 2, 1, " "); lcd.show(0, 3, 8, bank_name); lcd.show(0, 11, 1, " "); } lcd.show(1, 0, 2, voice + 1); lcd.show(1, 2, 1, " "); if (ui_main_state == UI_MAIN_VOICE || ui_main_state == UI_MAIN_VOICE_SELECTED) { lcd.show(1, 2, 1, "["); lcd.show(1, 3, 10, voice_names[voice]); lcd.show(1, 14, 1, "]"); } else { lcd.show(1, 2, 1, " "); lcd.show(1, 3, 10, voice_names[voice]); lcd.show(1, 14, 1, " "); } ui_state = UI_MAIN; } void ui_show_volume(void) { ui_back_to_main = 0; if (ui_state != UI_VOLUME) { lcd.clear(); lcd.show(0, 0, LCD_CHARS, "Volume"); } lcd.show(0, LCD_CHARS - 3, 3, vol * 100); if (vol == 0.0) lcd.show(1, 0, LCD_CHARS , " "); else { if (vol < (float(LCD_CHARS) / 100)) lcd.show(1, 0, LCD_CHARS, "*"); else { for (uint8_t i = 0; i < map(vol * 100, 0, 100, 0, LCD_CHARS); i++) lcd.show(1, i, 1, "*"); for (uint8_t i = map(vol * 100, 0, 100, 0, LCD_CHARS); i < LCD_CHARS; i++) lcd.show(1, i, 1, " "); } } ui_state = UI_VOLUME; } void ui_show_midichannel(void) { ui_back_to_main = 0; if (ui_state != UI_MIDICHANNEL) { lcd.clear(); lcd.show(0, 0, LCD_CHARS, "MIDI Channel"); } if (midi_channel == MIDI_CHANNEL_OMNI) lcd.show(1, 0, 4, "OMNI"); else { lcd.show(1, 0, 2, midi_channel); if (midi_channel == 1) lcd.show(1, 2, 2, " "); } ui_state = UI_MIDICHANNEL; } void ui_show_effects_filter(void) { if (ui_state != UI_EFFECTS_FILTER) { lcd.clear(); lcd.show(0, 0, LCD_CHARS, "Filter"); lcd.show(0, 7, 2, "F:"); lcd.show(1, 0, 4, "Res:"); lcd.show(1, 8, 4, "Oct:"); } if (effect_filter_frq == ENC_FILTER_FRQ_STEPS) { lcd.show(0, 10, 4, "OFF "); } else { lcd.show(0, 10, 4, uint16_t(EXP_FUNC((float)map(effect_filter_frq, 0, ENC_FILTER_FRQ_STEPS, 0, 1024) / 150.0) * 10.0 + 80.5)); } lcd.show(1, 5, 2, map(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0, 99)); lcd.show(1, 13, 2, map(effect_filter_octave, 0, ENC_FILTER_OCT_STEPS, 0, 80)); if (ui_main_state == UI_MAIN_FILTER_FRQ) { lcd.show(0, 9, 1, "["); lcd.show(0, 14, 1, "]"); } else { lcd.show(0, 9, 1, " "); lcd.show(0, 14, 1, " "); } if (ui_main_state == UI_MAIN_FILTER_RES) { lcd.show(1, 4, 1, "["); lcd.show(1, 7, 1, "]"); } else { lcd.show(1, 4, 1, " "); lcd.show(1, 7, 1, " "); } if (ui_main_state == UI_MAIN_FILTER_OCT) { lcd.show(1, 12, 1, "["); lcd.show(1, 15, 1, "]"); } else { lcd.show(1, 12, 1, " "); lcd.show(1, 15, 1, " "); } ui_state = UI_EFFECTS_FILTER; } void ui_show_effects_delay(void) { if (ui_state != UI_EFFECTS_DELAY) { lcd.clear(); lcd.show(0, 0, 5, "Delay"); lcd.show(0, 6, 2, "T:"); lcd.show(0, 14, 2, "ms"); lcd.show(1, 0, 3, "FB:"); lcd.show(1, 8, 5, "Vol:"); } lcd.show(0, 9, 4, map(effect_delay_time, 0, ENC_DELAY_TIME_STEPS, 0, 1200)); lcd.show(1, 4, 2, map(effect_delay_feedback, 0, ENC_DELAY_FB_STEPS, 0, 99)); lcd.show(1, 13, 2, map(effect_delay_volume, 0, ENC_DELAY_VOLUME_STEPS, 0, 99)); if (ui_main_state == UI_MAIN_DELAY_TIME) { lcd.show(0, 8, 1, "["); lcd.show(0, 13, 1, "]"); } else { lcd.show(0, 8, 1, " "); lcd.show(0, 13, 1, " "); } if (ui_main_state == UI_MAIN_DELAY_FEEDBACK) { lcd.show(1, 3, 1, "["); lcd.show(1, 6, 1, "]"); } else { lcd.show(1, 3, 1, " "); lcd.show(1, 6, 1, " "); } if (ui_main_state == UI_MAIN_DELAY_VOLUME) { lcd.show(1, 12, 1, "["); lcd.show(1, 15, 1, "]"); } else { lcd.show(1, 12, 1, " "); lcd.show(1, 15, 1, " "); } ui_state = UI_EFFECTS_DELAY; } float mapfloat(float val, float in_min, float in_max, float out_min, float out_max) { return (val - in_min) * (out_max - out_min) / (in_max - in_min) + out_min; } #endif