/* Copyright 2012 Google Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #ifdef HAVE_NEON #include #endif #include "synth.h" #include "sin.h" #include "fm_op_kernel.h" #ifdef HAVE_NEON static bool hasNeon() { return true; return (android_getCpuFeatures() & ANDROID_CPU_ARM_FEATURE_NEON) != 0; } extern "C" void neon_fm_kernel(const int *in, const int *busin, int *out, int count, int32_t phase0, int32_t freq, int32_t gain1, int32_t dgain); #else static bool hasNeon() { return false; } #endif void FmOpKernel::compute(int32_t *output, const int32_t *input, int32_t phase0, int32_t freq, int32_t gain1, int32_t gain2, bool add) { int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N; int32_t gain = gain1; int32_t phase = phase0; if (hasNeon()) { #ifdef HAVE_NEON neon_fm_kernel(input, add ? output : zeros, output, _N_, phase0, freq, gain, dgain); #endif } else { if (add) { for (int i = 0; i < _N_; i++) { gain += dgain; int32_t y = Sin::lookup(phase + input[i]); int32_t y1 = ((int64_t)y * (int64_t)gain) >> 24; output[i] += y1; phase += freq; } } else { for (int i = 0; i < _N_; i++) { gain += dgain; int32_t y = Sin::lookup(phase + input[i]); int32_t y1 = ((int64_t)y * (int64_t)gain) >> 24; output[i] = y1; phase += freq; } } } } void FmOpKernel::compute_pure(int32_t *output, int32_t phase0, int32_t freq, int32_t gain1, int32_t gain2, bool add) { int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N; int32_t gain = gain1; int32_t phase = phase0; if (hasNeon()) { #ifdef HAVE_NEON neon_fm_kernel(zeros, add ? output : zeros, output, _N_, phase0, freq, gain, dgain); #endif } else { if (add) { for (int i = 0; i < _N_; i++) { gain += dgain; int32_t y = Sin::lookup(phase); int32_t y1 = ((int64_t)y * (int64_t)gain) >> 24; output[i] += y1; phase += freq; } } else { for (int i = 0; i < _N_; i++) { gain += dgain; int32_t y = Sin::lookup(phase); int32_t y1 = ((int64_t)y * (int64_t)gain) >> 24; output[i] = y1; phase += freq; } } } } #define noDOUBLE_ACCURACY #define HIGH_ACCURACY void FmOpKernel::compute_fb(int32_t *output, int32_t phase0, int32_t freq, int32_t gain1, int32_t gain2, int32_t *fb_buf, int fb_shift, bool add) { int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N; int32_t gain = gain1; int32_t phase = phase0; int32_t y0 = fb_buf[0]; int32_t y = fb_buf[1]; if (add) { for (int i = 0; i < _N_; i++) { gain += dgain; int32_t scaled_fb = (y0 + y) >> (fb_shift + 1); y0 = y; y = Sin::lookup(phase + scaled_fb); y = ((int64_t)y * (int64_t)gain) >> 24; output[i] += y; phase += freq; } } else { for (int i = 0; i < _N_; i++) { gain += dgain; int32_t scaled_fb = (y0 + y) >> (fb_shift + 1); y0 = y; y = Sin::lookup(phase + scaled_fb); y = ((int64_t)y * (int64_t)gain) >> 24; output[i] = y; phase += freq; } } fb_buf[0] = y0; fb_buf[1] = y; } //////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////// // Experimental sine wave generators below #if 0 // Results: accuracy 64.3 mean, 170 worst case // high accuracy: 5.0 mean, 49 worst case void FmOpKernel::compute_pure(int32_t *output, int32_t phase0, int32_t freq, int32_t gain1, int32_t gain2, bool add) { int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N; int32_t gain = gain1; int32_t phase = phase0; #ifdef HIGH_ACCURACY int32_t u = Sin::compute10(phase << 6); u = ((int64_t)u * gain) >> 30; int32_t v = Sin::compute10((phase << 6) + (1 << 28)); // quarter cycle v = ((int64_t)v * gain) >> 30; int32_t s = Sin::compute10(freq << 6); int32_t c = Sin::compute10((freq << 6) + (1 << 28)); #else int32_t u = Sin::compute(phase); u = ((int64_t)u * gain) >> 24; int32_t v = Sin::compute(phase + (1 << 22)); // quarter cycle v = ((int64_t)v * gain) >> 24; int32_t s = Sin::compute(freq) << 6; int32_t c = Sin::compute(freq + (1 << 22)) << 6; #endif for (int i = 0; i < _N_; i++) { output[i] = u; int32_t t = ((int64_t)v * (int64_t)c - (int64_t)u * (int64_t)s) >> 30; u = ((int64_t)u * (int64_t)c + (int64_t)v * (int64_t)s) >> 30; v = t; } } #endif #if 0 // Results: accuracy 392.3 mean, 15190 worst case (near freq = 0.5) // for freq < 0.25, 275.2 mean, 716 worst // high accuracy: 57.4 mean, 7559 worst // freq < 0.25: 17.9 mean, 78 worst void FmOpKernel::compute_pure(int32_t *output, int32_t phase0, int32_t freq, int32_t gain1, int32_t gain2, bool add) { int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N; int32_t gain = gain1; int32_t phase = phase0; #ifdef HIGH_ACCURACY int32_t u = floor(gain * sin(phase * (M_PI / (1 << 23))) + 0.5); int32_t v = floor(gain * cos((phase - freq * 0.5) * (M_PI / (1 << 23))) + 0.5); int32_t a = floor((1 << 25) * sin(freq * (M_PI / (1 << 24))) + 0.5); #else int32_t u = Sin::compute(phase); u = ((int64_t)u * gain) >> 24; int32_t v = Sin::compute(phase + (1 << 22) - (freq >> 1)); v = ((int64_t)v * gain) >> 24; int32_t a = Sin::compute(freq >> 1) << 1; #endif for (int i = 0; i < _N_; i++) { output[i] = u; v -= ((int64_t)a * (int64_t)u) >> 24; u += ((int64_t)a * (int64_t)v) >> 24; } } #endif #if 0 // Results: accuracy 370.0 mean, 15480 worst case (near freq = 0.5) // with FRAC_NUM accuracy initialization: mean 1.55, worst 58 (near freq = 0) // with high accuracy: mean 4.2, worst 292 (near freq = 0.5) void FmOpKernel::compute_pure(int32_t *output, int32_t phase0, int32_t freq, int32_t gain1, int32_t gain2, bool add) { int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N; int32_t gain = gain1; int32_t phase = phase0; #ifdef DOUBLE_ACCURACY int32_t u = floor((1 << 30) * sin(phase * (M_PI / (1 << 23))) + 0.5); FRAC_NUM a_d = sin(freq * (M_PI / (1 << 24))); int32_t v = floor((1LL << 31) * a_d * cos((phase - freq * 0.5) * (M_PI / (1 << 23))) + 0.5); int32_t aa = floor((1LL << 31) * a_d * a_d + 0.5); #else #ifdef HIGH_ACCURACY int32_t u = Sin::compute10(phase << 6); int32_t v = Sin::compute10((phase << 6) + (1 << 28) - (freq << 5)); int32_t a = Sin::compute10(freq << 5); v = ((int64_t)v * (int64_t)a) >> 29; int32_t aa = ((int64_t)a * (int64_t)a) >> 29; #else int32_t u = Sin::compute(phase) << 6; int32_t v = Sin::compute(phase + (1 << 22) - (freq >> 1)); int32_t a = Sin::compute(freq >> 1); v = ((int64_t)v * (int64_t)a) >> 17; int32_t aa = ((int64_t)a * (int64_t)a) >> 17; #endif #endif if (aa < 0) aa = (1 << 31) - 1; for (int i = 0; i < _N_; i++) { gain += dgain; output[i] = ((int64_t)u * (int64_t)gain) >> 30; v -= ((int64_t)aa * (int64_t)u) >> 29; u += v; } } #endif #if 0 // Results:: accuracy 112.3 mean, 4262 worst (near freq = 0.5) // high accuracy 2.9 mean, 143 worst void FmOpKernel::compute_pure(int32_t *output, int32_t phase0, int32_t freq, int32_t gain1, int32_t gain2, bool add) { int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N; int32_t gain = gain1; int32_t phase = phase0; #ifdef HIGH_ACCURACY int32_t u = Sin::compute10(phase << 6); int32_t lastu = Sin::compute10((phase - freq) << 6); int32_t a = Sin::compute10((freq << 6) + (1 << 28)) << 1; #else int32_t u = Sin::compute(phase) << 6; int32_t lastu = Sin::compute(phase - freq) << 6; int32_t a = Sin::compute(freq + (1 << 22)) << 7; #endif if (a < 0 && freq < 256) a = (1 << 31) - 1; if (a > 0 && freq > 0x7fff00) a = -(1 << 31); for (int i = 0; i < _N_; i++) { gain += dgain; output[i] = ((int64_t)u * (int64_t)gain) >> 30; //output[i] = u; int32_t newu = (((int64_t)u * (int64_t)a) >> 30) - lastu; lastu = u; u = newu; } } #endif