// // MicroDexed // // A port of the Dexed sound engine (https://github.com/asb2m10/dexed) for the Teensy-3.5/3.6 with audio shield // (c)2018 H. Wirtz // #include #include #include #include #include #include "dexed.h" #define DEBUG 1 #define SERIAL_SPEED 38400 #define VOLUME 0.5 #define SAMPLE_RATE 44100 //#define INIT_AUDIO_QUEUE 1 //#define SHOW_DEXED_TIMING 1 #define SHOW_XRUN 1 #define SHOW_CPU_LOAD_MSEC 5000 #define MAX_NOTES 10 //#define TEST_MIDI 1 #define TEST_NOTE 40 #define TEST_VEL_MIN 60 #define TEST_VEL_MAX 110 //#define ADD_EFFECT_CHORUS 1 #ifdef ADD_EFFECT_CHORUS #define AUDIO_MEM 6 #else #define AUDIO_MEM 2 #endif // Use these with the Teensy Audio Shield #define SDCARD_CS_PIN 10 #define SDCARD_MOSI_PIN 7 #define SDCARD_SCK_PIN 14 // Use these with the Teensy 3.5 & 3.6 SD card //#define SDCARD_CS_PIN BUILTIN_SDCARD //#define SDCARD_MOSI_PIN 11 // not actually used //#define SDCARD_SCK_PIN 13 // not actually used // GUItool: begin automatically generated code AudioPlayQueue queue1; //xy=84,294 AudioOutputI2S i2s1; //xy=961,276 #ifdef ADD_EFFECT_CHORUS AudioEffectChorus chorus1; //xy=328,295 AudioConnection patchCord1(queue1, chorus1); AudioConnection patchCord2(chorus1, 0, i2s1, 0); AudioConnection patchCord3(chorus1, 0, i2s1, 1); #else AudioConnection patchCord2(queue1, 0, i2s1, 0); AudioConnection patchCord3(queue1, 0, i2s1, 1); #endif AudioControlSGTL5000 sgtl5000_1; //xy=507,403 // GUItool: end automatically generated code MIDI_CREATE_INSTANCE(HardwareSerial, Serial1, MIDI); Dexed* dexed = new Dexed(SAMPLE_RATE); IntervalTimer sched; bool sd_card_available = false; #ifdef ADD_EFFECT_CHORUS // Number of samples in each delay line #define CHORUS_DELAY_LENGTH (16*AUDIO_BLOCK_SAMPLES) // Allocate the delay lines for left and right channels short delayline[CHORUS_DELAY_LENGTH]; #endif void setup() { //while (!Serial) ; // wait for Arduino Serial Monitor Serial.begin(SERIAL_SPEED); delay(250); Serial.println(F("MicroDexed based on https://github.com/asb2m10/dexed")); Serial.println(F("(c)2018 H. Wirtz")); Serial.println(F("setup start")); SPI.setMOSI(SDCARD_MOSI_PIN); SPI.setSCK(SDCARD_SCK_PIN); if (!SD.begin(SDCARD_CS_PIN)) { Serial.println(F("SD card not accessable")); } else { sd_card_available = true; } load_sysex_file("ROM1A.SYX"); #ifdef DEBUG show_patch(); #endif MIDI.begin(MIDI_CHANNEL_OMNI); // Audio connections require memory to work. For more // detailed information, see the MemoryAndCpuUsage example AudioMemory(AUDIO_MEM); sgtl5000_1.enable(); sgtl5000_1.volume(VOLUME); // Initialize processor and memory measurements #ifdef SHOW_CPU_LOAD_MSEC AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); #endif #ifdef INIT_AUDIO_QUEUE // initial fill audio buffer with empty data while (queue1.available()) { int16_t* audio_buffer = queue1.getBuffer(); if (audio_buffer != NULL) { memset(audio_buffer, 0, sizeof(int16_t)*AUDIO_BLOCK_SAMPLES); queue1.playBuffer(); } } #endif dexed->activate(); dexed->setMaxNotes(MAX_NOTES); #ifdef ADD_EFFECT_CHORUS chorus1.begin(delayline, CHORUS_DELAY_LENGTH, 8); #endif #ifdef TEST_MIDI delay(200); randomSeed(analogRead(A0)); queue_midi_event(0x90, TEST_NOTE, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 1 queue_midi_event(0x90, TEST_NOTE + 5, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 2 queue_midi_event(0x90, TEST_NOTE + 8, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 3 queue_midi_event(0x90, TEST_NOTE + 12, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 4 queue_midi_event(0x90, TEST_NOTE + 17, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 5 queue_midi_event(0x90, TEST_NOTE + 20, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 6 queue_midi_event(0x90, TEST_NOTE + 24, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 7 queue_midi_event(0x90, TEST_NOTE + 29, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 8 queue_midi_event(0x90, TEST_NOTE + 32, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 9 queue_midi_event(0x90, TEST_NOTE + 37, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 10 queue_midi_event(0x90, TEST_NOTE + 40, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 11 queue_midi_event(0x90, TEST_NOTE + 44, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 12 queue_midi_event(0x90, TEST_NOTE + 49, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 13 queue_midi_event(0x90, TEST_NOTE + 52, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 14 queue_midi_event(0x90, TEST_NOTE + 57, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 15 queue_midi_event(0x90, TEST_NOTE + 60, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 16 delay(200); #endif #ifdef SHOW_CPU_LOAD_MSEC sched.begin(cpu_and_mem_usage, SHOW_CPU_LOAD_MSEC * 1000); #endif Serial.print(F("AUDIO_BLOCK_SAMPLES=")); Serial.println(AUDIO_BLOCK_SAMPLES); Serial.println(F("setup end")); cpu_and_mem_usage(); } void loop() { int16_t* audio_buffer; // pointer to 128 * int16_t bool break_for_calculation; while (42 == 42) // DON'T PANIC! { audio_buffer = queue1.getBuffer(); if (audio_buffer == NULL) { Serial.println(F("audio_buffer allocation problems!")); } while (MIDI.read()) { break_for_calculation = dexed->ProcessMidiMessage(MIDI.getType(), MIDI.getData1(), MIDI.getData2()); if (break_for_calculation == true) break; } if (!queue1.available()) continue; #if defined(SHOW_DEXED_TIMING) || defined(SHOW_XRUN) elapsedMicros t1; #endif dexed->GetSamples(AUDIO_BLOCK_SAMPLES, audio_buffer); #ifdef SHOW_XRUN uint32_t t2 = t1; if (t2 > 2900) Serial.println(F("xrun")); #endif #ifdef SHOW_DEXED_TIMING Serial.println(t1, DEC); #endif queue1.playBuffer(); } } bool queue_midi_event(uint8_t type, uint8_t data1, uint8_t data2) { return (dexed->ProcessMidiMessage(type, data1, data2)); } #ifdef SHOW_CPU_LOAD_MSEC void cpu_and_mem_usage(void) { Serial.print(F("CPU:")); Serial.print(AudioProcessorUsage(), DEC); Serial.print(F(" CPU MAX:")); Serial.print(AudioProcessorUsageMax(), DEC); Serial.print(F(" MEM:")); Serial.print(AudioMemoryUsage(), DEC); Serial.print(F(" MEM MAX:")); Serial.print(AudioMemoryUsageMax(), DEC); Serial.println(); AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); } #endif void load_sysex_file(char *name) { File root; if (sd_card_available) { root = SD.open("/"); while (42 == 42) { File entry = root.openNextFile(); if (!entry) break; else { if (!entry.isDirectory()) { if (strcmp(name, entry.name()) == 0) { Serial.println(entry.name()); check_sysex(entry); load_sysex(entry, 5); entry.close(); break; } entry.close(); } } } } } #ifdef DEBUG void show_patch(void) { uint8_t i; char voicename[11]; memset(voicename, 0, sizeof(voicename)); for (i = 0; i < 6; i++) { Serial.print(F("OP")); Serial.print(6 - i, DEC); Serial.println(F(":")); Serial.println(F("R1|R2|R3|R4|L1|L2|L3|L4 LEV_SCL_BRK_PT|SCL_LEFT_DEPTH|SCL_RGHT_DEPTH")); Serial.print(dexed->data[(i * 21) + 0], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 1], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 2], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 3], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 4], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 5], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 6], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 7], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 8], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 9], DEC); Serial.print(F(" ")); Serial.println(dexed->data[(i * 21) + 10], DEC); Serial.println(F("SCL_L_CURVE|SCL_R_CURVE|OSC_DET|RT_SCALE|VEL_SENS|MOD_SENS|OUT_LEV|FRQ_C|FRQ_F|MOD")); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 11], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 12], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 13], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 14], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 15], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 16], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 17], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 18], DEC); Serial.print(F(" ")); Serial.print(dexed->data[(i * 21) + 19], DEC); Serial.print(F(" ")); Serial.println(dexed->data[(i * 21) + 20], DEC); } Serial.println(F("PR1|PR2|PR3|PR4|PL1|PL2|PL3|PL4")); Serial.print(F(" ")); for (i = 0; i < 8; i++) { Serial.print(dexed->data[125 + i], DEC); Serial.print(F(" ")); } Serial.println(); Serial.print(F("ALG: ")); Serial.println(dexed->data[133], DEC); Serial.print(F("OSC_SYNC: ")); Serial.println(dexed->data[134], DEC); Serial.print(F("FB: ")); Serial.println(dexed->data[135], DEC); Serial.print(F("LFO SPD: ")); Serial.println(dexed->data[136], DEC); Serial.print(F("LFO_DLY: ")); Serial.println(dexed->data[137], DEC); Serial.print(F("LFO PMD: ")); Serial.println(dexed->data[138], DEC); Serial.print(F("LFO_AMD: ")); Serial.println(dexed->data[139], DEC); Serial.print(F("PMS: ")); Serial.println(dexed->data[140], DEC); Serial.print(F("LFO_WAVEFRM: ")); Serial.println(dexed->data[141], DEC); Serial.print(F("LFO_SYNC: ")); Serial.println(dexed->data[142], DEC); Serial.print(F("TRNSPSE: ")); Serial.println(dexed->data[143], DEC); Serial.print(F("NAME: ")); strncpy(voicename, (char *)&dexed->data[144], sizeof(voicename) - 1); Serial.print(F("[")); Serial.print(voicename); Serial.println(F("]")); Serial.println(); } #endif bool load_sysex(File sysex, uint8_t voice_number) { File file; if (file = SD.open(sysex.name())) { uint8_t* p_data = dexed->data; uint8_t i; uint8_t tmp; file.seek(6 + (voice_number * 128)); for (i = 0; i < 6; i++) { file.read(p_data + (i * 21), 11); // R1, R2, R3, R4, L1, L2, L3, L4, LEV SCL BRK PT, SCL LEFT DEPTH, SCL RGHT DEPTH tmp = file.read(); *(p_data + 11 + (i * 21)) = (tmp & 0x0c) >> 2; *(p_data + 12 + (i * 21)) = (tmp & 0x3); tmp = file.read(); *(p_data + 13 + (i * 21)) = (tmp & 0x78) >> 3; *(p_data + 14 + (i * 21)) = (tmp & 0x07); tmp = file.read(); *(p_data + 15 + (i * 21)) = (tmp & 0x1c) >> 2; *(p_data + 16 + (i * 21)) = (tmp & 0x03); *(p_data + 17 + (i * 21)) = file.read(); tmp = file.read(); *(p_data + 18 + (i * 21)) = (tmp & 0x3e) >> 1; *(p_data + 19 + (i * 21)) = (tmp & 0x01); file.read(p_data + 20 + (i * 21), 1); // FREQ FINE } file.read(p_data + 125, 8); // PR1, PR2, PR3, PR4, PL1, PL2, PL3, PL4 tmp = file.read(); *(p_data + 133) = (tmp & 0x1f); tmp = file.read(); *(p_data + 134) = (tmp & 0x08) >> 3; *(p_data + 135) = (tmp & 0x07); file.read(p_data + 136, 4); // LFS, LFD, LPMD, LAMD tmp = file.read(); *(p_data + 140) = (tmp & 0x30) >> 4; *(p_data + 141) = (tmp & 0x0e) >> 1; *(p_data + 142) = (tmp & 0x01); file.read(p_data + 143, 1); // TRNSP file.read(p_data + 144, 10); // TRNSP *(p_data + 166) = 1; *(p_data + 167) = 1; *(p_data + 168) = 1; *(p_data + 169) = 1; *(p_data + 170) = 1; *(p_data + 171) = 1; *(p_data + 172) = MAX_NOTES; } dexed->activate(); dexed->setMaxNotes(dexed->data[172]); return (true); } bool check_sysex(File sysex) { File file; uint16_t i; uint32_t calc_checksum = 0; if (sysex.size() != 4104) // check sysex size return (false); if (file = SD.open(sysex.name())) { if (file.read() != 0xf0) // check sysex start-byte { Serial.println(F("E: SysEx start byte not found.")); return (false); } if (file.read() != 0x43) // check sysex vendor is Yamaha { Serial.println(F("E: SysEx vendor not Yamaha.")); return (false); } file.seek(4103); if (file.read() != 0xf7) // check sysex end-byte { Serial.println(F("E: SysEx end byte not found.")); return (false); } file.seek(3); if (file.read() != 0x09) // check for sysex type (0x09=32 voices) { Serial.println(F("E: SysEx type not 32 voices.")); return (false); } file.seek(6); // start of 32*128 (=4096) bytes data for (i = 0; i < 4096; i++) calc_checksum += (file.read() & 0x7F); // calculate checksum calc_checksum = uint8_t(~calc_checksum + 1); if (calc_checksum != uint8_t(file.read())) { Serial.println(F("E: checksum mismatch.")); return (false); } } file.close(); return (true); }