/* Audio Library for Teensy 3.X * Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com * * Development of this audio library was funded by PJRC.COM, LLC by sales of * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop * open source software by purchasing Teensy or other PJRC products. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice, development funding notice, and this permission * notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* Added AUDIO_MEMORY_PSRAM_8MB * see https://forum.pjrc.com/threads/29276-Limits-of-delay-effect-in-audio-library/page5?highlight=APS6404L-3SQR * wirtz@parasitstudio.de */ #include #include "effect_delay_ext8.h" //#define INTERNAL_TEST // While 20 MHz (Teensy actually uses 16 MHz in most cases) and even 24 MHz // have worked well in testing at room temperature with 3.3V power, to fully // meet all the worst case timing specs, the SPI clock low time would need // to be 40ns (12.5 MHz clock) for the single chip case and 51ns (9.8 MHz // clock) for the 6-chip memoryboard with 74LCX126 buffers. // // Timing analysis and info is here: // https://forum.pjrc.com/threads/29276-Limits-of-delay-effect-in-audio-library?p=97506&viewfull=1#post97506 #define SPISETTING SPISettings(20000000, MSBFIRST, SPI_MODE0) // Use these with the audio adaptor board (should be adjustable by the user...) //#define SPIRAM_MOSI_PIN 7 //#define SPIRAM_MISO_PIN 12 //#define SPIRAM_SCK_PIN 14 //#define SPIRAM_CS_PIN 6 #define SPIRAM_MOSI_PIN 11 //----------------- #define SPIRAM_MISO_PIN 12 // for Teensy 4.1 #define SPIRAM_SCK_PIN 13 // #define SPIRAM_CS_PIN 36 //----------------- // #define MEMBOARD_CS0_PIN 2 #define MEMBOARD_CS1_PIN 3 #define MEMBOARD_CS2_PIN 4 void AudioEffectDelayExternal8::update(void) { audio_block_t *block; uint32_t n, channel, read_offset; // grab incoming data and put it into the memory block = receiveReadOnly(); if (memory_type >= AUDIO_MEMORY8_UNDEFINED) { // ignore input and do nothing if undefined memory type release(block); return; } if (block) { if (head_offset + AUDIO_BLOCK_SAMPLES <= memory_length) { // a single write is enough write(head_offset, AUDIO_BLOCK_SAMPLES, block->data); head_offset += AUDIO_BLOCK_SAMPLES; } else { // write wraps across end-of-memory n = memory_length - head_offset; write(head_offset, n, block->data); head_offset = AUDIO_BLOCK_SAMPLES - n; write(0, head_offset, block->data + n); } release(block); } else { // if no input, store zeros, so later playback will // not be random garbage previously stored in memory if (head_offset + AUDIO_BLOCK_SAMPLES <= memory_length) { zero(head_offset, AUDIO_BLOCK_SAMPLES); head_offset += AUDIO_BLOCK_SAMPLES; } else { n = memory_length - head_offset; zero(head_offset, n); head_offset = AUDIO_BLOCK_SAMPLES - n; zero(0, head_offset); } } // transmit the delayed outputs for (channel = 0; channel < 8; channel++) { if (!(activemask & (1<data); } else { // read wraps across end-of-memory n = memory_length - read_offset; read(read_offset, n, block->data); read(0, AUDIO_BLOCK_SAMPLES - n, block->data + n); } transmit(block, channel); release(block); } } uint32_t AudioEffectDelayExternal8::allocated[2] = {0, 0}; void AudioEffectDelayExternal8::initialize(AudioEffectDelayMemoryType8_t type, uint32_t samples) { uint32_t memsize, avail; activemask = 0; head_offset = 0; memory_type = type; SPI.setMOSI(SPIRAM_MOSI_PIN); SPI.setMISO(SPIRAM_MISO_PIN); SPI.setSCK(SPIRAM_SCK_PIN); SPI.setCS(SPIRAM_CS_PIN); // added for Teensy 4.1 // SPI.begin(); if (type == AUDIO_MEMORY8_23LC1024) { #ifdef INTERNAL_TEST memsize = 8000; #else memsize = 65536; #endif pinMode(SPIRAM_CS_PIN, OUTPUT); digitalWriteFast(SPIRAM_CS_PIN, HIGH); } else if (type == AUDIO_MEMORY8_MEMORYBOARD) { memsize = 393216; pinMode(MEMBOARD_CS0_PIN, OUTPUT); pinMode(MEMBOARD_CS1_PIN, OUTPUT); pinMode(MEMBOARD_CS2_PIN, OUTPUT); digitalWriteFast(MEMBOARD_CS0_PIN, LOW); digitalWriteFast(MEMBOARD_CS1_PIN, LOW); digitalWriteFast(MEMBOARD_CS2_PIN, LOW); } else if (type == AUDIO_MEMORY8_CY15B104) { #ifdef INTERNAL_TEST memsize = 8000; #else memsize = 262144; #endif pinMode(SPIRAM_CS_PIN, OUTPUT); digitalWriteFast(SPIRAM_CS_PIN, HIGH); } else if (type == AUDIO_MEMORY8_PSRAM_8MB) { #ifdef INTERNAL_TEST memsize = 8000; #else memsize = (2^23); // 8388608 bytes #endif pinMode(SPIRAM_CS_PIN, OUTPUT); digitalWriteFast(SPIRAM_CS_PIN, HIGH); } else { return; } avail = memsize - allocated[type]; if (avail < AUDIO_BLOCK_SAMPLES*2+1) { memory_type = AUDIO_MEMORY8_UNDEFINED; return; } if (samples > avail) samples = avail; memory_begin = allocated[type]; allocated[type] += samples; memory_length = samples; zero(0, memory_length); } #ifdef INTERNAL_TEST static int16_t testmem[8000]; // testing only #endif void AudioEffectDelayExternal8::read(uint32_t offset, uint32_t count, int16_t *data) { uint32_t addr = memory_begin + offset; #ifdef INTERNAL_TEST while (count) { *data++ = testmem[addr++]; count--; } // testing only #else if (memory_type == AUDIO_MEMORY8_23LC1024 || memory_type == AUDIO_MEMORY8_CY15B104 || memory_type == AUDIO_MEMORY8_PSRAM_8MB) { addr *= 2; SPI.beginTransaction(SPISETTING); digitalWriteFast(SPIRAM_CS_PIN, LOW); SPI.transfer16((0x03 << 8) | (addr >> 16)); SPI.transfer16(addr & 0xFFFF); while (count) { *data++ = (int16_t)(SPI.transfer16(0)); count--; } digitalWriteFast(SPIRAM_CS_PIN, HIGH); SPI.endTransaction(); } else if (memory_type == AUDIO_MEMORY8_MEMORYBOARD) { SPI.beginTransaction(SPISETTING); while (count) { uint32_t chip = (addr >> 16) + 1; digitalWriteFast(MEMBOARD_CS0_PIN, chip & 1); digitalWriteFast(MEMBOARD_CS1_PIN, chip & 2); digitalWriteFast(MEMBOARD_CS2_PIN, chip & 4); uint32_t chipaddr = (addr & 0xFFFF) << 1; SPI.transfer16((0x03 << 8) | (chipaddr >> 16)); SPI.transfer16(chipaddr & 0xFFFF); uint32_t num = 0x10000 - (addr & 0xFFFF); if (num > count) num = count; count -= num; addr += num; do { *data++ = (int16_t)(SPI.transfer16(0)); } while (--num > 0); } digitalWriteFast(MEMBOARD_CS0_PIN, LOW); digitalWriteFast(MEMBOARD_CS1_PIN, LOW); digitalWriteFast(MEMBOARD_CS2_PIN, LOW); SPI.endTransaction(); } #endif } void AudioEffectDelayExternal8::write(uint32_t offset, uint32_t count, const int16_t *data) { uint32_t addr = memory_begin + offset; #ifdef INTERNAL_TEST while (count) { testmem[addr++] = *data++; count--; } // testing only #else if (memory_type == AUDIO_MEMORY8_23LC1024 || memory_type == AUDIO_MEMORY8_PSRAM_8MB ) { addr *= 2; SPI.beginTransaction(SPISETTING); digitalWriteFast(SPIRAM_CS_PIN, LOW); SPI.transfer16((0x02 << 8) | (addr >> 16)); SPI.transfer16(addr & 0xFFFF); while (count) { int16_t w = 0; if (data) w = *data++; SPI.transfer16(w); count--; } digitalWriteFast(SPIRAM_CS_PIN, HIGH); SPI.endTransaction(); } else if (memory_type == AUDIO_MEMORY8_CY15B104) { addr *= 2; SPI.beginTransaction(SPISETTING); digitalWriteFast(SPIRAM_CS_PIN, LOW); SPI.transfer(0x06); //write-enable before every write digitalWriteFast(SPIRAM_CS_PIN, HIGH); asm volatile ("NOP\n NOP\n NOP\n NOP\n NOP\n NOP\n"); digitalWriteFast(SPIRAM_CS_PIN, LOW); SPI.transfer16((0x02 << 8) | (addr >> 16)); SPI.transfer16(addr & 0xFFFF); while (count) { int16_t w = 0; if (data) w = *data++; SPI.transfer16(w); count--; } digitalWriteFast(SPIRAM_CS_PIN, HIGH); SPI.endTransaction(); } else if (memory_type == AUDIO_MEMORY8_MEMORYBOARD) { SPI.beginTransaction(SPISETTING); while (count) { uint32_t chip = (addr >> 16) + 1; digitalWriteFast(MEMBOARD_CS0_PIN, chip & 1); digitalWriteFast(MEMBOARD_CS1_PIN, chip & 2); digitalWriteFast(MEMBOARD_CS2_PIN, chip & 4); uint32_t chipaddr = (addr & 0xFFFF) << 1; SPI.transfer16((0x02 << 8) | (chipaddr >> 16)); SPI.transfer16(chipaddr & 0xFFFF); uint32_t num = 0x10000 - (addr & 0xFFFF); if (num > count) num = count; count -= num; addr += num; do { int16_t w = 0; if (data) w = *data++; SPI.transfer16(w); } while (--num > 0); } digitalWriteFast(MEMBOARD_CS0_PIN, LOW); digitalWriteFast(MEMBOARD_CS1_PIN, LOW); digitalWriteFast(MEMBOARD_CS2_PIN, LOW); SPI.endTransaction(); } #endif }