/* radioModulatedGenerator_F32.cpp * * RadioModulatedGenerator_F32 class - See .h file for information. * Copyright (c) 2021 Bob Larkin Created: 15 April 2021 * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "radioModulatedGenerator_F32.h" // 513 values of the sine wave in a float array: #include "sinTable512_f32.h" void radioModulatedGenerator_F32::update(void) { audio_block_f32_t *inAmpl, *inPhaseFreq; audio_block_f32_t *outBlockI, *outBlockQ; uint16_t index, i; float32_t a, b, deltaPhase, phaseC, amSig; uint32_t tt=micros(); // Input 0 is for amplitude modulation. if(doAM) { inAmpl = AudioStream_F32::receiveReadOnly_f32(0); if (!inAmpl) return; } // Input 1 is for phase or frequency modulation. if(doPM || doFM) { inPhaseFreq = AudioStream_F32::receiveReadOnly_f32(1); if (!inPhaseFreq) { if(doAM) AudioStream_F32::release(inAmpl); return; } } outBlockI = AudioStream_F32::allocate_f32(); // Output blocks if (!outBlockI) { if(doAM) AudioStream_F32::release(inAmpl); if(doPM || doFM) AudioStream_F32::release(inPhaseFreq); return; } if(bothIQ) { outBlockQ = AudioStream_F32::allocate_f32(); if (!outBlockQ) { if(doAM) AudioStream_F32::release(inAmpl); if(doPM || doFM) AudioStream_F32::release(inPhaseFreq); AudioStream_F32::release(outBlockI); return; } } for (i=0; i < block_length; i++) { if(doPM) // Phase in inPhaseFreq->data[i] is scaled for (0.0, 2*PI) phaseS += (phaseIncrement0 + K512ON2PI*inPhaseFreq->data[i]); else if(doFM) phaseS += kp*(freq + inPhaseFreq->data[i]); // kp=512.0/sample_rate_Hz else phaseS += phaseIncrement0; // No PM or FM alteration to carrier phase while (phaseS > 512.0f) phaseS -= 512.0f; while (phaseS < 0.0f) phaseS += 512.0f; index = (uint16_t) phaseS; // Does adding 0.5 here cut errors? <<<<<<<<<<<<<<<<<< deltaPhase = phaseS -(float32_t) index; /* Read two nearest values of input value from the sin table */ a = sinTable512_f32[index]; b = sinTable512_f32[index+1]; if(doAM) { amSig = 1.0f + inAmpl->data[i]; if(amSig<0.0f) amSig = 0.0f; // Common def of AM going back to vacuum tubes outBlockI->data[i] = amplitude_pk*amSig*(a + 0.001953125*(b-a)*deltaPhase); /* Linear interpolation process */ } else outBlockI->data[i] = amplitude_pk*(a + 0.001953125*(b-a)*deltaPhase); if(bothIQ) { /* Shift forward phaseQ_I and get cos. First, the calculation of index of the table */ phaseC = phaseS + phaseQ_I; while (phaseC > 512.0f) phaseC -= 512.0f; while (phaseC < 0.0f) phaseC += 512.0f; index = (uint16_t) phaseC; deltaPhase = phaseC -(float32_t) index; /* Read two nearest values of input value from the sin table */ a = sinTable512_f32[index]; b = sinTable512_f32[index+1]; if(doAM) // amSig from above outBlockQ->data[i] = amplitudeQ_I*amplitude_pk*amSig*(a + 0.001953125*(b-a)*deltaPhase); else outBlockQ->data[i] = amplitudeQ_I*amplitude_pk*(a + 0.001953125*(b-a)*deltaPhase); } } if(doAM) AudioStream_F32::release(inAmpl); if(doPM || doFM) AudioStream_F32::release(inPhaseFreq); AudioStream_F32::transmit(outBlockI, 0); AudioStream_F32::release (outBlockI); if(bothIQ) { AudioStream_F32::transmit(outBlockQ, 1); AudioStream_F32::release (outBlockQ); } Serial.println(micros() - tt); }