/* USB EHCI Host for Teensy 3.6 * Copyright 2017 Paul Stoffregen (paul@pjrc.com) * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include "USBHost_t36.h" // Read this header first for key info #include "keylayouts.h" // from Teensyduino core library typedef struct { KEYCODE_TYPE code; uint8_t ascii; } keycode_extra_t; typedef struct { KEYCODE_TYPE code; KEYCODE_TYPE codeNumlockOff; uint8_t charNumlockOn; // We will assume when num lock is on we have all characters... } keycode_numlock_t; typedef struct { uint16_t idVendor; // vendor id of keyboard uint16_t idProduct; // product id - 0 implies all of the ones from vendor; } vid_pid_t; // list of products to force into boot protocol #ifdef M #undef M #endif #define M(n) ((n) & KEYCODE_MASK) static const keycode_extra_t keycode_extras[] = { {M(KEY_ENTER), '\n'}, {M(KEY_ESC), 0x1b}, {M(KEY_TAB), 0x9 }, {M(KEY_UP), KEYD_UP }, {M(KEY_DOWN), KEYD_DOWN }, {M(KEY_LEFT), KEYD_LEFT }, {M(KEY_RIGHT), KEYD_RIGHT }, {M(KEY_INSERT), KEYD_INSERT }, {M(KEY_DELETE), KEYD_DELETE }, {M(KEY_PAGE_UP), KEYD_PAGE_UP }, {M(KEY_PAGE_DOWN), KEYD_PAGE_DOWN }, {M(KEY_HOME), KEYD_HOME }, {M(KEY_END), KEYD_END }, {M(KEY_F1), KEYD_F1 }, {M(KEY_F2), KEYD_F2 }, {M(KEY_F3), KEYD_F3 }, {M(KEY_F4), KEYD_F4 }, {M(KEY_F5), KEYD_F5 }, {M(KEY_F6), KEYD_F6 }, {M(KEY_F7), KEYD_F7 }, {M(KEY_F8), KEYD_F8 }, {M(KEY_F9), KEYD_F9 }, {M(KEY_F10), KEYD_F10 }, {M(KEY_F11), KEYD_F11 }, {M(KEY_F12), KEYD_F12 } }; // Some of these mapped to key + shift. static const keycode_numlock_t keycode_numlock[] = { {M(KEYPAD_SLASH), '/', '/'}, {M(KEYPAD_ASTERIX), '*', '*'}, {M(KEYPAD_MINUS), '-', '-'}, {M(KEYPAD_PLUS), '+', '+'}, {M(KEYPAD_ENTER), '\n', '\n'}, {M(KEYPAD_1), 0x80 | M(KEY_END), '1'}, {M(KEYPAD_2), 0x80 | M(KEY_DOWN), '2'}, {M(KEYPAD_3), 0x80 | M(KEY_PAGE_DOWN), '3'}, {M(KEYPAD_4), 0x80 | M(KEY_LEFT), '4'}, {M(KEYPAD_5), 0x00, '5'}, {M(KEYPAD_6), 0x80 | M(KEY_RIGHT), '6'}, {M(KEYPAD_7), 0x80 | M(KEY_HOME), '7'}, {M(KEYPAD_8), 0x80 | M(KEY_UP), '8'}, {M(KEYPAD_9), 0x80 | M(KEY_PAGE_UP), '9'}, {M(KEYPAD_0), 0x80 | M(KEY_INSERT), '0'}, {M(KEYPAD_PERIOD), 0x80 | M(KEY_DELETE), '.'} }; //============================================================ // Items in the list we will try to force into Boot mode. //============================================================ static const vid_pid_t keyboard_forceBootMode[] = { {0x04D9, 0} }; //============================================================ // Items in the list allow HID Parser to claim //============================================================ bool KeyboardController::s_forceHIDMode = false; static const vid_pid_t keyboard_use_hid_mode[] = { {0x04D9, 0}, {0x046D, 0xC547} }; #define print USBHost::print_ #define println USBHost::println_ void KeyboardController::init() { USBHIDParser::driver_ready_for_hid_collection(this); BluetoothController::driver_ready_for_bluetooth(this); } void KeyboardController::forceBootProtocol() { // handle bluetooth connection if (btdriver_) btdriver_->updateHIDProtocol(0x00); if (driver_[0] != nullptr) { // Only do it this way if we are a standard USB device driver_[0]->sendControlPacket(0x21, 11, 0, 0, 0, nullptr); // 11=SET_PROTOCOL BOOT } #if 0 if (device && !control_queued) { mk_setup(setup, 0x21, 11, 0, 0, 0); // 11=SET_PROTOCOL BOOT control_queued = true; queue_Control_Transfer(device, &setup, NULL, this); } else { force_boot_protocol = true; // let system know we want to force this. } #endif } void KeyboardController::forceHIDProtocol() { if (btdriver_) btdriver_->updateHIDProtocol(0x01); } // Arduino defined this static weak symbol callback, and their // examples use it as the only way to detect new key presses, // so unfortunate as static weak callbacks are, it probably // needs to be supported for compatibility extern "C" { void __keyboardControllerEmptyCallback() { } } void keyPressed() __attribute__ ((weak, alias("__keyboardControllerEmptyCallback"))); void keyReleased() __attribute__ ((weak, alias("__keyboardControllerEmptyCallback"))); static bool contains(uint8_t b, const uint8_t *data) { if (data[2] == b || data[3] == b || data[4] == b) return true; if (data[5] == b || data[6] == b || data[7] == b) return true; return false; } void KeyboardController::numLock(bool f) { if (leds_.numLock != f) { leds_.numLock = f; updateLEDS(); } } void KeyboardController::capsLock(bool f) { if (leds_.capsLock != f) { leds_.capsLock = f; updateLEDS(); } } void KeyboardController::scrollLock(bool f) { if (leds_.scrollLock != f) { leds_.scrollLock = f; updateLEDS(); } } void KeyboardController::key_press(uint32_t mod, uint32_t key) { // TODO: queue events, perform callback from Task println(" press, key=", key); //USBHDBGSerial.printf("key_press: %x %x\n", mod, key); modifiers_ = mod; keyOEM_ = key; keyCode = convert_to_unicode(mod, key); println(" unicode = ", keyCode); if (keyPressedFunction) { keyPressedFunction(keyCode); } else { keyPressed(); } } void KeyboardController::key_release(uint32_t mod, uint32_t key) { // TODO: queue events, perform callback from Task println(" release, key=", key); modifiers_ = mod; keyOEM_ = key; // Look for modifier keys if (key == M(KEY_NUM_LOCK)) { numLock(!leds_.numLock); // Lets toggle Numlock } else if (key == M(KEY_CAPS_LOCK)) { capsLock(!leds_.capsLock); } else if (key == M(KEY_SCROLL_LOCK)) { scrollLock(!leds_.scrollLock); } else { keyCode = convert_to_unicode(mod, key); if (keyReleasedFunction) { keyReleasedFunction(keyCode); } else { keyReleased(); } } } uint16_t KeyboardController::convert_to_unicode(uint32_t mod, uint32_t key) { // WIP: special keys // TODO: dead key sequences if (key & SHIFT_MASK) { // Many of these keys will look like they are other keys with shift mask... // Check for any of our mapped extra keys for (uint8_t i = 0; i < (sizeof(keycode_numlock)/sizeof(keycode_numlock[0])); i++) { if (keycode_numlock[i].code == key) { // See if the user is using numlock or not... if (leds_.numLock) { return keycode_numlock[i].charNumlockOn; } else { key = keycode_numlock[i].codeNumlockOff; if (!(key & 0x80)) return key; // we have hard coded value key &= 0x7f; // mask off the extra and break out to process as other characters... break; } } } } // Check for any of our mapped extra keys - Done early as some of these keys are // above and some below the SHIFT_MASK value for (uint8_t i = 0; i < (sizeof(keycode_extras)/sizeof(keycode_extras[0])); i++) { if (keycode_extras[i].code == key) { return keycode_extras[i].ascii; } } // If we made it here without doing something then return 0; if (key & SHIFT_MASK) return 0; if ((mod & 0x02) || (mod & 0x20)) key |= SHIFT_MASK; if (leds_.capsLock) key ^= SHIFT_MASK; // Caps lock will switch the Shift; for (int i=0; i < 96; i++) { if (keycodes_ascii[i] == key) { if ((mod & 1) || (mod & 0x10)) return (i+32) & 0x1f; // Control key is down return i + 32; } } #ifdef ISO_8859_1_A0 for (int i=0; i < 96; i++) { if (keycodes_iso_8859_1[i] == key) return i + 160; } #endif return 0; } void KeyboardController::LEDS(uint8_t leds) { println("Keyboard setLEDS ", leds, HEX); leds_.byte = leds; updateLEDS(); } void KeyboardController::updateLEDS() { // Now lets tell keyboard new state. if (driver_[0] != nullptr) { // Only do it this way if we are a standard USB device driver_[0]->sendControlPacket(0x21, 9, 0x200, 0, sizeof(leds_.byte), (void*) &leds_.byte); } else if (btdriver_ != nullptr) { // Bluetooth, need to setup back channel to Bluetooth controller. uint8_t packet[3]; packet[0] = 0xA2; // HID BT DATA_request (0xA0) | Report Type (Output 0x02) packet[1] = 0x01; // Report ID packet[2] = leds_.byte; delay(1); btdriver_->sendL2CapCommand(packet, sizeof(packet), BluetoothController::INTERRUPT_SCID); } } void KeyboardController::process_boot_keyboard_format(const uint8_t *report, bool process_mod_keys) { //USBHDBGSerial.printf("** Process boot keyboard format **\n"); for (int i=2; i < 8; i++) { uint32_t key = prev_report_[i]; if (key >= 4 && !contains(key, report)) { key_release(prev_report_[0], key); if (rawKeyReleasedFunction) { rawKeyReleasedFunction(key); } } } if (process_mod_keys && rawKeyReleasedFunction) { // each modifier key is represented by a bit in the first byte for (int i = 0; i < 8; ++i) { uint8_t keybit = 1 << i; if ((prev_report_[0] & keybit) && !(report[0] & keybit)) { rawKeyReleasedFunction(103 + i); } } } for (int i=2; i < 8; i++) { uint32_t key = report[i]; if (key >= 4 && !contains(key, prev_report_)) { key_press(report[0], key); if (rawKeyPressedFunction) { rawKeyPressedFunction(key); } } } if (process_mod_keys && rawKeyPressedFunction) { for (int i = 0; i < 8; ++i) { uint8_t keybit = 1 << i; if (!(prev_report_[0] & keybit) && (report[0] & keybit)) { rawKeyPressedFunction(103 + i); } } } memcpy(prev_report_, report, 8); } //============================================================================= // Keyboard Extras - Combined from other object //============================================================================= #define TOPUSAGE_SYS_CONTROL 0x10080 #define TOPUSAGE_CONSUMER_CONTROL 0x0c0001 #define TOPUSAGE_KEYBOARD 0X10006 hidclaim_t KeyboardController::claim_collection(USBHIDParser *driver, Device_t *dev, uint32_t topusage) { // Lets try to claim a few specific Keyboard related collection/reports //USBHDBGSerial.printf("KeyboardController::claim_collection(%p) Driver:%p(%u %u) Dev:%p Top:%x\n", this, driver, // driver->interfaceSubClass(), driver->interfaceProtocol(), dev, topusage); //USBHDBGSerial.printf("KeyboardController::claim_collection(%p) Driver:%p Dev:%p Top:%x\n", this, driver, dev, topusage); // only claim from one physical device // Lets only claim if this is the same device as claimed Keyboard... //USBHDBGSerial.printf("\tdev=%p mydevice=%p\n", dev, mydevice); if (mydevice != NULL && dev != mydevice) return CLAIM_NO; // We will not claim mouse protocol if (driver && (driver->interfaceProtocol() == 2)) return CLAIM_NO; // We will claim if BOOT Keyboard. if ((driver &&(driver->interfaceSubClass() == 1) && (driver->interfaceProtocol() == 1)) || (topusage == TOPUSAGE_KEYBOARD)) { // OK boot keyboard or what we think is top level keyboard. // Note only set the driver 0 o if (driver_[0] == nullptr) { driver_[0] = driver; //USBHDBGSerial.printf("\t$$Send SET_IDLE\n"); if (driver) driver_[0]->sendControlPacket(0x21, 10, 0, 0, 0, nullptr); //10=SET_IDLE } } else if ((topusage == TOPUSAGE_CONSUMER_CONTROL) || (topusage == TOPUSAGE_SYS_CONTROL) ) { driver_[1] = driver; } else { return CLAIM_NO; } mydevice = dev; collections_claimed_++; //USBHDBGSerial.printf("\tKeyboardController claim collection\n"); return CLAIM_REPORT; } void KeyboardController::disconnect_collection(Device_t *dev) { if (--collections_claimed_ == 0) { mydevice = NULL; driver_[0] = NULL; keyboard_uses_boot_format_ = false; } } bool KeyboardController::hid_process_in_data(const Transfer_t *transfer) { const uint8_t *buffer = (const uint8_t *)transfer->buffer; /* uint16_t len = transfer->length; const uint8_t *p = buffer; USBHDBGSerial.printf("HPID(%p, %u):", transfer->driver, len); if (len > 32) len = 32; while (len--) USBHDBGSerial.printf(" %02X", *p++); */ // Probably need to do some more checking of the data, but // first pass if length == 8 assume boot format: // Hoped driver would be something I could check but... if ((transfer->driver == driver_[0]) && (transfer->length == 8)) { /*USBHDBGSerial.printf(" (boot)\n"); */ process_boot_keyboard_format(buffer, true); keyboard_uses_boot_format_ = true; return true; } //USBHDBGSerial.printf("\n"); return false; } void KeyboardController::hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax) { //USBHDBGSerial.printf("KPC:hid_input_begin TUSE: %x TYPE: %x Range:%x %x\n", topusage, type, lgmin, lgmax); topusage_ = topusage; // remember which report we are processing. topusage_type_ = type; lgmin_ = lgmin; lgmax_ = lgmax; topusage_index_ = 2; // hack we ignore first two bytes hid_input_begin_ = true; hid_input_data_ = false; } void KeyboardController::hid_input_data(uint32_t usage, int32_t value) { // Hack ignore 0xff00 high words as these are user values... USBHDBGSerial.printf("KeyboardController: topusage= %x usage=%X, value=%d\n", topusage_, usage, value); if ((usage & 0xffff0000) == 0xff000000) return; // If this is the TOPUSAGE_KEYBOARD do in it's own function if (process_hid_keyboard_data(usage, value)) return; // Special case if this is a battery level message if ((topusage_ == 0xc0000) && (usage == 0x60020)) { battery_level_ = map (value, lgmin_, lgmax_, 0, 100); USBHDBGSerial.printf("\tBattery level: %d min: %u max: %u percent: %u\n", value, lgmin_, lgmax_, battery_level_); return; } // See if the value is in our keys_down list usage &= 0xffff; // only keep the actual key if (usage == 0) return; // lets not process 0, if only 0 happens, we will handle it on the end to remove existing pressed items. // Remember if we have received any logical key up events. Some keyboard appear to send them // others do no... hid_input_data_ = true; uint8_t key_index; for (key_index = 0; key_index < count_keys_down_; key_index++) { if (keys_down[key_index] == usage) { if (value) return; // still down if (extrasKeyReleasedFunction) { extrasKeyReleasedFunction(topusage_, usage); } // Remove from list count_keys_down_--; for (;key_index < count_keys_down_; key_index++) { keys_down[key_index] = keys_down[key_index+1]; } return; } } // Was not in list if (!value) return; // still 0 if (extrasKeyPressedFunction) { extrasKeyPressedFunction(topusage_, usage); } if (count_keys_down_ < MAX_KEYS_DOWN) { keys_down[count_keys_down_++] = usage; } } bool KeyboardController::process_hid_keyboard_data(uint32_t usage, int32_t value) { print("process_hid_keyboard_data Usage: ", usage, HEX); println(" value: ", value); //USBHDBGSerial.printf("process_hid_keyboard_data %x=%d\n", usage, value); if ((topusage_ & 0xffff0000) != (TOPUSAGE_KEYBOARD & 0xffff0000)) { //USBHDBGSerial.printf("\tNot TopUsage %x %x\n", topusage_, TOPUSAGE_KEYBOARD); return false; } // Lets first process modifier keys... // usage=700E0, value=0 (Left Control) // usage=700E1, value=0 (Left Shift) // usage=700E2, value=0 (Left Alt) // usage=700E3, value=0 (Left GUI) // usage=700E4, value=0 (Right Control) // usage=700E5, value=0 (Right Shift) // usage=700E6, value=0 (Right Alt) // usage=700E7, value=0 (Right GUI) if ((usage >= 0x700E0) && (usage <= 0x700E7)) { usage &= 7; uint8_t keybit = 1 << usage; if (value) { if (!(modifiers_ & keybit)) { if (rawKeyPressedFunction) rawKeyPressedFunction(103 + usage); modifiers_ |= keybit; } } else { if (modifiers_ & keybit) { if (rawKeyReleasedFunction) rawKeyReleasedFunction(103 + usage); modifiers_ &= ~keybit; } } //USBHDBGSerial.printf("\tUpdated Modifer %x\n", modifiers_); return true; } // normal keys to be processed here. // but two ways: for N key we receive an index per item // with Boot, we get an array of these items: if ((usage >= 0x70000) && (usage <= 0x70073)) { usage &= 0xff; // only use the low byte if (keyboard_uses_boot_format_ || (topusage_type_ & 0x2)) { //normal variable - so use bitindex array to figure out what is new and what is old uint8_t key_byte_index = usage >> 3; //which byte in key_states_. uint8_t key_bit_mask = 1 << (usage & 0x7); if (value) { if (!(key_states_[key_byte_index] & key_bit_mask)) { key_press(modifiers_, usage); if (rawKeyPressedFunction) rawKeyPressedFunction(usage); key_states_[key_byte_index] |= key_bit_mask; } } else { if (key_states_[key_byte_index] & key_bit_mask) { key_release(modifiers_, usage); if (rawKeyReleasedFunction) rawKeyReleasedFunction(usage); key_states_[key_byte_index] &= ~key_bit_mask; } } } else { // So array, We only see what keys are down. if (topusage_index_ < 8) { report_[topusage_index_++] = usage; } } return true; } return false; } void KeyboardController::hid_input_end() { //USBHDBGSerial.printf("KPC:hid_input_end %u %u\n", hid_input_begin_, hid_input_data_); if (hid_input_begin_) { if (!keyboard_uses_boot_format_ && ((topusage_type_ & 0x2) == 0) && (topusage_index_ > 2)) { // we have boot data. process_boot_keyboard_format(report_, false); } else if (!hid_input_data_ ) { if (extrasKeyReleasedFunction) { while (count_keys_down_) { count_keys_down_--; extrasKeyReleasedFunction(topusage_, keys_down[count_keys_down_]); } } count_keys_down_ = 0; } hid_input_begin_ = false; } } // now with connection type. hidclaim_t KeyboardController::claim_bluetooth(BluetoothConnection *btconnection, uint32_t bluetooth_class, uint8_t *remoteName, int type) { USBHDBGSerial.printf("Keyboard Controller::claim_bluetooth - Class %x\n", bluetooth_class); // If we are already in use than don't grab another one. Likewise don't grab if it is used as USB or HID object if (btconnect && (btconnection != btconnect)) return CLAIM_NO; if (mydevice != NULL) return CLAIM_NO; if ((bluetooth_class & 0x0f00) == 0x500) { // This is a peripheral class // Special case out PS3 if (remoteName && (strncmp((const char *)remoteName, "PLAYSTATION(R)3", 15) == 0)) { //USBHDBGSerial.printf("KeyboardController::claim_bluetooth Reject PS3 hack\n"); btdevice = nullptr; // remember this way return CLAIM_NO; } if (bluetooth_class & 0x40) { // We will claim this now // Test to link in BT HID parser code btconnection->useHIDProtocol(true); if (type == 1) { // They are telling me to grab it now. SO say yes USBHDBGSerial.printf("KeyboardController::claim_bluetooth TRUE\n"); btconnect = btconnection; btdevice = (Device_t*)btconnect->btController_; // remember this way btdriver_ = btconnect->btController_; return CLAIM_INTERFACE; } } return CLAIM_REPORT; // let them know we may be interested if there is a HID REport Descriptor } return CLAIM_NO; } hidclaim_t KeyboardController::bt_claim_collection(BluetoothConnection *btconnection, uint32_t bluetooth_class, uint32_t topusage) { USBHDBGSerial.printf("KeyboardController::bt_claim_collection(%p) Connection:%p class:%x Top:%x\n", this, btconnection, bluetooth_class, topusage); if (mydevice != NULL) return CLAIM_NO; // claimed by some other... if (btconnect && (btconnect != btconnection)) return CLAIM_NO; // We will claim if BOOT Keyboard. switch (topusage) { case TOPUSAGE_KEYBOARD: case TOPUSAGE_CONSUMER_CONTROL: case TOPUSAGE_SYS_CONTROL: collections_claimed_++; USBHDBGSerial.printf("\tKeyboardController claim collection\n"); btconnect = btconnection; btdevice = (Device_t*)btconnect->btController_; // remember this way return CLAIM_REPORT; } return CLAIM_NO; } void KeyboardController::bt_hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax) { hid_input_begin(topusage, type, lgmin, lgmax); } void KeyboardController::bt_hid_input_data(uint32_t usage, int32_t value) { hid_input_data(usage, value); } void KeyboardController::bt_hid_input_end() { hid_input_end(); } void KeyboardController::bt_disconnect_collection(Device_t *dev) { disconnect_collection(dev); } bool KeyboardController::remoteNameComplete(const uint8_t *remoteName) { // Real Hack some PS3 controllers bluetoot class is keyboard... if (strncmp((const char *)remoteName, "PLAYSTATION(R)3", 15) == 0) { USBHDBGSerial.printf(" KeyboardController::remoteNameComplete %s - Oops PS3 unclaim\n", remoteName); return false; } return true; } bool KeyboardController::process_bluetooth_HID_data(const uint8_t *data, uint16_t length) { // Example DATA from bluetooth keyboard: // 0 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 // LEN D //BT rx2_data(18): 48 20 e 0 a 0 70 0 a1 1 2 0 0 0 0 0 0 0 //BT rx2_data(18): 48 20 e 0 a 0 70 0 a1 1 2 0 4 0 0 0 0 0 //BT rx2_data(18): 48 20 e 0 a 0 70 0 a1 1 2 0 0 0 0 0 0 0 // So Len=9 passed in data starting at report ID=1... USBHDBGSerial.printf("KBD::process_bluetooth_HID_data: "); for (uint8_t i = 0; i < length; i++) USBHDBGSerial.printf(" %02X", data[i]); USBHDBGSerial.printf("\n"); // BUGBUG - assume boot format keyboard_uses_boot_format_ = true; //if (bthids_.process_bluetooth_HID_data(data, length)) return true; if (data[0] != 1) return false; // See if we can simply use our boot format code to process skip the report ID. process_boot_keyboard_format(&data[1], true); return true; } void KeyboardController::release_bluetooth() { btdevice = nullptr; } //============================================================================= // More bluetooth stuff! //============================================================================= void KeyboardController::connectionComplete(void) { // here is where I am going to try to get data... println("\n$$$ connectionComplete" ); //connection_complete_ = true; // if (bthids_.startRetrieveHIDReportDescriptor()) // println("*** Loaded Bluetooth Report Descriptor ***"); } void KeyboardController::sdp_command_completed (bool success) { // if (bthids_.completeSDPRequest(success)) // println("*** Loaded Bluetooth Report Descriptor ***"); // else // println("*** Failed Bluetooth Report Descriptor ***"); } //***************************************************************************** // Some simple query functions depend on which interface we are using... //***************************************************************************** uint16_t KeyboardController::idVendor() { if (mydevice != nullptr) return mydevice->idVendor; if (btdevice != nullptr) return btdevice->idVendor; return 0; } uint16_t KeyboardController::idProduct() { if (mydevice != nullptr) return mydevice->idProduct; if (btdevice != nullptr) return btdevice->idProduct; return 0; } const uint8_t *KeyboardController::manufacturer() { if ((btdevice != nullptr) && (btdevice->strbuf != nullptr)) return &btdevice->strbuf->buffer[btdevice->strbuf->iStrings[strbuf_t::STR_ID_MAN]]; if ((mydevice != nullptr) && (mydevice->strbuf != nullptr)) return &mydevice->strbuf->buffer[mydevice->strbuf->iStrings[strbuf_t::STR_ID_MAN]]; return nullptr; } const uint8_t *KeyboardController::product() { if ((mydevice != nullptr) && (mydevice->strbuf != nullptr)) return &mydevice->strbuf->buffer[mydevice->strbuf->iStrings[strbuf_t::STR_ID_PROD]]; if ((btdevice != nullptr) && (btdevice->strbuf != nullptr)) return &btdevice->strbuf->buffer[btdevice->strbuf->iStrings[strbuf_t::STR_ID_PROD]]; return nullptr; } const uint8_t *KeyboardController::serialNumber() { if ((mydevice != nullptr) && (mydevice->strbuf != nullptr)) return &mydevice->strbuf->buffer[mydevice->strbuf->iStrings[strbuf_t::STR_ID_SERIAL]]; if ((btdevice != nullptr) && (btdevice->strbuf != nullptr)) return &btdevice->strbuf->buffer[btdevice->strbuf->iStrings[strbuf_t::STR_ID_SERIAL]]; return nullptr; }