/** * This program logs data from the Arduino ADC to a binary file. * * Samples are logged at regular intervals. Each Sample consists of the ADC * values for the analog pins defined in the PIN_LIST array. The pins numbers * may be in any order. * * Edit the configuration constants below to set the sample pins, sample rate, * and other configuration values. * * If your SD card has a long write latency, it may be necessary to use * slower sample rates. Using a Mega Arduino helps overcome latency * problems since more 64 byte buffer blocks will be used. * * Each 64 byte data block in the file has a four byte header followed by up * to 60 bytes of data. (60 values in 8-bit mode or 30 values in 10-bit mode) * Each block contains an integral number of samples with unused space at the * end of the block. * */ #ifdef __AVR__ #include #include "SdFs.h" #include "AvrAdcLogger.h" // Save SRAM if 328. #ifdef __AVR_ATmega328P__ #include "MinimumSerial.h" MinimumSerial MinSerial; #define Serial MinSerial #endif // __AVR_ATmega328P__ //------------------------------------------------------------------------------ // SD_FAT_TYPE = 1 for FAT16/FAT32, 2 for exFAT, 3 for FAT16/FAT32 and exFAT. // Note: Uno will not support SD_FAT_TYPE = 3. #define SD_FAT_TYPE 1 //------------------------------------------------------------------------------ // Pin definitions. // // Digital pin to indicate an error, set to -1 if not used. // The led blinks for fatal errors. The led goes on solid for SD write // overrun errors and logging continues. const int8_t ERROR_LED_PIN = -1; // SD chip select pin. const uint8_t SD_CS_PIN = SS; //------------------------------------------------------------------------------ // Analog pin number list for a sample. Pins may be in any order and pin // numbers may be repeated. const uint8_t PIN_LIST[] = {0, 1, 2, 3, 4}; //------------------------------------------------------------------------------ // Sample rate in samples per second. const float SAMPLE_RATE = 5000; // Must be 0.25 or greater. // The interval between samples in seconds, SAMPLE_INTERVAL, may be set to a // constant instead of being calculated from SAMPLE_RATE. SAMPLE_RATE is not // used in the code below. For example, setting SAMPLE_INTERVAL = 2.0e-4 // will result in a 200 microsecond sample interval. const float SAMPLE_INTERVAL = 1.0/SAMPLE_RATE; // Setting ROUND_SAMPLE_INTERVAL non-zero will cause the sample interval to // be rounded to a a multiple of the ADC clock period and will reduce sample // time jitter. #define ROUND_SAMPLE_INTERVAL 1 //------------------------------------------------------------------------------ // Reference voltage. See the processor data-sheet for reference details. // uint8_t const ADC_REF = 0; // External Reference AREF pin. uint8_t const ADC_REF = (1 << REFS0); // Vcc Reference. // uint8_t const ADC_REF = (1 << REFS1); // Internal 1.1 (only 644 1284P Mega) // uint8_t const ADC_REF = (1 << REFS1) | (1 << REFS0); // Internal 1.1 or 2.56 //------------------------------------------------------------------------------ // File definitions. // // Maximum file size in bytes. // The program creates a contiguous file with MAX_FILE_SIZE_MiB bytes. // The file will be truncated if logging is stopped early. const uint32_t MAX_FILE_SIZE_MiB = 100; // 100 MiB file. // log file name. Integer field before dot will be incremented. #define LOG_FILE_NAME "AvrAdc00.bin" // Maximum length name including zero byte. const size_t NAME_DIM = 40; // Set RECORD_EIGHT_BITS non-zero to record only the high 8-bits of the ADC. #define RECORD_EIGHT_BITS 0 //------------------------------------------------------------------------------ // FIFO size definition. Use a multiple of 512 bytes for best performance. // #if RAMEND < 0X8FF #error SRAM too small #elif RAMEND < 0X10FF const size_t FIFO_SIZE_BYTES = 512; #elif RAMEND < 0X20FF const size_t FIFO_SIZE_BYTES = 4*512; #elif RAMEND < 0X40FF const size_t FIFO_SIZE_BYTES = 12*512; #else // RAMEND const size_t FIFO_SIZE_BYTES = 16*512; #endif // RAMEND //------------------------------------------------------------------------------ // ADC clock rate. // The ADC clock rate is normally calculated from the pin count and sample // interval. The calculation attempts to use the lowest possible ADC clock // rate. // // You can select an ADC clock rate by defining the symbol ADC_PRESCALER to // one of these values. You must choose an appropriate ADC clock rate for // your sample interval. // #define ADC_PRESCALER 7 // F_CPU/128 125 kHz on an Uno // #define ADC_PRESCALER 6 // F_CPU/64 250 kHz on an Uno // #define ADC_PRESCALER 5 // F_CPU/32 500 kHz on an Uno // #define ADC_PRESCALER 4 // F_CPU/16 1000 kHz on an Uno // #define ADC_PRESCALER 3 // F_CPU/8 2000 kHz on an Uno (8-bit mode only) //============================================================================== // End of configuration constants. //============================================================================== // Temporary log file. Will be deleted if a reset or power failure occurs. #define TMP_FILE_NAME "tmp_adc.bin" // Number of analog pins to log. const uint8_t PIN_COUNT = sizeof(PIN_LIST)/sizeof(PIN_LIST[0]); // Minimum ADC clock cycles per sample interval const uint16_t MIN_ADC_CYCLES = 15; // Extra cpu cycles to setup ADC with more than one pin per sample. const uint16_t ISR_SETUP_ADC = PIN_COUNT > 1 ? 100 : 0; // Maximum cycles for timer0 system interrupt, millis, micros. const uint16_t ISR_TIMER0 = 160; //============================================================================== const uint32_t MAX_FILE_SIZE = MAX_FILE_SIZE_MiB << 20; // Select fastest interface. #if ENABLE_DEDICATED_SPI #define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI) #else // ENABLE_DEDICATED_SPI #define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI) #endif // ENABLE_DEDICATED_SPI #if SD_FAT_TYPE == 1 typedef SdFat sd_t; typedef File file_t; #elif SD_FAT_TYPE == 2 typedef SdExFat sd_t; typedef ExFile file_t; #elif SD_FAT_TYPE == 3 typedef SdFs sd_t; typedef FsFile file_t; #else // SD_FAT_TYPE #error Invalid SD_FAT_TYPE #endif // SD_FAT_TYPE sd_t sd; file_t binFile; char binName[] = LOG_FILE_NAME; #if RECORD_EIGHT_BITS const size_t BLOCK_MAX_COUNT = PIN_COUNT*(DATA_DIM8/PIN_COUNT); typedef block8_t block_t; #else // RECORD_EIGHT_BITS const size_t BLOCK_MAX_COUNT = PIN_COUNT*(DATA_DIM16/PIN_COUNT); typedef block16_t block_t; #endif // RECORD_EIGHT_BITS // Size of FIFO in blocks. size_t const FIFO_DIM = FIFO_SIZE_BYTES/sizeof(block_t); block_t fifoBuffer[FIFO_DIM]; volatile size_t fifoCount = 0; // volatile - shared, ISR and background. block_t* const fifoFirst = fifoBuffer; block_t* fifoHead = nullptr; // Only accessed by ISR during logging. block_t* fifoTail = nullptr; // Only accessed by writer during logging. block_t* const fifoLast = fifoBuffer + FIFO_DIM -1; // Advance FIFO head or tail pointer. inline block_t* fifoNext(block_t* ptr) { return ptr < fifoLast ? ptr + 1 : fifoFirst; } //============================================================================== // Interrupt Service Routines // Disable ADC interrupt if true. volatile bool isrStop = false; // Pointer to current buffer. block_t* isrBuf = nullptr; // overrun count uint16_t isrOver = 0; // ADC configuration for each pin. uint8_t adcmux[PIN_COUNT]; uint8_t adcsra[PIN_COUNT]; uint8_t adcsrb[PIN_COUNT]; uint8_t adcindex = 1; // Insure no timer events are missed. volatile bool timerError = false; volatile bool timerFlag = false; //------------------------------------------------------------------------------ // ADC done interrupt. ISR(ADC_vect) { // Read ADC data. #if RECORD_EIGHT_BITS uint8_t d = ADCH; #else // RECORD_EIGHT_BITS // This will access ADCL first. uint16_t d = ADC; #endif // RECORD_EIGHT_BITS if (!isrBuf) { if (fifoCount < FIFO_DIM) { isrBuf = fifoHead; } else { // no buffers - count overrun if (isrOver < 0XFFFF) { isrOver++; } // Avoid missed timer error. timerFlag = false; return; } } // Start ADC for next pin if (PIN_COUNT > 1) { ADMUX = adcmux[adcindex]; ADCSRB = adcsrb[adcindex]; ADCSRA = adcsra[adcindex]; if (adcindex == 0) { timerFlag = false; } adcindex = adcindex < (PIN_COUNT - 1) ? adcindex + 1 : 0; } else { timerFlag = false; } // Store ADC data. isrBuf->data[isrBuf->count++] = d; // Check for buffer full. if (isrBuf->count >= BLOCK_MAX_COUNT) { fifoHead = fifoNext(fifoHead); fifoCount++; // Check for end logging. if (isrStop) { adcStop(); return; } // Set buffer needed and clear overruns. isrBuf = nullptr; isrOver = 0; } } //------------------------------------------------------------------------------ // timer1 interrupt to clear OCF1B ISR(TIMER1_COMPB_vect) { // Make sure ADC ISR responded to timer event. if (timerFlag) { timerError = true; } timerFlag = true; } //============================================================================== // Error messages stored in flash. #define error(msg) (Serial.println(F(msg)),errorHalt()) #define assert(e) ((e) ? (void)0 : error("assert: " #e)) //------------------------------------------------------------------------------ // void fatalBlink() { while (true) { if (ERROR_LED_PIN >= 0) { digitalWrite(ERROR_LED_PIN, HIGH); delay(200); digitalWrite(ERROR_LED_PIN, LOW); delay(200); } } } //------------------------------------------------------------------------------ void errorHalt() { // Print minimal error data. // sd.printSdErrorCode(&Serial); // Print extended error info - uses about 1600 extra bytes of flash. sd.printSdError(&Serial); // Try to save data. binFile.close(); fatalBlink(); } //============================================================================== // End heap - stack begin. char* heapEnd() { // Boundary between stack and heap. extern char *__brkval; //End of bss section. extern char __bss_end; return __brkval ? __brkval : &__bss_end; } //------------------------------------------------------------------------------ // Fill stack with 0X55. void avrFillStack() { char* p = heapEnd(); char* end = reinterpret_cast(SP) - 10; while (p < end) { *p++ = 0X55; } } //------------------------------------------------------------------------------ // Check unused stack. Assumes no use of dynamic memory with "new" or malloc. size_t avrUnusedStack() { char* p = heapEnd(); char* end = reinterpret_cast(SP) - 10; while(p < end && *p == 0X55) { p++; } return p - heapEnd(); } //------------------------------------------------------------------------------ void printUnusedStack() { Serial.print(F("\nUnused stack: ")); Serial.println(avrUnusedStack()); } //============================================================================== #if ADPS0 != 0 || ADPS1 != 1 || ADPS2 != 2 #error unexpected ADC prescaler bits #endif //------------------------------------------------------------------------------ inline bool adcActive() {return (1 << ADIE) & ADCSRA;} //------------------------------------------------------------------------------ // initialize ADC and timer1 void adcInit(metadata_t* meta) { uint8_t adps; // prescaler bits for ADCSRA uint32_t ticks = F_CPU*SAMPLE_INTERVAL + 0.5; // Sample interval cpu cycles. if (ADC_REF & ~((1 << REFS0) | (1 << REFS1))) { error("Invalid ADC reference"); } #ifdef ADC_PRESCALER if (ADC_PRESCALER > 7 || ADC_PRESCALER < 2) { error("Invalid ADC prescaler"); } adps = ADC_PRESCALER; #else // ADC_PRESCALER // Allow extra cpu cycles to change ADC settings if more than one pin. int32_t adcCycles = (ticks - ISR_TIMER0)/PIN_COUNT - ISR_SETUP_ADC; for (adps = 7; adps > 0; adps--) { if (adcCycles >= (MIN_ADC_CYCLES << adps)) { break; } } #endif // ADC_PRESCALER meta->adcFrequency = F_CPU >> adps; if (meta->adcFrequency > (RECORD_EIGHT_BITS ? 2000000 : 1000000)) { error("Sample Rate Too High"); } #if ROUND_SAMPLE_INTERVAL // Round so interval is multiple of ADC clock. ticks += 1 << (adps - 1); ticks >>= adps; ticks <<= adps; #endif // ROUND_SAMPLE_INTERVAL if (PIN_COUNT > BLOCK_MAX_COUNT || PIN_COUNT > PIN_NUM_DIM) { error("Too many pins"); } meta->pinCount = PIN_COUNT; meta->recordEightBits = RECORD_EIGHT_BITS; for (int i = 0; i < PIN_COUNT; i++) { uint8_t pin = PIN_LIST[i]; if (pin >= NUM_ANALOG_INPUTS) { error("Invalid Analog pin number"); } meta->pinNumber[i] = pin; // Set ADC reference and low three bits of analog pin number. adcmux[i] = (pin & 7) | ADC_REF; if (RECORD_EIGHT_BITS) { adcmux[i] |= 1 << ADLAR; } // If this is the first pin, trigger on timer/counter 1 compare match B. adcsrb[i] = i == 0 ? (1 << ADTS2) | (1 << ADTS0) : 0; #ifdef MUX5 if (pin > 7) { adcsrb[i] |= (1 << MUX5); } #endif // MUX5 adcsra[i] = (1 << ADEN) | (1 << ADIE) | adps; // First pin triggers on timer 1 compare match B rest are free running. adcsra[i] |= i == 0 ? 1 << ADATE : 1 << ADSC; } // Setup timer1 TCCR1A = 0; uint8_t tshift; if (ticks < 0X10000) { // no prescale, CTC mode TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS10); tshift = 0; } else if (ticks < 0X10000*8) { // prescale 8, CTC mode TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11); tshift = 3; } else if (ticks < 0X10000*64) { // prescale 64, CTC mode TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11) | (1 << CS10); tshift = 6; } else if (ticks < 0X10000*256) { // prescale 256, CTC mode TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS12); tshift = 8; } else if (ticks < 0X10000*1024) { // prescale 1024, CTC mode TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS12) | (1 << CS10); tshift = 10; } else { error("Sample Rate Too Slow"); } // divide by prescaler ticks >>= tshift; // set TOP for timer reset ICR1 = ticks - 1; // compare for ADC start OCR1B = 0; // multiply by prescaler ticks <<= tshift; // Sample interval in CPU clock ticks. meta->sampleInterval = ticks; meta->cpuFrequency = F_CPU; float sampleRate = (float)meta->cpuFrequency/meta->sampleInterval; Serial.print(F("Sample pins:")); for (uint8_t i = 0; i < meta->pinCount; i++) { Serial.print(' '); Serial.print(meta->pinNumber[i], DEC); } Serial.println(); Serial.print(F("ADC bits: ")); Serial.println(meta->recordEightBits ? 8 : 10); Serial.print(F("ADC clock kHz: ")); Serial.println(meta->adcFrequency/1000); Serial.print(F("Sample Rate: ")); Serial.println(sampleRate); Serial.print(F("Sample interval usec: ")); Serial.println(1000000.0/sampleRate, 4); } //------------------------------------------------------------------------------ // enable ADC and timer1 interrupts void adcStart() { // initialize ISR adcindex = 1; isrBuf = nullptr; isrOver = 0; isrStop = false; // Clear any pending interrupt. ADCSRA |= 1 << ADIF; // Setup for first pin. ADMUX = adcmux[0]; ADCSRB = adcsrb[0]; ADCSRA = adcsra[0]; // Enable timer1 interrupts. timerError = false; timerFlag = false; TCNT1 = 0; TIFR1 = 1 << OCF1B; TIMSK1 = 1 << OCIE1B; } //------------------------------------------------------------------------------ inline void adcStop() { TIMSK1 = 0; ADCSRA = 0; } //------------------------------------------------------------------------------ // Fast buffered print. class BufferedPrint { public: BufferedPrint() : m_pr(0), m_in(0) {} explicit BufferedPrint(Print* pr) : m_pr(pr), m_in(0) {}; void begin(Print* pr) { m_pr = pr; } template bool print(Type n, char term) { char buf[sizeof(Type) < 4 ? 8 : 13]; char* str = buf + sizeof(buf); if (term) { *--str = term; if (term == '\n') { *--str = '\r'; } } Type p = n < 0 ? -n : n; if (sizeof(Type) <= 2) { str = fmtBase10(str, (uint16_t)p); } else { str = fmtBase10(str, (uint32_t)p); } if (n < 0){ *--str = '-'; } return write((uint8_t*)str, buf + sizeof(buf) - str); } bool sync() { if (!m_pr || m_pr->write(m_buf, m_in) != m_in) { return false; } m_in = 0; return true; } bool write(uint8_t* p, uint8_t n) { if ((n + m_in) >= sizeof(m_buf) && !sync()) { return false; } memcpy(m_buf + m_in, p, n); m_in += n; return true; } private: Print* m_pr; uint8_t m_in; uint8_t m_buf[64]; }; //------------------------------------------------------------------------------ // Convert binary file to csv file. void binaryToCsv() { uint8_t lastPct = 0; block_t* pd; metadata_t* pm; uint32_t t0 = millis(); char csvName[NAME_DIM]; file_t csvFile; BufferedPrint b(&csvFile); if (!binFile.isOpen()) { Serial.println(F("No current binary file")); return; } binFile.rewind(); // Create a new csv file. binFile.getName(csvName, sizeof(csvName)); char* dot = strchr(csvName, '.'); if (!dot) error("no dot"); strcpy(dot + 1, "csv"); if (!csvFile.open(csvName, O_WRITE|O_CREAT|O_TRUNC)) { error("open csvFile failed"); } Serial.println(); Serial.print(F("Writing: ")); Serial.print(csvName); Serial.println(F(" - type any character to stop")); uint32_t tPct = millis(); bool doHeader = true; while (!Serial.available()) { int nb = binFile.read(fifoBuffer, sizeof(fifoBuffer)); if (nb < 0) { error("read binFile failed"); } fifoTail = fifoBuffer; fifoCount = nb/sizeof(block_t); if (fifoCount < 1) { break; } if (doHeader) { doHeader = false; pm = (metadata_t*)fifoTail++; fifoCount--; csvFile.print(F("Interval,")); float intervalMicros = 1.0e6*pm->sampleInterval/(float)pm->cpuFrequency; csvFile.print(intervalMicros, 4); csvFile.println(F(",usec")); for (uint8_t i = 0; i < pm->pinCount; i++) { if (i) { csvFile.write(','); } csvFile.print(F("pin")); csvFile.print(pm->pinNumber[i]); } csvFile.println(); } while (fifoCount--) { pd = fifoTail++; if (pd->overrun) { csvFile.print(F("OVERRUN,")); csvFile.println(pd->overrun); } for (size_t j = 0; j < pd->count; j += PIN_COUNT) { for (size_t i = 0; i < PIN_COUNT; i++) { if (!b.print(pd->data[i + j], i == (PIN_COUNT-1) ? '\n' : ',')) { error("print csvFile failed"); } } } } if ((millis() - tPct) > 1000) { uint8_t pct = binFile.curPosition()/(binFile.fileSize()/100); if (pct != lastPct) { tPct = millis(); lastPct = pct; Serial.print(pct, DEC); Serial.println('%'); } } } if (!b.sync() || !csvFile.close()) { error("close csvFile failed"); } Serial.print(F("Done: ")); Serial.print(0.001*(millis() - t0)); Serial.println(F(" Seconds")); } //------------------------------------------------------------------------------ void createBinFile() { Serial.println(); binFile.close(); while (sd.exists(binName)) { char* p = strchr(binName, '.'); if (!p) { error("no dot in filename"); } while (true) { p--; if (p < binName || *p < '0' || *p > '9') { error("Can't create file name"); } if (p[0] != '9') { p[0]++; break; } p[0] = '0'; } } Serial.print(F("Opening: ")); Serial.println(binName); if (!binFile.open(binName, O_RDWR | O_CREAT)) { error("open binName failed"); } Serial.print(F("Allocating: ")); Serial.print(MAX_FILE_SIZE_MiB); Serial.println(F(" MiB")); if (!binFile.preAllocate(MAX_FILE_SIZE)) { error("preAllocate failed"); } } //------------------------------------------------------------------------------ // log data void logData() { uint32_t t0; uint32_t t1; uint32_t overruns =0; uint32_t count = 0; uint32_t maxLatencyUsec = 0; size_t maxFifoUse = 0; adcInit((metadata_t*)fifoBuffer); // Write metadata. if (sizeof(block_t) != binFile.write(fifoBuffer, sizeof(block_t))) { error("Write metadata failed"); } fifoCount = 0; fifoHead = fifoTail = fifoFirst; // Initialize all blocks to save ISR overhead. memset(fifoBuffer, 0, sizeof(fifoBuffer)); Serial.println(F("Logging - type any character to stop")); // Wait for Serial Idle. Serial.flush(); delay(10); t0 = millis(); t1 = t0; // Start logging interrupts. adcStart(); while (1) { uint32_t m; noInterrupts(); size_t tmpFifoCount = fifoCount; interrupts(); if (tmpFifoCount) { block_t* pBlock = fifoTail; // Write block to SD. m = micros(); if (sizeof(block_t) != binFile.write(pBlock, sizeof(block_t))) { error("write data failed"); } m = micros() - m; t1 = millis(); if (m > maxLatencyUsec) { maxLatencyUsec = m; } if (tmpFifoCount >maxFifoUse) { maxFifoUse = tmpFifoCount; } count += pBlock->count; // Add overruns and possibly light LED. if (pBlock->overrun) { overruns += pBlock->overrun; if (ERROR_LED_PIN >= 0) { digitalWrite(ERROR_LED_PIN, HIGH); } } // Initialize empty block to save ISR overhead. pBlock->count = 0; pBlock->overrun = 0; fifoTail = fifoNext(fifoTail); noInterrupts(); fifoCount--; interrupts(); if (binFile.curPosition() >= MAX_FILE_SIZE) { // File full so stop ISR calls. adcStop(); break; } } if (timerError) { error("Missed timer event - rate too high"); } if (Serial.available()) { // Stop ISR interrupts. isrStop = true; } if (fifoCount == 0 && !adcActive()) { break; } } // Truncate file if recording stopped early. if (binFile.curPosition() < MAX_FILE_SIZE) { Serial.println(F("Truncating file")); Serial.flush(); if (!binFile.truncate()) { error("Can't truncate file"); } } Serial.print(F("Max write latency usec: ")); Serial.println(maxLatencyUsec); Serial.print(F("Record time sec: ")); Serial.println(0.001*(t1 - t0), 3); Serial.print(F("Sample count: ")); Serial.println(count/PIN_COUNT); Serial.print(F("Overruns: ")); Serial.println(overruns); Serial.print(F("FIFO_DIM: ")); Serial.println(FIFO_DIM); Serial.print(F("maxFifoUse: ")); Serial.println(maxFifoUse + 1); // include ISR use. Serial.println(F("Done")); } //------------------------------------------------------------------------------ void openBinFile() { char name[NAME_DIM]; serialClearInput(); Serial.println(F("\nEnter file name")); if (!serialReadLine(name, sizeof(name))) { return; } if (!sd.exists(name)) { Serial.println(name); Serial.println(F("File does not exist")); return; } binFile.close(); if (!binFile.open(name, O_RDWR)) { Serial.println(name); Serial.println(F("open failed")); return; } Serial.println(F("File opened")); } //------------------------------------------------------------------------------ // Print data file to Serial void printData() { block_t buf; if (!binFile.isOpen()) { Serial.println(F("No current binary file")); return; } binFile.rewind(); if (binFile.read(&buf , sizeof(buf)) != sizeof(buf)) { error("Read metadata failed"); } Serial.println(); Serial.println(F("Type any character to stop")); delay(1000); while (!Serial.available() && binFile.read(&buf , sizeof(buf)) == sizeof(buf)) { if (buf.count == 0) { break; } if (buf.overrun) { Serial.print(F("OVERRUN,")); Serial.println(buf.overrun); } for (size_t i = 0; i < buf.count; i++) { Serial.print(buf.data[i], DEC); if ((i+1)%PIN_COUNT) { Serial.print(','); } else { Serial.println(); } } } Serial.println(F("Done")); } //------------------------------------------------------------------------------ void serialClearInput() { do { delay(10); } while (Serial.read() >= 0); } //------------------------------------------------------------------------------ bool serialReadLine(char* str, size_t size) { size_t n = 0; while(!Serial.available()) { } while (true) { int c = Serial.read(); if (c < ' ') break; str[n++] = c; if (n >= size) { Serial.println(F("input too long")); return false; } uint32_t m = millis(); while (!Serial.available() && (millis() - m) < 100){} if (!Serial.available()) break; } str[n] = 0; return true; } //------------------------------------------------------------------------------ void setup(void) { if (ERROR_LED_PIN >= 0) { pinMode(ERROR_LED_PIN, OUTPUT); } Serial.begin(9600); while(!Serial) {} Serial.println(F("Type any character to begin.")); while(!Serial.available()) {} avrFillStack(); // Read the first sample pin to init the ADC. analogRead(PIN_LIST[0]); #if !ENABLE_DEDICATED_SPI Serial.println(F( "\nFor best performance edit SdFsConfig.h\n" "and set ENABLE_DEDICATED_SPI nonzero")); #endif // !ENABLE_DEDICATED_SPI // Initialize SD. if (!sd.begin(SD_CONFIG)) { error("sd.begin failed"); } } //------------------------------------------------------------------------------ void loop(void) { printUnusedStack(); // Read any Serial data. do { delay(10); } while (Serial.available() && Serial.read() >= 0); Serial.println(); Serial.println(F("type:")); Serial.println(F("b - open existing bin file")); Serial.println(F("c - convert file to csv")); Serial.println(F("l - list files")); Serial.println(F("p - print data to Serial")); Serial.println(F("r - record ADC data")); while(!Serial.available()) { SysCall::yield(); } char c = tolower(Serial.read()); if (ERROR_LED_PIN >= 0) { digitalWrite(ERROR_LED_PIN, LOW); } // Read any Serial data. do { delay(10); } while (Serial.available() && Serial.read() >= 0); if (c == 'b') { openBinFile(); } else if (c == 'c') { binaryToCsv(); } else if (c == 'l') { Serial.println(F("\nls:")); sd.ls(&Serial, LS_SIZE); } else if (c == 'p') { printData(); } else if (c == 'r') { createBinFile(); logData(); } else { Serial.println(F("Invalid entry")); } } #else // __AVR__ #error This program is only for AVR. #endif // __AVR__