/* MicroDexed MicroDexed is a port of the Dexed sound engine Dexed ist heavily based on https://github.com/google/music-synthesizer-for-android (c)2018-2021 H. Wirtz This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include "config.h" #include #include #include #include #include #include #include #include using namespace TeensyTimerTool; #include "midi_devices.hpp" #include "synth_dexed.h" #include "dexed_sd.h" #include "effect_modulated_delay.h" #include "effect_stereo_mono.h" #include "effect_mono_stereo.h" #ifdef USE_PLATEREVERB #include "effect_platervbstereo.h" #else #include "effect_freeverbf.h" #endif #include "template_mixer.hpp" #include "UI.hpp" #if NUM_DRUMS > 0 #include "drums.h" #include "drumset.h" #endif #ifdef SGTL5000_AUDIO_ENHANCE #include "control_sgtl5000plus.h" #endif // Audio engines AudioSynthDexed* MicroDexed[NUM_DEXED]; #if defined(USE_FX) AudioSynthWaveform* chorus_modulator[NUM_DEXED]; #if MOD_FILTER_OUTPUT != MOD_NO_FILTER_OUTPUT AudioFilterBiquad* modchorus_filter[NUM_DEXED]; #endif AudioEffectModulatedDelay* modchorus[NUM_DEXED]; AudioMixer<4>* chorus_mixer[NUM_DEXED]; AudioMixer<4>* delay_fb_mixer[NUM_DEXED]; AudioEffectDelay* delay_fx[NUM_DEXED]; AudioMixer<4>* delay_mixer[NUM_DEXED]; #endif AudioEffectMonoStereo* mono2stereo[NUM_DEXED]; AudioMixer<4> microdexed_peak_mixer; AudioAnalyzePeak microdexed_peak; #if defined(USE_FX) AudioMixer<4> reverb_mixer_r; AudioMixer<4> reverb_mixer_l; #ifdef USE_PLATEREVERB AudioEffectPlateReverb reverb; #else AudioEffectFreeverbStereoFloat freeverb; #endif #endif AudioMixer<4> master_mixer_r; AudioMixer<4> master_mixer_l; AudioAmplifier volume_r; AudioAmplifier volume_l; AudioEffectStereoMono stereo2mono; AudioAnalyzePeak master_peak_r; AudioAnalyzePeak master_peak_l; #if defined(TEENSY_AUDIO_BOARD) && defined(SGTL5000_AUDIO_THRU) AudioMixer<4> audio_thru_mixer_r; AudioMixer<4> audio_thru_mixer_l; #endif // Drumset #if NUM_DRUMS > 0 //AudioPlayMemory* Drum[NUM_DRUMS]; AudioPlayArrayResmp* Drum[NUM_DRUMS]; AudioMixer drum_mixer_r; AudioMixer drum_mixer_l; #ifdef USE_FX #if NUM_DRUMS < 5 AudioMixer<4> drum_reverb_send_mixer_r; AudioMixer<4> drum_reverb_send_mixer_l; #else AudioMixer<8> drum_reverb_send_mixer_r; AudioMixer<8> drum_reverb_send_mixer_l; #endif #endif #endif // Outputs #if defined(TEENSY_AUDIO_BOARD) AudioOutputI2S i2s1; #ifdef SGTL5000_AUDIO_ENHANCE AudioControlSGTL5000Plus sgtl5000; #else AudioControlSGTL5000 sgtl5000; #endif #elif defined (I2S_AUDIO_ONLY) AudioOutputI2S i2s1; #elif defined(TGA_AUDIO_BOARD) AudioOutputI2S i2s1; AudioControlWM8731master wm8731_1; #elif defined(PT8211_AUDIO) AudioOutputPT8211 pt8211_1; #elif defined(TEENSY_DAC_SYMMETRIC) AudioOutputAnalogStereo dacOut; AudioMixer<4> invMixer; #elif defined(TEENSY_DAC) AudioOutputAnalogStereo dacOut; #endif #ifdef AUDIO_DEVICE_USB AudioOutputUSB usb1; #endif #if defined(TEENSY_AUDIO_BOARD) && defined(SGTL5000_AUDIO_THRU) AudioInputI2S i2s1in; #endif // // Static patching of audio objects // AudioConnection patchCord[] = { // Audio chain tail #if defined(USE_FX) #ifdef USE_PLATEREVERB {reverb_mixer_r, 0, reverb, 0}, {reverb_mixer_l, 0, reverb, 1}, {reverb, 0, master_mixer_r, 3}, {reverb, 1, master_mixer_l, 3}, #else {reverb_mixer_r, 0, freeverb, 0}, {reverb_mixer_l, 0, freeverb, 1}, {freeverb, 0, master_mixer_r, 3}, {freeverb, 1, master_mixer_l, 3}, #endif #endif {master_mixer_r, volume_r}, {master_mixer_l, volume_l}, {volume_r, 0, stereo2mono, 0}, {volume_l, 0, stereo2mono, 1}, {stereo2mono, 0, master_peak_r, 0}, {stereo2mono, 0, master_peak_l, 0}, // Outputs #if defined(TEENSY_AUDIO_BOARD) #ifndef SGTL5000_AUDIO_THRU {stereo2mono, 0, i2s1, 0}, {stereo2mono, 1, i2s1, 1}, #endif #elif defined (I2S_AUDIO_ONLY) {stereo2mono, 0, i2s1, 0}, {stereo2mono, 1, i2s1, 1}, #elif defined(TGA_AUDIO_BOARD) {stereo2mono, 0, i2s1, 0}, {stereo2mono, 1, i2s1, 1}, #elif defined(PT8211_AUDIO) {stereo2mono, 0, pt8211_1, 0}, {stereo2mono, 1, pt8211_1, 1}, #elif defined(TEENSY_DAC_SYMMETRIC) {stereo2mono, 0, dacOut , 0}, {stereo2mono, 1, invMixer, 0}, {invMixer, 0, dacOut , 1}, #elif defined(TEENSY_DAC) {stereo2mono, 0, dacOut, 0}, {stereo2mono, 1, dacOut, 1}, #endif #ifdef AUDIO_DEVICE_USB {stereo2mono, 0, usb1, 0}, {stereo2mono, 1, usb1, 1}, #endif #if defined(TEENSY_AUDIO_BOARD) && defined(SGTL5000_AUDIO_THRU) {stereo2mono, 0, audio_thru_mixer_r, 0}, {stereo2mono, 1, audio_thru_mixer_l, 0}, {i2s1in, 0, audio_thru_mixer_r, 1}, {i2s1in, 1, audio_thru_mixer_l, 1}, {audio_thru_mixer_r, 0, i2s1, 0}, {audio_thru_mixer_l, 0, i2s1, 1}, #endif #if NUM_DRUMS > 0 #ifdef USE_FX {drum_reverb_send_mixer_r, 0, reverb_mixer_r, 2}, {drum_reverb_send_mixer_l, 0, reverb_mixer_l, 2}, {drum_mixer_r, 0, master_mixer_r, 2}, {drum_mixer_l, 0, master_mixer_l, 2}, #else {drum_mixer_r, 0, master_mixer_r, 2}, {drum_mixer_l, 0, master_mixer_l, 2}, #endif #endif }; // // Dynamic patching of MicroDexed objects // uint8_t nDynamic = 0; #if defined(USE_FX) && MOD_FILTER_OUTPUT != MOD_NO_FILTER_OUTPUT AudioConnection* dynamicConnections[NUM_DEXED * 16 + NUM_DRUMS * 4 ]; #elif defined(USE_FX) && MOD_FILTER_OUTPUT == MOD_NO_FILTER_OUTPUT AudioConnection* dynamicConnections[NUM_DEXED * 15 + NUM_DRUMS * 4]; #else AudioConnection* dynamicConnections[NUM_DEXED * 4 + NUM_DRUMS * 2]; #endif void create_audio_dexed_chain(uint8_t instance_id) { MicroDexed[instance_id] = new AudioSynthDexed(MAX_NOTES / NUM_DEXED, SAMPLE_RATE); mono2stereo[instance_id] = new AudioEffectMonoStereo(); #if defined(USE_FX) chorus_modulator[instance_id] = new AudioSynthWaveform(); #if MOD_FILTER_OUTPUT != MOD_NO_FILTER_OUTPUT modchorus_filter[instance_id] = new AudioFilterBiquad(); #endif modchorus[instance_id] = new AudioEffectModulatedDelay(); chorus_mixer[instance_id] = new AudioMixer<4>(); delay_fb_mixer[instance_id] = new AudioMixer<4>(); delay_fx[instance_id] = new AudioEffectDelay(); delay_mixer[instance_id] = new AudioMixer<4>(); #endif dynamicConnections[nDynamic++] = new AudioConnection(*MicroDexed[instance_id], 0, microdexed_peak_mixer, instance_id); #if defined(USE_FX) dynamicConnections[nDynamic++] = new AudioConnection(*MicroDexed[instance_id], 0, *chorus_mixer[instance_id], 0); dynamicConnections[nDynamic++] = new AudioConnection(*MicroDexed[instance_id], 0, *modchorus[instance_id], 0); ////////////////////// #if MOD_FILTER_OUTPUT != MOD_NO_FILTER_OUTPUT dynamicConnections[nDynamic++] = new AudioConnection(*chorus_modulator[instance_id], 0, *modchorus_filter[instance_id], 0); dynamicConnections[nDynamic++] = new AudioConnection(*modchorus_filter[instance_id], 0, *modchorus[instance_id], 1); #else dynamicConnections[nDynamic++] = new AudioConnection(*chorus_modulator[instance_id], 0, *modchorus[instance_id], 1); #endif dynamicConnections[nDynamic++] = new AudioConnection(*modchorus[instance_id], 0, *chorus_mixer[instance_id], 1); dynamicConnections[nDynamic++] = new AudioConnection(*chorus_mixer[instance_id], 0, *delay_fb_mixer[instance_id], 0); dynamicConnections[nDynamic++] = new AudioConnection(*chorus_mixer[instance_id], 0, *delay_mixer[instance_id], 0); dynamicConnections[nDynamic++] = new AudioConnection(*delay_fb_mixer[instance_id], 0, *delay_fx[instance_id], 0); dynamicConnections[nDynamic++] = new AudioConnection(*delay_fx[instance_id], 0, *delay_fb_mixer[instance_id], 1); dynamicConnections[nDynamic++] = new AudioConnection(*delay_fx[instance_id], 0, *delay_mixer[instance_id], 1); dynamicConnections[nDynamic++] = new AudioConnection(*delay_mixer[instance_id], 0, *mono2stereo[instance_id], 0); dynamicConnections[nDynamic++] = new AudioConnection(*mono2stereo[instance_id], 0, reverb_mixer_r, instance_id); dynamicConnections[nDynamic++] = new AudioConnection(*mono2stereo[instance_id], 1, reverb_mixer_l, instance_id); #else dynamicConnections[nDynamic++] = new AudioConnection(*MicroDexed[instance_id], 0, *mono2stereo[instance_id], 0); #endif dynamicConnections[nDynamic++] = new AudioConnection(*mono2stereo[instance_id], 0, master_mixer_r, instance_id); dynamicConnections[nDynamic++] = new AudioConnection(*mono2stereo[instance_id], 1, master_mixer_l, instance_id); #ifdef DEBUG Serial.print(F("Dexed-Instance: ")); Serial.println(instance_id); #endif } // // Dynamic patching of Drum objects // #if NUM_DRUMS > 0 void create_audio_drum_chain(uint8_t instance_id) { //Drum[instance_id] = new AudioPlayMemory(); Drum[instance_id] = new AudioPlayArrayResmp(); Drum[instance_id]->enableInterpolation(false); Drum[instance_id]->setPlaybackRate(1.0); dynamicConnections[nDynamic++] = new AudioConnection(*Drum[instance_id], 0, drum_mixer_r, instance_id); dynamicConnections[nDynamic++] = new AudioConnection(*Drum[instance_id], 0, drum_mixer_l, instance_id); #ifdef USE_FX dynamicConnections[nDynamic++] = new AudioConnection(*Drum[instance_id], 0, drum_reverb_send_mixer_r, instance_id); dynamicConnections[nDynamic++] = new AudioConnection(*Drum[instance_id], 0, drum_reverb_send_mixer_l, instance_id); #endif #ifdef DEBUG Serial.print(F("Drum-Instance: ")); Serial.println(instance_id); Serial.print(F("Dynamic-Connection-Counter=")); Serial.println(nDynamic); #endif } #endif uint8_t sd_card = 0; Sd2Card card; SdVolume volume; float midi_ticks_factor[10] = {0.0, 0.25, 0.375, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0 , 4.0}; uint8_t midi_bpm_counter = 0; uint8_t midi_bpm = 0; int16_t _midi_bpm = -1; elapsedMillis midi_bpm_timer; elapsedMillis long_button_pressed; elapsedMillis control_rate; uint8_t active_voices[NUM_DEXED]; uint8_t midi_voices[NUM_DEXED]; #ifdef SHOW_CPU_LOAD_MSEC elapsedMillis cpu_mem_millis; #endif uint32_t cpumax = 0; uint32_t peak_dexed = 0; float peak_dexed_value = 0.0; uint32_t peak_r = 0; uint32_t peak_l = 0; config_t configuration; const uint8_t cs_pins[] = { SDCARD_TEENSY_CS_PIN, SDCARD_AUDIO_CS_PIN }; const uint8_t mosi_pins[] = { SDCARD_TEENSY_MOSI_PIN, SDCARD_AUDIO_MOSI_PIN }; const uint8_t sck_pins[] = { SDCARD_TEENSY_SCK_PIN, SDCARD_AUDIO_SCK_PIN }; char version_string[LCD_cols + 1]; char sd_string[LCD_cols + 1]; char g_voice_name[NUM_DEXED][VOICE_NAME_LEN]; char g_bank_name[NUM_DEXED][BANK_NAME_LEN]; char receive_bank_filename[FILENAME_LEN]; uint8_t selected_instance_id = 0; uint8_t seq_UI_last_step = 0; #ifdef TEENSY4 #if NUM_DEXED>1 int8_t midi_decay[NUM_DEXED] = { -1, -1}; #else int8_t midi_decay[NUM_DEXED] = { -1}; #endif elapsedMillis midi_decay_timer; #endif #if NUM_DEXED>1 int perform_attack_mod[NUM_DEXED] = { 0, 0}; int perform_release_mod[NUM_DEXED] = { 0, 0}; #else int perform_attack_mod[NUM_DEXED] = { 0 }; int perform_release_mod[NUM_DEXED] = { 0 }; #endif #if defined(USE_FX) // Allocate the delay lines for chorus int16_t delayline[NUM_DEXED][MOD_DELAY_SAMPLE_BUFFER]; #endif #if NUM_DRUMS > 0 extern drum_config_t drum_config[NUM_DRUMSET_CONFIG]; uint8_t drum_counter; uint8_t drum_type[NUM_DRUMS]; extern void sequencer(void); uint8_t drum_midi_channel = DRUM_MIDI_CHANNEL; #endif #ifdef ENABLE_LCD_UI extern LCDMenuLib2 LCDML; #endif extern void getNoteName(char* noteName, uint8_t noteNumber); PeriodicTimer timer1; extern char seq_chord_names[7][4]; /*********************************************************************** SETUP ***********************************************************************/ void setup() { #ifdef DEBUG Serial.begin(SERIAL_SPEED); #else delay(50); // seems to be needed when no serial debugging is enabled #endif #ifdef DISPLAY_LCD_SPI pinMode(SDCARD_CS_PIN, OUTPUT); pinMode(U8X8_CS_PIN, OUTPUT); #endif #ifdef ENABLE_LCD_UI setup_ui(); #endif #ifndef ENABLE_LCD_UI #ifdef DEBUG Serial.println(F("NO LCD DISPLAY ENABLED!")); #endif #endif #ifdef DEBUG Serial.println(CrashReport); setup_debug_message(); generate_version_string(version_string, sizeof(version_string)); Serial.println(F("MicroDexed based on https://github.com/asb2m10/dexed")); Serial.println(F("(c)2018-2021 H. Wirtz ")); Serial.println(F("https://codeberg.org/dcoredump/MicroDexed")); Serial.print(F("Version: ")); Serial.println(version_string); Serial.print(F("CPU-Speed: ")); Serial.print(F_CPU / 1000000.0, 1); Serial.println(F(" MHz")); Serial.println(F("")); Serial.flush(); #endif setup_midi_devices(); // Start audio system AudioMemory(AUDIO_MEM); #if defined(TEENSY_AUDIO_BOARD) sgtl5000.enable(); sgtl5000.lineOutLevel(SGTL5000_LINEOUT_LEVEL); sgtl5000.dacVolumeRamp(); sgtl5000.dacVolume(1.0); //sgtl5000.dacVolumeRampLinear(); //sgtl5000.dacVolumeRampDisable(); sgtl5000.unmuteHeadphone(); sgtl5000.unmuteLineout(); sgtl5000.volume(SGTL5000_HEADPHONE_VOLUME, SGTL5000_HEADPHONE_VOLUME); // Headphone volume #ifdef SGTL5000_AUDIO_THRU //sgtl5000.audioPreProcessorEnable(); sgtl5000.inputSelect(AUDIO_INPUT_LINEIN); sgtl5000.lineInLevel(5); //sgtl5000.adcHighPassFilterEnable(); #endif #ifdef SGTL5000_AUDIO_ENHANCE sgtl5000.audioPostProcessorEnable(); sgtl5000.init_parametric_eq(7); //sgtl5000.enhanceBassEnable(); //sgtl5000.enhanceBass(1.0, 1.5, 0, 5); // enhanceBass(1.0, 1.0, 1, 2); // Configures the bass enhancement by setting the levels of the original stereo signal and the bass-enhanced mono level which will be mixed together. The high-pass filter may be enabled (0) or bypassed (1). //sgtl5000.surroundSoundEnable(); //sgtl5000.surroundSound(7, 3); // Configures virtual surround width from 0 (mono) to 7 (widest). select may be set to 1 (disable), 2 (mono input) or 3 (stereo input). //sgtl5000.autoVolumeEnable(); //sgtl5000.autoVolumeControl(1, 1, 1, 0.9, 0.01, 0.05); #else sgtl5000.audioProcessorDisable(); sgtl5000.autoVolumeDisable(); sgtl5000.surroundSoundDisable(); sgtl5000.enhanceBassDisable(); #endif #ifdef DEBUG Serial.println(F("Teensy-Audio-Board enabled.")); #endif #elif defined(TGA_AUDIO_BOARD) wm8731_1.enable(); wm8731_1.volume(1.0); #ifdef DEBUG Serial.println(F("TGA board enabled.")); #endif #elif defined(I2S_AUDIO_ONLY) #ifdef DEBUG Serial.println(F("I2S enabled.")); #endif #elif defined(PT8211_AUDIO) #ifdef DEBUG Serial.println(F("PT8211 enabled.")); #endif #elif defined(TEENSY_DAC_SYMMETRIC) invMixer.gain(0, -1.f); #ifdef DEBUG Serial.println(F("Internal DAC using symmetric outputs enabled.")); #endif #else #ifdef DEBUG Serial.println(F("Internal DAC enabled.")); #endif #endif // create dynamic Dexed instances for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { #ifdef DEBUG Serial.print(F("Creating MicroDexed instance ")); Serial.println(instance_id, DEC); #endif create_audio_dexed_chain(instance_id); } #ifdef DEBUG for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { Serial.print(F("Instance ")); Serial.print(instance_id); Serial.print(F(": ")); Serial.print(MicroDexed[instance_id]->getMaxNotes()); Serial.println(F(" voices")); } #endif #if NUM_DRUMS > 0 // create dynamic Drum instances for (uint8_t instance_id = 0; instance_id < NUM_DRUMS; instance_id++) { #ifdef DEBUG Serial.print(F("Creating Drum instance ")); Serial.println(instance_id, DEC); #endif create_audio_drum_chain(instance_id); drum_mixer_r.gain(instance_id, 1.0); drum_mixer_l.gain(instance_id, 1.0); #ifdef USE_FX drum_reverb_send_mixer_r.gain(instance_id, 0.0); drum_reverb_send_mixer_l.gain(instance_id, 0.0); #endif } #endif #if defined(USE_FX) // Init effects for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { memset(delayline[instance_id], 0, sizeof(delayline[instance_id])); if (!modchorus[instance_id]->begin(delayline[instance_id], MOD_DELAY_SAMPLE_BUFFER)) { #ifdef DEBUG Serial.print(F("AudioEffectModulatedDelay - begin failed [")); Serial.print(instance_id); Serial.println(F("]")); #endif while (1); } } #ifdef DEBUG Serial.print(F("MOD_DELAY_SAMPLE_BUFFER=")); Serial.print(MOD_DELAY_SAMPLE_BUFFER, DEC); Serial.println(F(" samples")); #endif #endif // start SD card #ifdef DISPLAY_LCD_SPI change_disp_sd(false); #endif sd_card = check_sd_cards(); if (sd_card < 1) { #ifdef DEBUG Serial.println(F("SD card not accessable.")); #endif } else { check_and_create_directories(); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { // load default SYSEX data load_sd_voice(configuration.performance.bank[instance_id], configuration.performance.voice[instance_id], instance_id); memset(g_voice_name[instance_id], 0, VOICE_NAME_LEN); memset(g_bank_name[instance_id], 0, BANK_NAME_LEN); memset(receive_bank_filename, 0, FILENAME_LEN); } } initial_values_from_eeprom(false); #ifdef DISPLAY_LCD_SPI change_disp_sd(true); #endif // Initialize processor and memory measurements AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); #ifdef DEBUG for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { Serial.print(F("Dexed instance ")); Serial.print(instance_id); Serial.println(F(":")); Serial.print(F("Bank/Voice from EEPROM [")); Serial.print(configuration.performance.bank[instance_id], DEC); Serial.print(F("/")); Serial.print(configuration.performance.voice[instance_id], DEC); Serial.println(F("]")); Serial.print(F("Polyphony: ")); Serial.println(configuration.dexed[instance_id].polyphony, DEC); } Serial.print(F("AUDIO_BLOCK_SAMPLES=")); Serial.print(AUDIO_BLOCK_SAMPLES); Serial.print(F(" (Time per block=")); Serial.print(1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES)); Serial.println(F("ms)")); #endif #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) show_cpu_and_mem_usage(); #endif // init master_mixer #if NUM_DEXED > 1 for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { master_mixer_r.gain(instance_id, VOL_MAX_FLOAT); master_mixer_l.gain(instance_id, VOL_MAX_FLOAT); } #else master_mixer_r.gain(0, VOL_MAX_FLOAT); master_mixer_l.gain(0, VOL_MAX_FLOAT); master_mixer_r.gain(1, 0.0); master_mixer_l.gain(1, 0.0); #endif #if NUM_DRUMS > 0 master_mixer_r.gain(2, VOL_MAX_FLOAT); master_mixer_l.gain(2, VOL_MAX_FLOAT); drums_volume = VOL_MAX_FLOAT; #else master_mixer_r.gain(2, 0.0); master_mixer_l.gain(2, 0.0); #endif master_mixer_r.gain(3, VOL_MAX_FLOAT); master_mixer_l.gain(3, VOL_MAX_FLOAT); #if defined(TEENSY_AUDIO_BOARD) && defined(SGTL5000_AUDIO_THRU) audio_thru_mixer_r.gain(0, VOL_MAX_FLOAT); // MD signal sum audio_thru_mixer_l.gain(0, VOL_MAX_FLOAT); // MD signal sum #ifdef TEENSY_AUDIO_BOARD audio_thru_mixer_r.gain(1, VOL_MAX_FLOAT); // I2S input audio_thru_mixer_l.gain(1, VOL_MAX_FLOAT); // I2S input #else audio_thru_mixer_r.gain(1, 0.0); audio_thru_mixer_l.gain(1, 0.0); #endif audio_thru_mixer_r.gain(2, 0.0); audio_thru_mixer_l.gain(2, 0.0); audio_thru_mixer_r.gain(3, 0.0); audio_thru_mixer_l.gain(3, 0.0); #endif #ifdef DEBUG Serial.println(F("")); #endif strcpy(seq_name, "INIT Perf"); LCDML.OTHER_jumpToFunc(UI_func_voice_select); timer1.begin(sequencer, seq_tempo_ms / 2, false); } void loop() { // MIDI input handling check_midi_devices(); // check encoder ENCODER[ENC_L].update(); ENCODER[ENC_R].update(); #ifdef ENABLE_LCD_UI LCDML.loop(); #endif if (seq_running) { if (seq_step != seq_UI_last_step) { seq_UI_last_step = seq_step; if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_seq_pattern_editor)) //is in UI of Sequencer { lcd.setCursor(seq_step, 1); lcd.write(124); if (seq_step == 0) { lcd.setCursor(15, 1); lcd.print(seq_find_shortname(15)[0]); } else { lcd.setCursor(seq_step - 1, 1); lcd.print(seq_find_shortname(seq_step - 1)[0]); } } else if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_arpeggio)) //is in UI of Arpeggiator { lcd.setCursor(7, 0); lcd.print( seq_chord_names[arp_chord][0]); lcd.print( seq_chord_names[arp_chord][1]); lcd.print( seq_chord_names[arp_chord][2]); lcd.print( seq_chord_names[arp_chord][3]); } } } // CONTROL-RATE-EVENT-HANDLING if (control_rate > CONTROL_RATE_MS) { control_rate = 0; // check for value changes, unused voices and CPU overload for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { active_voices[instance_id] = MicroDexed[instance_id]->getNumNotesPlaying(); if (active_voices[instance_id] == 0) midi_voices[instance_id] = 0; } if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_voice_select)) { for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { #ifdef TEENSY4 if (midi_decay_timer > MIDI_DECAY_TIMER && midi_decay[instance_id] > 0) { midi_decay[instance_id]--; lcd.createChar(6 + instance_id, (uint8_t*)special_chars[15 - (7 - midi_decay[instance_id])]); lcd.setCursor(14 + instance_id, 1); lcd.write(6 + instance_id); } else if (midi_voices[instance_id] == 0 && midi_decay[instance_id] == 0 && !MicroDexed[instance_id]->getSustain()) { midi_decay[instance_id]--; lcd.setCursor(14 + instance_id, 1); lcd.write(20); // blank } #else static bool midi_playing[NUM_DEXED]; if (midi_voices[instance_id] > 0 && midi_playing[instance_id] == false) { midi_playing[instance_id] = true; lcd.setCursor(14 + instance_id, 1); lcd.write(6 + instance_id); } else if (midi_voices[instance_id] == 0 && !MicroDexed[instance_id]->getSustain()) { midi_playing[instance_id] = false; lcd.setCursor(14 + instance_id, 1); lcd.write(20); // blank } #endif } #ifdef TEENSY4 if (midi_decay_timer > 250) { midi_decay_timer = 0; } #endif } } else yield(); #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) if (cpu_mem_millis >= SHOW_CPU_LOAD_MSEC) { if (master_peak_r.available()) if (master_peak_r.read() == 1.0) peak_r++; if (master_peak_l.available()) if (master_peak_l.read() == 1.0) peak_l++; if (microdexed_peak.available()) { peak_dexed_value = microdexed_peak.read(); if (peak_dexed_value > 0.99) peak_dexed++; } cpu_mem_millis -= SHOW_CPU_LOAD_MSEC; show_cpu_and_mem_usage(); } #endif } /****************************************************************************** MIDI MESSAGE HANDLER ******************************************************************************/ void handleNoteOn(byte inChannel, byte inNumber, byte inVelocity) { #if NUM_DRUMS > 0 if (activesample < 6 && seq_running == false && LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_seq_pattern_editor) ) // live play pitched sample { if (drum_counter >= NUM_DRUMS) drum_counter = 0; uint8_t slot = drum_get_slot(drum_config[activesample].drum_class); float pan = mapfloat(drum_config[activesample].pan, -1.0, 1.0, 0.0, 1.0); drum_mixer_r.gain(slot, (1.0 - pan) * drum_config[activesample].vol_max); drum_mixer_l.gain(slot, pan * drum_config[activesample].vol_max); #ifdef USE_FX drum_reverb_send_mixer_r.gain(slot, (1.0 - pan) * volume_transform(drum_config[activesample].reverb_send)); drum_reverb_send_mixer_l.gain(slot, pan * volume_transform(drum_config[activesample].reverb_send)); #endif if (drum_config[activesample].drum_data != NULL && drum_config[activesample].len > 0) { Drum[slot]->enableInterpolation(true); Drum[slot]->setPlaybackRate( (float)pow (2, (inNumber - 72) / 12.00) * drum_config[activesample].p_offset ); Drum[slot]->playRaw((int16_t*)drum_config[activesample].drum_data, drum_config[activesample].len, 1); } } else #endif //Ignore the note when playing & recording the same note into the sequencer if (seq_recording == false || (seq_recording && inNumber != seq_note_in )) { // Check for MicroDexed for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { if (checkMidiChannel(inChannel, instance_id)) { if (inNumber >= configuration.dexed[instance_id].lowest_note && inNumber <= configuration.dexed[instance_id].highest_note) { if (configuration.dexed[instance_id].polyphony > 0) MicroDexed[instance_id]->keydown(inNumber, uint8_t(float(configuration.dexed[instance_id].velocity_level / 127.0)*inVelocity + 0.5)); midi_voices[instance_id]++; #ifdef TEENSY4 if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_voice_select)) { midi_decay_timer = 0; midi_decay[instance_id] = min(inVelocity / 5, 7); } #endif #ifdef DEBUG char note_name[4]; getNoteName(note_name, inNumber); Serial.print(F("Keydown ")); Serial.print(note_name); Serial.print(F(" instance ")); Serial.print(instance_id, DEC); Serial.print(F(" MIDI-channel ")); Serial.print(inChannel, DEC); Serial.println(); #endif return; } } } #if NUM_DRUMS > 0 // Check for Drum if (inChannel == drum_midi_channel) { if (drum_counter >= NUM_DRUMS) drum_counter = 0; #ifdef DEBUG char note_name[4]; getNoteName(note_name, inNumber); Serial.print(F("=> Drum[")); Serial.print(drum_counter, DEC); Serial.print(F("]: ")); Serial.println(note_name); #endif for (uint8_t d = 0; d < NUM_DRUMSET_CONFIG; d++) { if (inNumber == drum_config[d].midinote) { uint8_t slot = drum_get_slot(drum_config[d].drum_class); float pan = mapfloat(drum_config[d].pan, -1.0, 1.0, 0.0, 1.0); drum_mixer_r.gain(slot, (1.0 - pan) * volume_transform(mapfloat(inVelocity, 0, 127, drum_config[d].vol_min, drum_config[d].vol_max))); drum_mixer_l.gain(slot, pan * volume_transform(mapfloat(inVelocity, 0, 127, drum_config[d].vol_min, drum_config[d].vol_max))); #ifdef USE_FX drum_reverb_send_mixer_r.gain(slot, (1.0 - pan) * volume_transform(drum_config[d].reverb_send)); drum_reverb_send_mixer_l.gain(slot, pan * volume_transform(drum_config[d].reverb_send)); #endif if (drum_config[d].drum_data != NULL && drum_config[d].len > 0) { //Drum[slot]->play(drum_config[d].drum_data); if (drum_config[d].pitch != 0.0) { Drum[slot]->enableInterpolation(true); Drum[slot]->setPlaybackRate(drum_config[d].pitch); } Drum[slot]->playRaw((int16_t*)drum_config[d].drum_data, drum_config[d].len, 1); } #ifdef DEBUG Serial.print(F("Drum ")); Serial.print(drum_config[d].shortname); Serial.print(F(" [")); Serial.print(drum_config[d].name); Serial.print(F("], Slot ")); Serial.print(slot); Serial.print(F(": V")); Serial.print(mapfloat(inVelocity, 0, 127, drum_config[d].vol_min, drum_config[d].vol_max), 2); Serial.print(F(" P")); Serial.print(drum_config[d].pan, 2); Serial.print(F(" PAN")); Serial.print(pan, 2); Serial.print(F(" RS")); Serial.println(drum_config[d].reverb_send, 2); #endif break; } } } #endif } } #if NUM_DRUMS > 0 uint8_t drum_get_slot(uint8_t dt) { for (uint8_t i = 0; i < NUM_DRUMS; i++) { if (!Drum[i]->isPlaying()) { drum_type[i] = DRUM_NONE; Drum[i]->enableInterpolation(false); Drum[i]->setPlaybackRate(1.0); } // else // { // if (drum_type[i] == dt) // { //#ifdef DEBUG // Serial.print(F("Stopping Drum ")); // Serial.print(i); // Serial.print(F(" type ")); // Serial.println(dt); //#endif // Drum[i]->stop(); // // return (i); // } // } } #ifdef DEBUG Serial.print(F("Using next free Drum slot ")); Serial.println(drum_counter % NUM_DRUMS); #endif drum_type[drum_counter % NUM_DRUMS] = dt; drum_counter++; return (drum_counter - 1 % NUM_DRUMS); } #endif void handleNoteOff(byte inChannel, byte inNumber, byte inVelocity) { for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { if (checkMidiChannel(inChannel, instance_id)) { if (inNumber >= configuration.dexed[instance_id].lowest_note && inNumber <= configuration.dexed[instance_id].highest_note) { if (configuration.dexed[instance_id].polyphony > 0) MicroDexed[instance_id]->keyup(inNumber); midi_voices[instance_id]--; #ifdef DEBUG char note_name[4]; getNoteName(note_name, inNumber); Serial.print(F("KeyUp ")); Serial.print(note_name); Serial.print(F(" instance ")); Serial.print(instance_id, DEC); Serial.print(F(" MIDI-channel ")); Serial.print(inChannel, DEC); Serial.println(); #endif } } } } void handleControlChange(byte inChannel, byte inCtrl, byte inValue) { inCtrl = constrain(inCtrl, 0, 127); inValue = constrain(inValue, 0, 127); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { if (checkMidiChannel(inChannel, instance_id)) { #ifdef DEBUG Serial.print(F("INSTANCE ")); Serial.print(instance_id, DEC); Serial.print(F(": CC#")); Serial.print(inCtrl, DEC); Serial.print(F(":")); Serial.println(inValue, DEC); #endif switch (inCtrl) { case 0: // BankSelect MSB #ifdef DEBUG Serial.println(F("BANK-SELECT MSB CC")); #endif configuration.performance.bank[instance_id] = constrain((inValue << 7)&configuration.performance.bank[instance_id], 0, MAX_BANKS - 1); /* load_sd_voice(configuration.performance.bank[instance_id], configuration.performance.voice[instance_id], instance_id); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_voice_select)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } */ break; case 1: #ifdef DEBUG Serial.println(F("MODWHEEL CC")); #endif MicroDexed[instance_id]->setModWheel(inValue); MicroDexed[instance_id]->ControllersRefresh(); break; case 2: #ifdef DEBUG Serial.println(F("BREATH CC")); #endif MicroDexed[instance_id]->setBreathController(inValue); MicroDexed[instance_id]->ControllersRefresh(); break; case 4: #ifdef DEBUG Serial.println(F("FOOT CC")); #endif MicroDexed[instance_id]->setFootController(inValue); MicroDexed[instance_id]->ControllersRefresh(); break; case 5: // Portamento time configuration.dexed[instance_id].portamento_time = inValue; MicroDexed[instance_id]->setPortamentoMode(configuration.dexed[instance_id].portamento_mode, configuration.dexed[instance_id].portamento_glissando, configuration.dexed[instance_id].portamento_time); break; case 7: // Instance Volume #ifdef DEBUG Serial.println(F("VOLUME CC")); #endif configuration.dexed[instance_id].sound_intensity = map(inValue, 0, 127, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX); MicroDexed[instance_id]->setGain(midi_volume_transform(map(configuration.dexed[instance_id].sound_intensity, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX, 0, 127))); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_sound_intensity)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 10: // Pan #ifdef DEBUG Serial.println(F("PANORAMA CC")); #endif configuration.dexed[instance_id].pan = map(inValue, 0, 0x7f, PANORAMA_MIN, PANORAMA_MAX); mono2stereo[instance_id]->panorama(mapfloat(configuration.dexed[instance_id].pan, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0)); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_panorama)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 32: // BankSelect LSB #ifdef DEBUG Serial.println(F("BANK-SELECT LSB CC")); #endif configuration.performance.bank[instance_id] = constrain(inValue, 0, MAX_BANKS - 1); /*load_sd_voice(configuration.performance.bank[instance_id], configuration.performance.voice[instance_id], instance_id); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_voice_select)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); }*/ break; case 64: MicroDexed[instance_id]->setSustain(inValue > 63); if (!MicroDexed[instance_id]->getSustain()) { for (uint8_t note = 0; note < MicroDexed[instance_id]->getMaxNotes(); note++) { if (MicroDexed[instance_id]->voices[note].sustained && !MicroDexed[instance_id]->voices[note].keydown) { MicroDexed[instance_id]->voices[note].dx7_note->keyup(); MicroDexed[instance_id]->voices[note].sustained = false; } } } break; case 65: MicroDexed[instance_id]->setPortamentoMode(configuration.dexed[instance_id].portamento_mode, configuration.dexed[instance_id].portamento_glissando, configuration.dexed[instance_id].portamento_time); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_portamento_mode)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 94: // CC 94: (de)tune configuration.dexed[selected_instance_id].tune = map(inValue, 0, 0x7f, TUNE_MIN, TUNE_MAX); MicroDexed[selected_instance_id]->setMasterTune((int((configuration.dexed[selected_instance_id].tune - 100) / 100.0 * 0x4000) << 11) * (1.0 / 12)); MicroDexed[selected_instance_id]->doRefreshVoice(); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_tune)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; #if defined(USE_FX) case 91: // CC 91: reverb send configuration.fx.reverb_send[selected_instance_id] = map(inValue, 0, 0x7f, REVERB_SEND_MIN, REVERB_SEND_MAX); reverb_mixer_r.gain(selected_instance_id, volume_transform(mapfloat(configuration.fx.reverb_send[selected_instance_id], REVERB_SEND_MIN, REVERB_SEND_MAX, 0.0, VOL_MAX_FLOAT))); reverb_mixer_l.gain(selected_instance_id, volume_transform(mapfloat(configuration.fx.reverb_send[selected_instance_id], REVERB_SEND_MIN, REVERB_SEND_MAX, 0.0, VOL_MAX_FLOAT))); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_reverb_send)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 93: // CC 93: chorus level configuration.fx.chorus_level[selected_instance_id] = map(inValue, 0, 0x7f, CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX); chorus_mixer[selected_instance_id]->gain(1, volume_transform(mapfloat(configuration.fx.chorus_level[selected_instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 0.5))); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_chorus_level)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 103: // CC 103: filter resonance configuration.fx.filter_resonance[instance_id] = map(inValue, 0, 0x7f, FILTER_RESONANCE_MIN, FILTER_RESONANCE_MAX); MicroDexed[instance_id]->setFilterResonance(mapfloat(configuration.fx.filter_resonance[instance_id], FILTER_RESONANCE_MIN, FILTER_RESONANCE_MAX, 1.0, 0.0)); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_filter_resonance)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 104: // CC 104: filter cutoff configuration.fx.filter_cutoff[instance_id] = map(inValue, 0, 0x7f, FILTER_CUTOFF_MIN, FILTER_CUTOFF_MAX); MicroDexed[instance_id]->setFilterCutoff(mapfloat(configuration.fx.filter_cutoff[instance_id], FILTER_CUTOFF_MIN, FILTER_CUTOFF_MAX, 1.0, 0.0));; if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_filter_cutoff)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 105: // CC 105: delay time configuration.fx.delay_time[instance_id] = map(inValue, 0, 0x7f, DELAY_TIME_MIN, DELAY_TIME_MAX); delay_fx[instance_id]->delay(0, constrain(configuration.fx.delay_time[instance_id] * 10, DELAY_TIME_MIN * 10, DELAY_TIME_MAX * 10)); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_delay_time)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 106: // CC 106: delay feedback configuration.fx.delay_feedback[instance_id] = map(inValue, 0, 0x7f, DELAY_FEEDBACK_MIN , DELAY_FEEDBACK_MAX); delay_fb_mixer[instance_id]->gain(1, midi_volume_transform(map(configuration.fx.delay_feedback[instance_id], DELAY_FEEDBACK_MIN, DELAY_FEEDBACK_MAX, 0, 127))); // amount of feedback if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_delay_feedback)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 107: // CC 107: delay volume configuration.fx.delay_level[instance_id] = map(inValue, 0, 0x7f, DELAY_LEVEL_MIN, DELAY_LEVEL_MAX); delay_mixer[instance_id]->gain(1, midi_volume_transform(map(configuration.fx.delay_level[instance_id], DELAY_LEVEL_MIN, DELAY_LEVEL_MAX, 0, 127))); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_delay_level)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; #endif case 120: MicroDexed[instance_id]->panic(); break; case 121: MicroDexed[instance_id]->resetControllers(); break; case 123: MicroDexed[instance_id]->notesOff(); break; case 126: if (inValue > 0) MicroDexed[instance_id]->setMonoMode(true); else MicroDexed[instance_id]->setMonoMode(false); break; case 127: if (inValue > 0) MicroDexed[instance_id]->setMonoMode(true); else MicroDexed[instance_id]->setMonoMode(false); break; } } } } void handleAfterTouch(byte inChannel, byte inPressure) { for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { if (checkMidiChannel(inChannel, instance_id)) { MicroDexed[instance_id]->setAftertouch(inPressure); MicroDexed[instance_id]->ControllersRefresh(); } } } void handlePitchBend(byte inChannel, int inPitch) { for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { if (checkMidiChannel(inChannel, instance_id)) { MicroDexed[instance_id]->setPitchbend(inPitch); } } } void handleProgramChange(byte inChannel, byte inProgram) { for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { if (checkMidiChannel(inChannel, instance_id)) { configuration.performance.voice[instance_id] = constrain(inProgram, 0, MAX_VOICES - 1); #ifdef DISPLAY_LCD_SPI change_disp_sd(false); #endif load_sd_voice(configuration.performance.bank[instance_id], configuration.performance.voice[instance_id], instance_id); #ifdef DISPLAY_LCD_SPI change_disp_sd(true); #endif if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_voice_select)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } } } } void handleSystemExclusive(byte * sysex, uint len) { for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { if (!checkMidiChannel((sysex[2] & 0x0f) + 1 , instance_id)) { #ifdef DEBUG Serial.print(F("INSTANCE ")); Serial.print(instance_id, DEC); Serial.println(F(": SYSEX-MIDI-Channel mismatch")); #endif return; } #ifdef DEBUG Serial.print(F("SysEx data length: [")); Serial.print(len); Serial.println(F("]")); Serial.println(F("SysEx data:")); for (uint16_t i = 0; i < len; i++) { Serial.print(F("[0x")); uint8_t s = sysex[i]; if (s < 16) Serial.print(F("0")); Serial.print(s, HEX); Serial.print(F("|")); if (s < 100) Serial.print(F("0")); if (s < 10) Serial.print(F("0")); Serial.print(s, DEC); Serial.print(F("]")); if ((i + 1) % 16 == 0) Serial.println(); } Serial.println(); #endif // Check for SYSEX end byte if (sysex[len - 1] != 0xf7) { #ifdef DEBUG Serial.println(F("E: SysEx end status byte not detected.")); #endif return; } if (sysex[1] != 0x43) // check for Yamaha sysex { #ifdef DEBUG Serial.println(F("E: SysEx vendor not Yamaha.")); #endif return; } #ifdef DEBUG Serial.print(F("Substatus: [")); Serial.print((sysex[2] & 0x70) >> 4); Serial.println(F("]")); #endif // parse parameter change if (len == 7) { if (((sysex[3] & 0x7c) >> 2) != 0 && ((sysex[3] & 0x7c) >> 2) != 2) { #ifdef DEBUG Serial.println(F("E: Not a SysEx parameter or function parameter change.")); #endif return; } sysex[4] &= 0x7f; sysex[5] &= 0x7f; if ((sysex[3] & 0x7c) >> 2 == 0) { #ifdef DEBUG Serial.println(F("SysEx Voice parameter:")); Serial.print("Parameter #"); Serial.print(sysex[4] + ((sysex[3] & 0x03) * 128), DEC); Serial.print(" Value: "); Serial.println(sysex[5], DEC); #endif MicroDexed[instance_id]->setVoiceDataElement(sysex[4] + ((sysex[3] & 0x03) * 128), sysex[5]); } else if ((sysex[3] & 0x7c) >> 2 == 2) { #ifdef DEBUG Serial.println(F("SysEx Function parameter:")); Serial.print("Parameter #"); Serial.print(sysex[4], DEC); Serial.print(" Value: "); Serial.println(sysex[5], DEC); #endif switch (sysex[4]) { case 65: configuration.dexed[instance_id].pb_range = constrain(sysex[5], PB_RANGE_MIN, PB_RANGE_MAX); MicroDexed[instance_id]->setPitchbendRange(configuration.dexed[instance_id].pb_range); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_pb_range)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 66: configuration.dexed[instance_id].pb_step = constrain(sysex[5], PB_STEP_MIN, PB_STEP_MAX); MicroDexed[instance_id]->setPitchbendRange(configuration.dexed[instance_id].pb_step); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_pb_step)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 67: configuration.dexed[instance_id].portamento_mode = constrain(sysex[5], PORTAMENTO_MODE_MIN, PORTAMENTO_MODE_MAX); MicroDexed[instance_id]->setPortamentoMode(configuration.dexed[instance_id].portamento_mode, configuration.dexed[instance_id].portamento_glissando, configuration.dexed[instance_id].portamento_time); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_portamento_mode)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 68: configuration.dexed[instance_id].portamento_glissando = constrain(sysex[5], PORTAMENTO_GLISSANDO_MIN, PORTAMENTO_GLISSANDO_MAX); MicroDexed[instance_id]->setPortamentoMode(configuration.dexed[instance_id].portamento_mode, configuration.dexed[instance_id].portamento_glissando, configuration.dexed[instance_id].portamento_time); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_portamento_glissando)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 69: configuration.dexed[instance_id].portamento_time = constrain(sysex[5], PORTAMENTO_TIME_MIN, PORTAMENTO_TIME_MAX); MicroDexed[instance_id]->setPortamentoMode(configuration.dexed[instance_id].portamento_mode, configuration.dexed[instance_id].portamento_glissando, configuration.dexed[instance_id].portamento_time); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_portamento_time)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 70: configuration.dexed[instance_id].mw_range = constrain(sysex[5], MW_RANGE_MIN, MW_RANGE_MAX); MicroDexed[instance_id]->setModWheelRange(configuration.dexed[instance_id].mw_range); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_mw_range)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 71: configuration.dexed[instance_id].mw_assign = constrain(sysex[5], MW_ASSIGN_MIN, MW_ASSIGN_MAX); MicroDexed[instance_id]->setModWheelTarget(configuration.dexed[instance_id].mw_assign); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_mw_assign)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 72: configuration.dexed[instance_id].fc_range = constrain(sysex[5], FC_RANGE_MIN, FC_RANGE_MAX); MicroDexed[instance_id]->setFootControllerRange(configuration.dexed[instance_id].fc_range); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_fc_range)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 73: configuration.dexed[instance_id].fc_assign = constrain(sysex[5], FC_ASSIGN_MIN, FC_ASSIGN_MAX); MicroDexed[instance_id]->setFootControllerTarget(configuration.dexed[instance_id].fc_assign); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_fc_assign)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 74: configuration.dexed[instance_id].bc_range = constrain(sysex[5], BC_RANGE_MIN, BC_RANGE_MAX); MicroDexed[instance_id]->setBreathControllerRange(configuration.dexed[instance_id].bc_range); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_bc_range)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 75: configuration.dexed[instance_id].bc_assign = constrain(sysex[5], BC_ASSIGN_MIN, BC_ASSIGN_MAX); MicroDexed[instance_id]->setBreathControllerTarget(configuration.dexed[instance_id].bc_assign); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_bc_assign)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 76: configuration.dexed[instance_id].at_range = constrain(sysex[5], AT_RANGE_MIN, AT_RANGE_MAX); MicroDexed[instance_id]->setAftertouchRange(configuration.dexed[instance_id].at_range); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_at_range)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 77: configuration.dexed[instance_id].at_assign = constrain(sysex[5], AT_ASSIGN_MIN, AT_ASSIGN_MAX); MicroDexed[instance_id]->setAftertouchTarget(configuration.dexed[instance_id].at_assign); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_at_assign)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; default: MicroDexed[instance_id]->setVoiceDataElement(sysex[4], sysex[5]); // set function parameter break; } MicroDexed[instance_id]->ControllersRefresh(); } #ifdef DEBUG else { Serial.println(F("E: Unknown SysEx voice or function.")); } #endif } else if (len == 163) { int32_t bulk_checksum_calc = 0; int8_t bulk_checksum = sysex[161]; // 1 Voice bulk upload #ifdef DEBUG Serial.println(F("One Voice bulk upload")); #endif if ((sysex[3] & 0x7f) != 0) { #ifdef DEBUG Serial.println(F("E: Not a SysEx voice bulk upload.")); #endif return; } if (((sysex[4] << 7) | sysex[5]) != 0x9b) { #ifdef DEBUG Serial.println(F("E: Wrong length for SysEx voice bulk upload (not 155).")); #endif return; } // checksum calculation for (uint8_t i = 0; i < 155 ; i++) { bulk_checksum_calc -= sysex[i + 6]; } bulk_checksum_calc &= 0x7f; if (bulk_checksum_calc != bulk_checksum) { #ifdef DEBUG Serial.print(F("E: Checksum error for one voice [0x")); Serial.print(bulk_checksum, HEX); Serial.print(F("/0x")); Serial.print(bulk_checksum_calc, HEX); Serial.println(F("]")); #endif return; } // fix voice name for (uint8_t i = 0; i < 10; i++) { if (sysex[151 + i] > 126) // filter characters sysex[151 + i] = 32; } // load sysex-data into voice memory MicroDexed[instance_id]->loadVoiceParameters(&sysex[6]); #ifdef DEBUG show_patch(instance_id); #endif // show voice name strncpy(g_voice_name[instance_id], (char*)&sysex[151], VOICE_NAME_LEN - 1); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_voice_select)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } } else if (len == 4104) { if (strlen(receive_bank_filename) > 0 && LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_sysex_receive_bank)) { int32_t bulk_checksum_calc = 0; int8_t bulk_checksum = sysex[4102]; // 1 Bank bulk upload if ((sysex[3] & 0x7f) != 9) { #ifdef DEBUG Serial.println(F("E: Not a SysEx bank bulk upload.")); #endif lcd.setCursor(0, 1); lcd.print(F("Error (TYPE) ")); delay(MESSAGE_WAIT_TIME); LCDML.FUNC_goBackToMenu(); return; } #ifdef DEBUG Serial.println(F("Bank bulk upload.")); #endif if (((sysex[4] << 7) | sysex[5]) != 0x1000) { #ifdef DEBUG Serial.println(F("E: Wrong length for SysEx bank bulk upload (not 4096).")); #endif lcd.setCursor(0, 1); lcd.print(F("Error (SIZE) ")); delay(MESSAGE_WAIT_TIME); LCDML.FUNC_goBackToMenu(); return; } #ifdef DEBUG Serial.println(F("Bank type ok")); #endif // checksum calculation for (uint16_t i = 0; i < 4096 ; i++) { bulk_checksum_calc -= sysex[i + 6]; } bulk_checksum_calc &= 0x7f; if (bulk_checksum_calc != bulk_checksum) { #ifdef DEBUG Serial.print(F("E: Checksum error for bank [0x")); Serial.print(bulk_checksum, HEX); Serial.print(F("/0x")); Serial.print(bulk_checksum_calc, HEX); Serial.println(F("]")); #endif lcd.setCursor(0, 1); lcd.print(F("Error (CHECKSUM)")); delay(MESSAGE_WAIT_TIME); LCDML.FUNC_goBackToMenu(); return; } #ifdef DEBUG Serial.println(F("Bank checksum ok")); #endif if (save_sd_bank(receive_bank_filename, sysex)) { #ifdef DEBUG Serial.print(F("Bank saved as [")); Serial.print(receive_bank_filename); Serial.println(F("]")); #endif lcd.setCursor(0, 1); lcd.print(F("Done. ")); delay(MESSAGE_WAIT_TIME); LCDML.FUNC_goBackToMenu(); } else { #ifdef DEBUG Serial.println(F("Error during saving bank as [")); Serial.print(receive_bank_filename); Serial.println(F("]")); #endif lcd.setCursor(0, 1); lcd.print(F("Error. ")); delay(MESSAGE_WAIT_TIME); LCDML.FUNC_goBackToMenu(); } memset(receive_bank_filename, 0, FILENAME_LEN); } #ifdef DEBUG else Serial.println(F("E: Not in MIDI receive bank mode.")); #endif } #ifdef DEBUG else Serial.println(F("E: SysEx parameter length wrong.")); #endif } } void handleTimeCodeQuarterFrame(byte data) { ; } void handleAfterTouchPoly(byte inChannel, byte inNumber, byte inVelocity) { ; } void handleSongSelect(byte inSong) { ; } void handleTuneRequest(void) { ; } void handleClock(void) { if (midi_bpm_counter % 24 == 0) { midi_bpm = (60000.0f / float(midi_bpm_timer) + 0.5); if (_midi_bpm > -1 && _midi_bpm != midi_bpm) { #ifdef DEBUG Serial.print(F("MIDI Clock: ")); Serial.print(midi_bpm); Serial.print(F(" bpm (")); Serial.print(midi_bpm_timer, DEC); Serial.println(F("ms per quarter)")); #endif #ifdef USE_FX /* 1 1/16 = 6 ticks / 0.0625 2 1/16T = 9 ticks / 0.09375 3 1/8 = 12 ticks / 0.125 4 1/8T = 18 ticks / 0.1875 5 1/4 = 24 ticks / 0.25 6 1/4T = 36 ticks / 0.375 7 1/2 = 48 ticks / 0.5 8 1/2T = 72 ticks / 0.75 9 1/1 = 96 ticks / 1.0 */ for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { if (configuration.fx.delay_sync[instance_id] > 0) { uint16_t midi_sync_delay_time = uint16_t(60000.0 * midi_ticks_factor[configuration.fx.delay_sync[instance_id]] / float(midi_bpm) + 0.5); delay_fx[instance_id]->delay(0, constrain(midi_sync_delay_time, DELAY_TIME_MIN * 10, DELAY_TIME_MAX * 10)); #ifdef DEBUG Serial.print(F("Setting Delay-Sync of instance ")); Serial.print(instance_id); Serial.print(F(" to ")); Serial.print(constrain(midi_sync_delay_time, DELAY_TIME_MIN * 10, DELAY_TIME_MAX * 10), DEC); Serial.println(F(" ms")); #endif } } #endif } _midi_bpm = midi_bpm; midi_bpm_counter = 0; midi_bpm_timer = 0; } midi_bpm_counter++; } void dac_mute(void) { sgtl5000.lineOutLevel(0.0); sgtl5000.dacVolume(0.0); sgtl5000.volume(0.0, 0.0); // Headphone volume } void dac_unmute(void) { sgtl5000.lineOutLevel(SGTL5000_LINEOUT_LEVEL); sgtl5000.dacVolume(1.0); sgtl5000.volume(SGTL5000_HEADPHONE_VOLUME, SGTL5000_HEADPHONE_VOLUME); // Headphone volume } void handleStart(void) { midi_bpm_timer = 0; midi_bpm_counter = 0; _midi_bpm = -1; seq_step = 0; seq_chain_active_step = 0; seq_running = true; timer1.start(); } void handleContinue(void) { ; } void handleStop(void) { timer1.stop(); seq_running = false; seq_recording = false; seq_note_in = 0; seq_step = 0; seq_chain_active_step = 0; MicroDexed[0]->panic(); #if NUM_DEXED > 1 MicroDexed[1]->panic(); #endif } void handleActiveSensing(void) { ; } void handleSystemReset(void) { for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { #ifdef DEBUG Serial.println(F("MIDI SYSEX RESET")); #endif MicroDexed[instance_id]->notesOff(); MicroDexed[instance_id]->panic(); MicroDexed[instance_id]->resetControllers(); } } /****************************************************************************** MIDI HELPER ******************************************************************************/ bool checkMidiChannel(byte inChannel, uint8_t instance_id) { // check for MIDI channel if (configuration.dexed[instance_id].midi_channel == MIDI_CHANNEL_OMNI) { return (true); } else if (inChannel != configuration.dexed[instance_id].midi_channel) { #ifdef DEBUG Serial.print(F("INSTANCE ")); Serial.print(instance_id, DEC); Serial.print(F(": Ignoring MIDI data on channel ")); Serial.print(inChannel); Serial.print(F("(listening on ")); Serial.print(configuration.dexed[instance_id].midi_channel); Serial.println(F(")")); #endif return (false); } return (true); } void init_MIDI_send_CC(void) { #ifdef DEBUG Serial.println("init_MIDI_send_CC():"); #endif MD_sendControlChange(configuration.dexed[selected_instance_id].midi_channel, 7, configuration.dexed[selected_instance_id].sound_intensity); MD_sendControlChange(configuration.dexed[selected_instance_id].midi_channel, 10, configuration.dexed[selected_instance_id].pan); MD_sendControlChange(configuration.dexed[selected_instance_id].midi_channel, 91, configuration.fx.reverb_send[selected_instance_id]); MD_sendControlChange(configuration.dexed[selected_instance_id].midi_channel, 93, configuration.fx.chorus_level[selected_instance_id]); MD_sendControlChange(configuration.dexed[selected_instance_id].midi_channel, 94, configuration.dexed[selected_instance_id].tune); MD_sendControlChange(configuration.dexed[selected_instance_id].midi_channel, 103, configuration.fx.filter_resonance[selected_instance_id]); MD_sendControlChange(configuration.dexed[selected_instance_id].midi_channel, 104, configuration.fx.filter_cutoff[selected_instance_id]); MD_sendControlChange(configuration.dexed[selected_instance_id].midi_channel, 105, configuration.fx.delay_time[selected_instance_id]); MD_sendControlChange(configuration.dexed[selected_instance_id].midi_channel, 106, configuration.fx.delay_feedback[selected_instance_id]); MD_sendControlChange(configuration.dexed[selected_instance_id].midi_channel, 107, configuration.fx.delay_level[selected_instance_id]); } /****************************************************************************** VOLUME HELPER ******************************************************************************/ void set_drums_volume(float vol) { master_mixer_r.gain(2, vol); master_mixer_l.gain(2, vol); } void set_volume(uint8_t v, uint8_t m) { float tmp_v; configuration.sys.vol = v; if (configuration.sys.vol > 100) configuration.sys.vol = 100; tmp_v = float(v); configuration.sys.mono = m; #ifdef DEBUG Serial.print(F("Setting volume: VOL=")); Serial.println(v, DEC); Serial.print(F(" V=")); Serial.println(volume_transform(tmp_v / 100.0)); #endif volume_r.gain(volume_transform(tmp_v / 100.0)); volume_l.gain(volume_transform(tmp_v / 100.0)); switch (m) { case 0: // stereo stereo2mono.stereo(true); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) mono2stereo[instance_id]->panorama(mapfloat(configuration.dexed[instance_id].pan, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0)); break; case 1: // mono both stereo2mono.stereo(false); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) mono2stereo[instance_id]->panorama(mapfloat(PANORAMA_DEFAULT, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0)); break; case 2: // mono right volume_l.gain(0.0); stereo2mono.stereo(false); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) mono2stereo[instance_id]->panorama(mapfloat(PANORAMA_MAX, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0)); break; case 3: // mono left volume_r.gain(0.0); stereo2mono.stereo(false); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) mono2stereo[instance_id]->panorama(mapfloat(PANORAMA_MIN, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0)); break; } } /****************************************************************************** EEPROM HELPER ******************************************************************************/ void initial_values_from_eeprom(bool init) { uint16_t _m_; if (init == true) init_configuration(); else { _m_ = (EEPROM[EEPROM_START_ADDRESS + offsetof(configuration_s, _marker_)] << 8) | EEPROM[EEPROM_START_ADDRESS + offsetof(configuration_s, _marker_) + 1]; if (_m_ != EEPROM_MARKER) { #ifdef DEBUG Serial.println(F("Found wrong EEPROM marker, initializing EEPROM...")); #endif configuration._marker_ = EEPROM_MARKER; init_configuration(); } #ifdef DEBUG Serial.println(F("Loading initial system data from EEPROM.")); #endif eeprom_get_performance(); eeprom_get_sys(); eeprom_get_fx(); for (uint8_t i = 0; i < NUM_DEXED; i++) { eeprom_get_dexed(i); } #ifdef DEBUG Serial.println(F("OK, loaded!")); #endif check_configuration(); } /* #ifdef DEBUG Serial.print(F("Loading performance ")); Serial.print(configuration.sys.performance_number, DEC); Serial.print(F(": ")); if (load_sd_seq_json(configuration.sys.performance_number) == true) Serial.println(F("OK")); else Serial.println(F("ERROR")); #else load_sd_seq_json(configuration.sys.performance_number); #endif */ for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { set_voiceconfig_params(instance_id); } set_fx_params(); set_sys_params(); set_volume(configuration.sys.vol, configuration.sys.mono); #ifdef DEBUG show_configuration(); #endif } void check_configuration(void) { check_configuration_sys(); check_configuration_fx(); check_configuration_performance(); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) check_configuration_dexed(instance_id); } void check_configuration_sys(void) { configuration.sys.instances = constrain(configuration.sys.instances, INSTANCES_MIN, INSTANCES_MAX); configuration.sys.vol = constrain(configuration.sys.vol, VOLUME_MIN, VOLUME_MAX); configuration.sys.mono = constrain(configuration.sys.mono, MONO_MIN, MONO_MAX); configuration.sys.soft_midi_thru = constrain(configuration.sys.soft_midi_thru, SOFT_MIDI_THRU_MIN, SOFT_MIDI_THRU_MAX); configuration.sys.performance_number = constrain(configuration.sys.performance_number, PERFORMANCE_NUM_MIN, PERFORMANCE_NUM_MAX); } void check_configuration_fx(void) { #ifdef USE_PLATEREVERB configuration.fx.reverb_lowpass = constrain(configuration.fx.reverb_lowpass, REVERB_LOWPASS_MIN, REVERB_LOWPASS_MAX); configuration.fx.reverb_lodamp = constrain(configuration.fx.reverb_lodamp, REVERB_LODAMP_MIN, REVERB_LODAMP_MAX); configuration.fx.reverb_hidamp = constrain(configuration.fx.reverb_hidamp, REVERB_HIDAMP_MIN, REVERB_HIDAMP_MAX); configuration.fx.reverb_diffusion = constrain(configuration.fx.reverb_diffusion, REVERB_DIFFUSION_MIN, REVERB_DIFFUSION_MAX); #else configuration.fx.reverb_damping = constrain(configuration.fx.reverb_damping, REVERB_DAMPING_MIN, REVERB_DAMPING_MAX); #endif configuration.fx.reverb_roomsize = constrain(configuration.fx.reverb_roomsize, REVERB_ROOMSIZE_MIN, REVERB_ROOMSIZE_MAX); configuration.fx.reverb_level = constrain(configuration.fx.reverb_level, REVERB_LEVEL_MIN, REVERB_LEVEL_MAX); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { configuration.fx.filter_cutoff[instance_id] = constrain(configuration.fx.filter_cutoff[instance_id], FILTER_CUTOFF_MIN, FILTER_CUTOFF_MAX); configuration.fx.filter_resonance[instance_id] = constrain(configuration.fx.filter_resonance[instance_id], FILTER_RESONANCE_MIN, FILTER_RESONANCE_MAX); configuration.fx.chorus_frequency[instance_id] = constrain(configuration.fx.chorus_frequency[instance_id], CHORUS_FREQUENCY_MIN, CHORUS_FREQUENCY_MAX); configuration.fx.chorus_waveform[instance_id] = constrain(configuration.fx.chorus_waveform[instance_id], CHORUS_WAVEFORM_MIN, CHORUS_WAVEFORM_MAX); configuration.fx.chorus_depth[instance_id] = constrain(configuration.fx.chorus_depth[instance_id], CHORUS_DEPTH_MIN, CHORUS_DEPTH_MAX); configuration.fx.chorus_level[instance_id] = constrain(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX); if (configuration.fx.delay_sync[instance_id] == 0) configuration.fx.delay_time[instance_id] = constrain(configuration.fx.delay_time[instance_id], DELAY_TIME_MIN, DELAY_TIME_MAX); configuration.fx.delay_feedback[instance_id] = constrain(configuration.fx.delay_feedback[instance_id], DELAY_FEEDBACK_MIN, DELAY_FEEDBACK_MAX); configuration.fx.delay_level[instance_id] = constrain(configuration.fx.delay_level[instance_id], DELAY_LEVEL_MIN, DELAY_LEVEL_MAX); configuration.fx.delay_sync[instance_id] = constrain(configuration.fx.delay_sync[instance_id], DELAY_SYNC_MIN, DELAY_SYNC_MAX); configuration.fx.reverb_send[instance_id] = constrain(configuration.fx.reverb_send[instance_id], REVERB_SEND_MIN, REVERB_SEND_MAX); } configuration.fx.eq_1 = constrain(configuration.fx.eq_1, EQ_1_MIN, EQ_1_MAX); configuration.fx.eq_2 = constrain(configuration.fx.eq_2, EQ_2_MIN, EQ_2_MAX); configuration.fx.eq_3 = constrain(configuration.fx.eq_3, EQ_3_MIN, EQ_3_MAX); configuration.fx.eq_4 = constrain(configuration.fx.eq_4, EQ_4_MIN, EQ_4_MAX); configuration.fx.eq_5 = constrain(configuration.fx.eq_5, EQ_5_MIN, EQ_5_MAX); configuration.fx.eq_6 = constrain(configuration.fx.eq_6, EQ_6_MIN, EQ_6_MAX); configuration.fx.eq_7 = constrain(configuration.fx.eq_7, EQ_7_MIN, EQ_7_MAX); } void check_configuration_performance(void) { configuration.performance.fx_number = constrain(configuration.performance.fx_number, FX_NUM_MIN, FX_NUM_MAX); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { configuration.performance.bank[instance_id] = constrain(configuration.performance.bank[instance_id], 0, MAX_BANKS - 1); configuration.performance.voice[instance_id] = constrain(configuration.performance.voice[instance_id], 0, MAX_VOICES - 1); configuration.performance.voiceconfig_number[instance_id] = constrain(configuration.performance.voiceconfig_number[instance_id], VOICECONFIG_NUM_MIN, VOICECONFIG_NUM_MAX); } } void check_configuration_dexed(uint8_t instance_id) { configuration.dexed[instance_id].midi_channel = constrain(configuration.dexed[instance_id].midi_channel, MIDI_CHANNEL_MIN, MIDI_CHANNEL_MAX); configuration.dexed[instance_id].lowest_note = constrain(configuration.dexed[instance_id].lowest_note, INSTANCE_LOWEST_NOTE_MIN, INSTANCE_LOWEST_NOTE_MAX); configuration.dexed[instance_id].highest_note = constrain(configuration.dexed[instance_id].highest_note, INSTANCE_HIGHEST_NOTE_MIN, INSTANCE_HIGHEST_NOTE_MAX); configuration.dexed[instance_id].sound_intensity = constrain(configuration.dexed[instance_id].sound_intensity, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX); configuration.dexed[instance_id].pan = constrain(configuration.dexed[instance_id].pan, PANORAMA_MIN, PANORAMA_MAX); configuration.dexed[instance_id].transpose = constrain(configuration.dexed[instance_id].transpose, TRANSPOSE_MIN, TRANSPOSE_MAX); configuration.dexed[instance_id].tune = constrain(configuration.dexed[instance_id].tune, TUNE_MIN, TUNE_MAX); configuration.dexed[instance_id].polyphony = constrain(configuration.dexed[instance_id].polyphony, POLYPHONY_MIN, POLYPHONY_MAX); configuration.dexed[instance_id].velocity_level = constrain(configuration.dexed[instance_id].velocity_level, VELOCITY_LEVEL_MIN, VELOCITY_LEVEL_MAX); configuration.dexed[instance_id].monopoly = constrain(configuration.dexed[instance_id].monopoly, MONOPOLY_MIN, MONOPOLY_MAX); configuration.dexed[instance_id].note_refresh = constrain(configuration.dexed[instance_id].note_refresh, NOTE_REFRESH_MIN, NOTE_REFRESH_MAX); configuration.dexed[instance_id].pb_range = constrain(configuration.dexed[instance_id].pb_range, PB_RANGE_MIN, PB_RANGE_MAX); configuration.dexed[instance_id].pb_step = constrain(configuration.dexed[instance_id].pb_step, PB_STEP_MIN, PB_STEP_MAX); configuration.dexed[instance_id].mw_range = constrain(configuration.dexed[instance_id].mw_range, MW_RANGE_MIN, MW_RANGE_MAX); configuration.dexed[instance_id].mw_assign = constrain(configuration.dexed[instance_id].mw_assign, MW_ASSIGN_MIN, MW_ASSIGN_MAX); configuration.dexed[instance_id].mw_mode = constrain(configuration.dexed[instance_id].mw_mode, MW_MODE_MIN, MW_MODE_MAX); configuration.dexed[instance_id].fc_range = constrain(configuration.dexed[instance_id].fc_range, FC_RANGE_MIN, FC_RANGE_MAX); configuration.dexed[instance_id].fc_assign = constrain(configuration.dexed[instance_id].fc_assign, FC_ASSIGN_MIN, FC_ASSIGN_MAX); configuration.dexed[instance_id].fc_mode = constrain(configuration.dexed[instance_id].fc_mode, FC_MODE_MIN, FC_MODE_MAX); configuration.dexed[instance_id].bc_range = constrain(configuration.dexed[instance_id].bc_range, BC_RANGE_MIN, BC_RANGE_MAX); configuration.dexed[instance_id].bc_assign = constrain(configuration.dexed[instance_id].bc_assign, BC_ASSIGN_MIN, BC_ASSIGN_MAX); configuration.dexed[instance_id].bc_mode = constrain(configuration.dexed[instance_id].bc_mode, BC_MODE_MIN, BC_MODE_MAX); configuration.dexed[instance_id].at_range = constrain(configuration.dexed[instance_id].at_range, AT_RANGE_MIN, AT_RANGE_MAX); configuration.dexed[instance_id].at_assign = constrain(configuration.dexed[instance_id].at_assign, AT_ASSIGN_MIN, AT_ASSIGN_MAX); configuration.dexed[instance_id].at_mode = constrain(configuration.dexed[instance_id].at_mode, AT_MODE_MIN, AT_MODE_MAX); configuration.dexed[instance_id].portamento_mode = constrain(configuration.dexed[instance_id].portamento_mode, PORTAMENTO_MODE_MIN, PORTAMENTO_MODE_MAX); configuration.dexed[instance_id].portamento_glissando = constrain(configuration.dexed[instance_id].portamento_glissando, PORTAMENTO_GLISSANDO_MIN, PORTAMENTO_GLISSANDO_MAX); configuration.dexed[instance_id].portamento_time = constrain(configuration.dexed[instance_id].portamento_time, PORTAMENTO_TIME_MIN, PORTAMENTO_TIME_MAX); configuration.dexed[instance_id].op_enabled = constrain(configuration.dexed[instance_id].op_enabled, OP_ENABLED_MIN, OP_ENABLED_MAX); } void init_configuration(void) { #ifdef DEBUG Serial.println(F("INITIALIZING CONFIGURATION")); #endif configuration.sys.instances = INSTANCES_DEFAULT; configuration.sys.vol = VOLUME_DEFAULT; configuration.sys.mono = MONO_DEFAULT; configuration.sys.soft_midi_thru = SOFT_MIDI_THRU_DEFAULT; configuration.sys.performance_number = PERFORMANCE_NUM_DEFAULT; #ifdef USE_PLATEREVERB configuration.fx.reverb_lowpass = REVERB_LOWPASS_DEFAULT; configuration.fx.reverb_lodamp = REVERB_LODAMP_DEFAULT; configuration.fx.reverb_hidamp = REVERB_HIDAMP_DEFAULT; configuration.fx.reverb_diffusion = REVERB_DIFFUSION_DEFAULT; #else configuration.fx.reverb_damping = REVERB_DAMPING_DEFAULT; #endif configuration.fx.reverb_roomsize = REVERB_ROOMSIZE_DEFAULT; configuration.fx.reverb_level = REVERB_LEVEL_DEFAULT; configuration.performance.fx_number = FX_NUM_DEFAULT; for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { configuration.performance.bank[instance_id] = SYSEXBANK_DEFAULT; configuration.performance.voice[instance_id] = SYSEXSOUND_DEFAULT; configuration.performance.voiceconfig_number[instance_id] = VOICECONFIG_NUM_DEFAULT; configuration.dexed[instance_id].midi_channel = DEFAULT_MIDI_CHANNEL; configuration.dexed[instance_id].lowest_note = INSTANCE_LOWEST_NOTE_MIN; configuration.dexed[instance_id].highest_note = INSTANCE_HIGHEST_NOTE_MAX; configuration.dexed[instance_id].sound_intensity = SOUND_INTENSITY_DEFAULT; configuration.dexed[instance_id].pan = PANORAMA_DEFAULT; configuration.dexed[instance_id].transpose = TRANSPOSE_DEFAULT; configuration.dexed[instance_id].tune = TUNE_DEFAULT; configuration.dexed[instance_id].polyphony = POLYPHONY_DEFAULT; configuration.dexed[instance_id].velocity_level = VELOCITY_LEVEL_DEFAULT; configuration.dexed[instance_id].monopoly = MONOPOLY_DEFAULT; configuration.dexed[instance_id].note_refresh = NOTE_REFRESH_DEFAULT; configuration.dexed[instance_id].pb_range = PB_RANGE_DEFAULT; configuration.dexed[instance_id].pb_step = PB_STEP_DEFAULT; configuration.dexed[instance_id].mw_range = MW_RANGE_DEFAULT; configuration.dexed[instance_id].mw_assign = MW_ASSIGN_DEFAULT; configuration.dexed[instance_id].mw_mode = MW_MODE_DEFAULT; configuration.dexed[instance_id].fc_range = FC_RANGE_DEFAULT; configuration.dexed[instance_id].fc_assign = FC_ASSIGN_DEFAULT; configuration.dexed[instance_id].fc_mode = FC_MODE_DEFAULT; configuration.dexed[instance_id].bc_range = BC_RANGE_DEFAULT; configuration.dexed[instance_id].bc_assign = BC_ASSIGN_DEFAULT; configuration.dexed[instance_id].bc_mode = BC_MODE_DEFAULT; configuration.dexed[instance_id].at_range = AT_RANGE_DEFAULT; configuration.dexed[instance_id].at_assign = AT_ASSIGN_DEFAULT; configuration.dexed[instance_id].at_mode = AT_MODE_DEFAULT; configuration.dexed[instance_id].portamento_mode = PORTAMENTO_MODE_DEFAULT; configuration.dexed[instance_id].portamento_glissando = PORTAMENTO_GLISSANDO_DEFAULT; configuration.dexed[instance_id].portamento_time = PORTAMENTO_TIME_DEFAULT; configuration.dexed[instance_id].op_enabled = OP_ENABLED_DEFAULT; configuration.fx.filter_cutoff[instance_id] = FILTER_CUTOFF_DEFAULT; configuration.fx.filter_resonance[instance_id] = FILTER_RESONANCE_DEFAULT; configuration.fx.chorus_frequency[instance_id] = CHORUS_FREQUENCY_DEFAULT; configuration.fx.chorus_waveform[instance_id] = CHORUS_WAVEFORM_DEFAULT; configuration.fx.chorus_depth[instance_id] = CHORUS_DEPTH_DEFAULT; configuration.fx.chorus_level[instance_id] = CHORUS_LEVEL_DEFAULT; configuration.fx.delay_time[instance_id] = DELAY_TIME_DEFAULT / 10; configuration.fx.delay_feedback[instance_id] = DELAY_FEEDBACK_DEFAULT; configuration.fx.delay_level[instance_id] = DELAY_LEVEL_DEFAULT; configuration.fx.delay_sync[instance_id] = DELAY_SYNC_DEFAULT; configuration.fx.reverb_send[instance_id] = REVERB_SEND_DEFAULT; configuration.performance.bank[instance_id] = SYSEXBANK_DEFAULT; configuration.performance.voice[instance_id] = SYSEXSOUND_DEFAULT; configuration.dexed[instance_id].polyphony = POLYPHONY_DEFAULT; MicroDexed[instance_id]->ControllersRefresh(); } set_volume(configuration.sys.vol, configuration.sys.mono); eeprom_update(); } void eeprom_update(void) { uint8_t* c = (uint8_t*)&configuration; for (uint16_t i = 0; i < sizeof(configuration); i++) EEPROM.update(EEPROM_START_ADDRESS + i, c[i]); } void eeprom_update_sys(void) { uint8_t* c = (uint8_t*)&configuration.sys; for (uint16_t i = 0; i < sizeof(configuration.sys); i++) EEPROM.update(EEPROM_START_ADDRESS + offsetof(configuration_s, sys) + i, c[i]); #ifdef DEBUG Serial.println(F("Updating EEPROM sys.")); #endif } bool eeprom_get_sys(void) { EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, sys), configuration.sys); return (true); } void eeprom_update_fx(void) { uint8_t* c = (uint8_t*)&configuration.fx; for (uint16_t i = 0; i < sizeof(configuration.fx); i++) EEPROM.update(EEPROM_START_ADDRESS + offsetof(configuration_s, fx) + i, c[i]); #ifdef DEBUG Serial.println(F("Updating EEPROM fx.")); #endif } bool eeprom_get_fx(void) { EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, fx), configuration.fx); return (true); } void eeprom_update_dexed(uint8_t instance_id) { #if NUM_DEXED == 1 uint8_t* c = (uint8_t*)&configuration.dexed[0]; for (uint16_t i = 0; i < sizeof(configuration.dexed[0]); i++) EEPROM.update(EEPROM_START_ADDRESS + offsetof(configuration_s, dexed[0]) + i, c[i]); #else uint8_t* c; if (instance_id == 0) c = (uint8_t*)&configuration.dexed[0]; else c = (uint8_t*)&configuration.dexed[1]; for (uint16_t i = 0; i < sizeof(configuration.dexed[instance_id]); i++) { if (instance_id == 0) EEPROM.update(EEPROM_START_ADDRESS + offsetof(configuration_s, dexed[0]) + i, c[i]); else EEPROM.update(EEPROM_START_ADDRESS + offsetof(configuration_s, dexed[1]) + i, c[i]); } #endif #ifdef DEBUG Serial.print(F("Updating EEPROM dexed (instance ")); Serial.print(instance_id); Serial.println(F(").")); #endif } bool eeprom_get_dexed(uint8_t instance_id) { for (uint8_t instance_id = 0; instance_id < MAX_DEXED; instance_id++) { if (instance_id == 0) EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, dexed[0]), configuration.dexed[0]); else EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, dexed[1]), configuration.dexed[1]); } return (true); } void eeprom_update_performance() { EEPROM.put(EEPROM_START_ADDRESS + offsetof(configuration_s, performance), configuration.performance); #ifdef DEBUG Serial.println(F("Updating EEPROM performance.")); #endif } bool eeprom_get_performance() { EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, performance), configuration.performance); #ifdef DEBUG Serial.println(F("Getting EEPROM performance.")); #endif return (true); } /****************************************************************************** PARAMETER-HELPERS ******************************************************************************/ void set_sample_note(uint8_t sample, uint8_t note) { drum_config[sample].midinote = note; } void set_sample_pitch(uint8_t sample, float playbackspeed) { drum_config[sample].pitch = playbackspeed; } void set_sample_p_offset(uint8_t sample, float s_offset) { drum_config[sample].p_offset = s_offset; } void set_sample_pan(uint8_t sample, float s_pan) { drum_config[sample].pan = s_pan; } void set_sample_vol_max(uint8_t sample, float s_max) { drum_config[sample].vol_max = s_max; } void set_sample_vol_min(uint8_t sample, float s_min) { drum_config[sample].vol_min = s_min; } void set_sample_reverb_send(uint8_t sample, float s_reverb) { drum_config[sample].reverb_send = s_reverb; } uint8_t get_sample_note(uint8_t sample) { return (drum_config[sample].midinote); } float get_sample_pitch(uint8_t sample) { return (drum_config[sample].pitch); } float get_sample_p_offset(uint8_t sample) { return (drum_config[sample].p_offset); } float get_sample_pan(uint8_t sample) { return (drum_config[sample].pan); } float get_sample_vol_max(uint8_t sample) { return (drum_config[sample].vol_max); } float get_sample_vol_min(uint8_t sample) { return (drum_config[sample].vol_min); } float get_sample_reverb_send(uint8_t sample) { return (drum_config[sample].reverb_send); } uint8_t find_drum_number_from_note(uint8_t note) { uint8_t number = 0; for (uint8_t d = 0; d < NUM_DRUMSET_CONFIG - 1; d++) { if (note == drum_config[d].midinote) { number = d; break; } } return number; } void set_fx_params(void) { #if defined(USE_FX) for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { // CHORUS switch (configuration.fx.chorus_waveform[instance_id]) { case 0: chorus_modulator[instance_id]->begin(WAVEFORM_TRIANGLE); break; case 1: chorus_modulator[instance_id]->begin(WAVEFORM_SINE); break; default: chorus_modulator[instance_id]->begin(WAVEFORM_TRIANGLE); } chorus_modulator[instance_id]->phase(0); chorus_modulator[instance_id]->frequency(configuration.fx.chorus_frequency[instance_id] / 10.0); chorus_modulator[instance_id]->amplitude(mapfloat(configuration.fx.chorus_depth[instance_id], CHORUS_DEPTH_MIN, CHORUS_DEPTH_MAX, 0.0, 1.0)); chorus_modulator[instance_id]->offset(0.0); #if MOD_FILTER_OUTPUT == MOD_BUTTERWORTH_FILTER_OUTPUT // Butterworth filter, 12 db/octave modchorus_filter[instance_id]->setLowpass(0, MOD_FILTER_CUTOFF_HZ, 0.707); #elif MOD_FILTER_OUTPUT == MOD_LINKWITZ_RILEY_FILTER_OUTPUT // Linkwitz-Riley filter, 48 dB/octave modchorus_filter[instance_id]->setLowpass(0, MOD_FILTER_CUTOFF_HZ, 0.54); modchorus_filter[instance_id]->setLowpass(1, MOD_FILTER_CUTOFF_HZ, 1.3); modchorus_filter[instance_id]->setLowpass(2, MOD_FILTER_CUTOFF_HZ, 0.54); modchorus_filter[instance_id]->setLowpass(3, MOD_FILTER_CUTOFF_HZ, 1.3); #endif chorus_mixer[instance_id]->gain(0, 1.0); chorus_mixer[instance_id]->gain(1, mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 0.5)); // DELAY delay_mixer[instance_id]->gain(0, 1.0); delay_mixer[instance_id]->gain(1, midi_volume_transform(map(configuration.fx.delay_level[instance_id], DELAY_LEVEL_MIN, DELAY_LEVEL_MAX, 0, 127))); delay_fb_mixer[instance_id]->gain(0, 1.0); delay_fb_mixer[instance_id]->gain(1, midi_volume_transform(map(configuration.fx.delay_feedback[instance_id], DELAY_FEEDBACK_MIN, DELAY_FEEDBACK_MAX, 0, 127))); if (configuration.fx.delay_level[selected_instance_id] <= DELAY_LEVEL_MIN) delay_fx[instance_id]->disable(0); else if (configuration.fx.delay_sync[instance_id] == 0) delay_fx[instance_id]->delay(0, constrain(configuration.fx.delay_time[instance_id], DELAY_TIME_MIN, DELAY_TIME_MAX) * 10); if (configuration.fx.delay_sync[instance_id] > 0) { uint16_t midi_sync_delay_time = uint16_t(60000.0 * midi_ticks_factor[configuration.fx.delay_sync[instance_id]] / seq_bpm); delay_fx[instance_id]->delay(0, constrain(midi_sync_delay_time, DELAY_TIME_MIN, DELAY_TIME_MAX * 10)); } // REVERB SEND reverb_mixer_r.gain(instance_id, volume_transform(mapfloat(configuration.fx.reverb_send[instance_id], REVERB_SEND_MIN, REVERB_SEND_MAX, 0.0, VOL_MAX_FLOAT))); reverb_mixer_l.gain(instance_id, volume_transform(mapfloat(configuration.fx.reverb_send[instance_id], REVERB_SEND_MIN, REVERB_SEND_MAX, 0.0, VOL_MAX_FLOAT))); // DEXED FILTER MicroDexed[instance_id]->setFilterResonance(mapfloat(configuration.fx.filter_resonance[instance_id], FILTER_RESONANCE_MIN, FILTER_RESONANCE_MAX, 1.0, 0.0)); MicroDexed[instance_id]->setFilterCutoff(mapfloat(configuration.fx.filter_cutoff[instance_id], FILTER_CUTOFF_MIN, FILTER_CUTOFF_MAX, 1.0, 0.0)); MicroDexed[instance_id]->doRefreshVoice(); } // REVERB #ifdef USE_PLATEREVERB reverb.size(mapfloat(configuration.fx.reverb_roomsize, REVERB_ROOMSIZE_MIN, REVERB_ROOMSIZE_MAX, 0.0, 1.0)); reverb.lowpass(mapfloat(configuration.fx.reverb_lowpass, REVERB_LOWPASS_MIN, REVERB_LOWPASS_MAX, 0.0, 1.0)); reverb.lodamp(mapfloat(configuration.fx.reverb_lodamp, REVERB_LODAMP_MIN, REVERB_LODAMP_MAX, 0.0, 1.0)); reverb.hidamp(mapfloat(configuration.fx.reverb_hidamp, REVERB_HIDAMP_MIN, REVERB_HIDAMP_MAX, 0.0, 1.0)); reverb.diffusion(mapfloat(configuration.fx.reverb_diffusion, REVERB_DIFFUSION_MIN, REVERB_DIFFUSION_MAX, 0.0, 1.0)); #else freeverb.roomsize(mapfloat(configuration.fx.reverb_roomsize, REVERB_ROOMSIZE_MIN, REVERB_ROOMSIZE_MAX, 0.0, 1.0)); freeverb.damping(mapfloat(configuration.fx.reverb_damping, REVERB_DAMPING_MIN, REVERB_DAMPING_MAX, 0.0, 1.0)); #endif #if NUM_DRUMS > 0 #ifdef USE_FX reverb_mixer_r.gain(2, 1.0); // Drums Reverb-Send reverb_mixer_l.gain(2, 1.0); // Drums Reverb-Send #endif #endif master_mixer_r.gain(3, volume_transform(mapfloat(configuration.fx.reverb_level, REVERB_LEVEL_MIN, REVERB_LEVEL_MAX, 0.0, VOL_MAX_FLOAT))); master_mixer_l.gain(3, volume_transform(mapfloat(configuration.fx.reverb_level, REVERB_LEVEL_MIN, REVERB_LEVEL_MAX, 0.0, VOL_MAX_FLOAT))); #endif #ifdef SGTL5000_AUDIO_ENHANCE sgtl5000.setEQFc(1, float(configuration.fx.eq_1)); sgtl5000.setEQGain(2, mapfloat(configuration.fx.eq_2, EQ_2_MIN, EQ_2_MAX, -9.9, 9.9)); sgtl5000.setEQGain(3, mapfloat(configuration.fx.eq_3, EQ_3_MIN, EQ_3_MAX, -9.9, 9.9)); sgtl5000.setEQGain(4, mapfloat(configuration.fx.eq_4, EQ_4_MIN, EQ_4_MAX, -9.9, 9.9)); sgtl5000.setEQGain(5, mapfloat(configuration.fx.eq_5, EQ_5_MIN, EQ_5_MAX, -9.9, 9.9)); sgtl5000.setEQGain(6, mapfloat(configuration.fx.eq_6, EQ_6_MIN, EQ_6_MAX, -9.9, 9.9)); sgtl5000.setEQFc(7, float(configuration.fx.eq_7)); for (uint8_t band = 1; band <= 7; band++) { sgtl5000.commitFilter(band); #ifdef DEBUG sgtl5000.show_params(band); #endif } #endif init_MIDI_send_CC(); } void set_voiceconfig_params(uint8_t instance_id) { // INIT PEAK MIXER microdexed_peak_mixer.gain(instance_id, 1.0); // Controller MicroDexed[instance_id]->setMaxNotes(configuration.dexed[instance_id].polyphony); MicroDexed[instance_id]->setPBController(configuration.dexed[instance_id].pb_range, configuration.dexed[instance_id].pb_step); MicroDexed[instance_id]->setMWController(configuration.dexed[instance_id].mw_range, configuration.dexed[instance_id].mw_assign, configuration.dexed[instance_id].mw_mode); MicroDexed[instance_id]->setFCController(configuration.dexed[instance_id].fc_range, configuration.dexed[instance_id].fc_assign, configuration.dexed[instance_id].fc_mode); MicroDexed[instance_id]->setBCController(configuration.dexed[instance_id].bc_range, configuration.dexed[instance_id].bc_assign, configuration.dexed[instance_id].bc_mode); MicroDexed[instance_id]->setATController(configuration.dexed[instance_id].at_range, configuration.dexed[instance_id].at_assign, configuration.dexed[instance_id].at_mode); MicroDexed[instance_id]->ControllersRefresh(); MicroDexed[instance_id]->setOPAll(configuration.dexed[instance_id].op_enabled); MicroDexed[instance_id]->doRefreshVoice(); MicroDexed[instance_id]->setMonoMode(configuration.dexed[instance_id].monopoly); // Dexed output level MicroDexed[instance_id]->setGain(midi_volume_transform(map(configuration.dexed[instance_id].sound_intensity, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX, 0, 127))); // PANORAMA mono2stereo[instance_id]->panorama(mapfloat(configuration.dexed[instance_id].pan, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0)); } void set_sys_params(void) { // set initial volume set_volume(configuration.sys.vol, configuration.sys.mono); } /****************************************************************************** HELPERS ******************************************************************************/ // https://www.reddit.com/r/Teensy/comments/7r19uk/reset_and_reboot_teensy_lc_via_code/ #define SCB_AIRCR (*(volatile uint32_t *)0xE000ED0C) // Application Interrupt and Reset Control location void _softRestart(void) { Serial.end(); //clears the serial monitor if used SCB_AIRCR = 0x05FA0004; //write value for restart } /*float pseudo_log_curve(float value) { //return (mapfloat(_pseudo_log * arm_sin_f32(value), 0.0, _pseudo_log * arm_sin_f32(1.0), 0.0, 1.0)); //return (1 - sqrt(1 - value * value)); //return (pow(2, value) - 1); return (pow(value, 2.2)); }*/ float midi_volume_transform(uint8_t midi_amp) { #ifdef DEBUG Serial.print(F("midi_amp=")); Serial.print(midi_amp, DEC); Serial.print(F(" transformed_midi_amp=")); Serial.println(powf(midi_amp / 127.0, 4), 3); #endif return powf(midi_amp / 127.0, 4); } float volume_transform(float amp) { return powf(amp, 4); } uint32_t crc32(byte * calc_start, uint16_t calc_bytes) // base code from https://www.arduino.cc/en/Tutorial/EEPROMCrc { const uint32_t crc_table[16] = { 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c }; uint32_t crc = ~0L; for (byte* index = calc_start ; index < (calc_start + calc_bytes) ; ++index) { crc = crc_table[(crc ^ *index) & 0x0f] ^ (crc >> 4); crc = crc_table[(crc ^ (*index >> 4)) & 0x0f] ^ (crc >> 4); crc = ~crc; } return (crc); } void generate_version_string(char* buffer, uint8_t len) { char tmp[3]; memset(buffer, 0, len); strncat(buffer, VERSION, len); #if defined(TEENSY3_5) strncat(buffer, "-3.5", 4); #elif defined(TEENSY3_6) strncat(buffer, "-3.6", 4); #elif defined(TEENSY4_0) strncat(buffer, "-4.0", 4); #elif defined(TEENSY4_1) strncat(buffer, "-4.1", 4); #endif #if defined(USE_FX) strncat(buffer, "FX", 2); #endif #if defined(MAX_NOTES) strncat(buffer, "-", 1); itoa (MAX_NOTES, tmp, 10); strncat(buffer, tmp, 2); #endif } #ifdef DISPLAY_LCD_SPI void change_disp_sd(bool disp) { if (sd_card > 0) { digitalWrite(sd_card, disp); digitalWrite(U8X8_CS_PIN, !disp); } } #endif uint8_t check_sd_cards(void) { uint8_t ret = 0; memset(sd_string, 0, sizeof(sd_string)); for (uint8_t i = 0; i < sizeof(cs_pins); i++) { #ifdef DEBUG Serial.print(F("Checking CS pin ")); Serial.print(cs_pins[i], DEC); Serial.println(F(" for SD card")); #endif SPI.setMOSI(mosi_pins[i]); SPI.setSCK(sck_pins[i]); if (SD.begin(cs_pins[i]) == true) { #ifdef DEBUG Serial.print(F("Found. Using pin ")); Serial.println(cs_pins[i], DEC); #endif ret = cs_pins[i]; break; } } if (ret >= 0) { if (!card.init(SPI_HALF_SPEED, ret)) { #ifdef DEBUG Serial.println(F("SD card initialization failed.")); #endif ret = -1; } } if (ret >= 0) { #ifdef DEBUG Serial.print(F("Card type: ")); #endif switch (card.type()) { case SD_CARD_TYPE_SD1: sprintf(sd_string, "%-5s", "SD1"); #ifdef DEBUG Serial.println(F("SD1")); #endif break; case SD_CARD_TYPE_SD2: sprintf(sd_string, "%-5s", "SD2"); #ifdef DEBUG Serial.println(F("SD2")); #endif break; case SD_CARD_TYPE_SDHC: sprintf(sd_string, "%-5s", "SD2"); #ifdef DEBUG Serial.println(F("SDHC")); #endif break; default: sprintf(sd_string, "%-5s", "UKNW"); #ifdef DEBUG Serial.println(F("Unknown")); #endif } if (!volume.init(card)) { #ifdef DEBUG Serial.println(F("Could not find FAT16/FAT32 partition.")); #endif ret = -1; } } if (ret >= 0) { uint32_t volumesize; volumesize = volume.blocksPerCluster() * volume.clusterCount() / 2097152; #ifdef DEBUG Serial.print(F("Volume type is FAT")); Serial.println(volume.fatType(), DEC); Serial.print(F("Volume size (GB): ")); Serial.println(volumesize); #endif sprintf(sd_string + 5, "FAT%2d %02dGB", volume.fatType(), int(volumesize)); } #ifdef DEBUG Serial.println(sd_string); #endif return (ret); } void check_and_create_directories(void) { if (sd_card > 0) { uint8_t i; char tmp[FILENAME_LEN]; #ifdef DEBUG Serial.println(F("Directory check... ")); #endif // create directories for banks for (i = 0; i < MAX_BANKS; i++) { sprintf(tmp, "/%d", i); if (!SD.exists(tmp)) { #ifdef DEBUG Serial.print(F("Creating directory ")); Serial.println(tmp); #endif SD.mkdir(tmp); } } // create directories for configuration files sprintf(tmp, "/%s", VOICE_CONFIG_PATH); if (!SD.exists(tmp)) { #ifdef DEBUG Serial.print(F("Creating directory ")); Serial.println(tmp); #endif SD.mkdir(tmp); } sprintf(tmp, "/%s", PERFORMANCE_CONFIG_PATH); if (!SD.exists(tmp)) { #ifdef DEBUG Serial.print(F("Creating directory ")); Serial.println(tmp); #endif SD.mkdir(tmp); } sprintf(tmp, "/%s", FX_CONFIG_PATH); if (!SD.exists(tmp)) { #ifdef DEBUG Serial.print(F("Creating directory ")); Serial.println(tmp); #endif SD.mkdir(tmp); } sprintf(tmp, "/%s", DRUM_CONFIG_PATH); if (!SD.exists(tmp)) { #ifdef DEBUG Serial.print(F("Creating directory ")); Serial.println(tmp); #endif SD.mkdir(tmp); } sprintf(tmp, "/%s", FAV_CONFIG_PATH); if (!SD.exists(tmp)) { #ifdef DEBUG Serial.print(F("Creating directory ")); Serial.println(tmp); #endif SD.mkdir(tmp); } sprintf(tmp, "/%s", SEQ_CONFIG_PATH); if (!SD.exists(tmp)) { #ifdef DEBUG Serial.print(F("Creating directory ")); Serial.println(tmp); #endif SD.mkdir(tmp); } //check if updated Fav-System is ready or if setup has to run once. sprintf(tmp, "/%s/fav-v2", FAV_CONFIG_PATH); if (!SD.exists(tmp)) { // Clear now obsolte marker files from Favs. // Only needs to run once. for (uint8_t i = 0; i < MAX_BANKS; i++) { sprintf(tmp, "/%s/%d/hasfav", FAV_CONFIG_PATH, i); #ifdef DEBUG Serial.print(F("Delete Marker File")); Serial.println(tmp); #endif if (SD.exists(tmp)) SD.remove(tmp); } // Remove empty Folders. rmdir will only remove strictly emtpy folders, which is the desired result. // Only needs to run once. for (uint8_t i = 0; i < MAX_BANKS; i++) { sprintf(tmp, "/%s/%d", FAV_CONFIG_PATH, i); #ifdef DEBUG Serial.print(F("Delete empty folder ")); Serial.println(tmp); #endif if (SD.exists(tmp)) SD.rmdir(tmp); } sprintf(tmp, "/%s/fav-v2", FAV_CONFIG_PATH); if (!SD.exists(tmp)) SD.mkdir(tmp); // Set Marker so that the Cleanup loops only run once. } #ifdef DEBUG else Serial.println(F("No SD card for directory check available.")); #endif } } /****************************************************************************** DEBUG HELPER ******************************************************************************/ #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) void show_cpu_and_mem_usage(void) { uint32_t sum_xrun = 0; uint16_t sum_render_time_max = 0; for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { sum_xrun += MicroDexed[instance_id]->getXRun(); sum_render_time_max += MicroDexed[instance_id]->getRenderTimeMax(); MicroDexed[instance_id]->resetRenderTimeMax(); } if (AudioProcessorUsageMax() > 99.9) { cpumax++; #ifdef DEBUG Serial.print(F("*")); #endif } #ifdef DEBUG else Serial.print(F(" ")); Serial.print(F("CPU:")); Serial.print(AudioProcessorUsage(), 2); Serial.print(F("%|CPUMAX:")); Serial.print(AudioProcessorUsageMax(), 2); Serial.print(F("%|CPUMAXCNT:")); Serial.print(cpumax, DEC); #ifdef TEENSY4 Serial.print(F("|CPUTEMP:")); Serial.print(tempmonGetTemp(), 2); Serial.print(F("C|MEM:")); #else Serial.print(F("|MEM:")); #endif Serial.print(AudioMemoryUsage(), DEC); Serial.print(F("|MEMMAX:")); Serial.print(AudioMemoryUsageMax(), DEC); Serial.print(F("|AUDIO_MEM_MAX:")); Serial.print(AUDIO_MEM, DEC); Serial.print(F("|RENDERTIMEMAX:")); Serial.print(sum_render_time_max, DEC); Serial.print(F("|XRUN:")); Serial.print(sum_xrun, DEC); Serial.print(F("|PEAKR:")); Serial.print(peak_r, DEC); Serial.print(F("|PEAKL:")); Serial.print(peak_l, DEC); Serial.print(F("|PEAKMD:")); Serial.print(peak_dexed, DEC); Serial.print(F("|ACTPEAKMD:")); Serial.print(peak_dexed_value, 1); Serial.print(F("|BLOCKSIZE:")); Serial.print(AUDIO_BLOCK_SAMPLES, DEC); Serial.print(F("|RAM:")); Serial.print(FreeMem(), DEC); Serial.print(F("|ACTVOICES:")); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { Serial.print(instance_id, DEC); Serial.print(F("=")); Serial.print(active_voices[instance_id], DEC); Serial.print(F("/")); Serial.print(MAX_NOTES / NUM_DEXED, DEC); if (instance_id != NUM_DEXED - 1) Serial.print(F(",")); } Serial.println(); #endif AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); } #endif #ifdef DEBUG void show_configuration(void) { Serial.println(); Serial.println(F("CONFIGURATION:")); Serial.println(F("System")); Serial.print(F(" Instances ")); Serial.println(configuration.sys.instances, DEC); Serial.print(F(" Volume ")); Serial.println(configuration.sys.vol, DEC); Serial.print(F(" Mono ")); Serial.println(configuration.sys.mono, DEC); Serial.print(F(" Soft MIDI Thru ")); Serial.println(configuration.sys.soft_midi_thru, DEC); Serial.println(F("FX")); Serial.print(F(" Reverb Roomsize ")); Serial.println(configuration.fx.reverb_roomsize, DEC); Serial.print(F(" Reverb Level ")); Serial.println(configuration.fx.reverb_level, DEC); #ifdef USE_PLATEREVERB Serial.print(F(" Reverb Lowpass ")); Serial.println(configuration.fx.reverb_lowpass, DEC); Serial.print(F(" Reverb Lodamp ")); Serial.println(configuration.fx.reverb_lodamp, DEC); Serial.print(F(" Reverb Hidamp ")); Serial.println(configuration.fx.reverb_hidamp, DEC); Serial.print(F(" Reverb Diffusion ")); Serial.println(configuration.fx.reverb_diffusion, DEC); #else Serial.print(F(" Reverb Damping ")); Serial.println(configuration.fx.reverb_damping, DEC); #endif for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { Serial.print(F("Dexed instance ")); Serial.println(instance_id, DEC); Serial.print(F(" MIDI-Channel ")); Serial.println(configuration.dexed[instance_id].midi_channel, DEC); Serial.print(F(" Lowest Note ")); Serial.println(configuration.dexed[instance_id].lowest_note, DEC); Serial.print(F(" Highest Note ")); Serial.println(configuration.dexed[instance_id].highest_note, DEC); Serial.print(F(" Filter Cutoff ")); Serial.println(configuration.fx.filter_cutoff[instance_id], DEC); Serial.print(F(" Filter Resonance ")); Serial.println(configuration.fx.filter_resonance[instance_id], DEC); Serial.print(F(" Chorus Frequency ")); Serial.println(configuration.fx.chorus_frequency[instance_id], DEC); Serial.print(F(" Chorus Waveform ")); Serial.println(configuration.fx.chorus_waveform[instance_id], DEC); Serial.print(F(" Chorus Depth ")); Serial.println(configuration.fx.chorus_depth[instance_id], DEC); Serial.print(F(" Chorus Level ")); Serial.println(configuration.fx.chorus_level[instance_id], DEC); Serial.print(F(" Delay Time ")); Serial.println(configuration.fx.delay_time[instance_id], DEC); Serial.print(F(" Delay Feedback ")); Serial.println(configuration.fx.delay_feedback[instance_id], DEC); Serial.print(F(" Delay Level ")); Serial.println(configuration.fx.delay_level[instance_id], DEC); Serial.print(F(" Delay Sync ")); Serial.println(configuration.fx.delay_sync[instance_id], DEC); Serial.print(F(" Reverb Send ")); Serial.println(configuration.fx.reverb_send[instance_id], DEC); Serial.print(F(" Sound Intensity ")); Serial.println(configuration.dexed[instance_id].sound_intensity, DEC); Serial.print(F(" Panorama ")); Serial.println(configuration.dexed[instance_id].pan, DEC); Serial.print(F(" Transpose ")); Serial.println(configuration.dexed[instance_id].transpose, DEC); Serial.print(F(" Tune ")); Serial.println(configuration.dexed[instance_id].tune, DEC); Serial.print(F(" Polyphony ")); Serial.println(configuration.dexed[instance_id].polyphony, DEC); Serial.print(F(" Mono/Poly ")); Serial.println(configuration.dexed[instance_id].monopoly, DEC); Serial.print(F(" Note Refresh ")); Serial.println(configuration.dexed[instance_id].note_refresh, DEC); Serial.print(F(" Pitchbend Range ")); Serial.println(configuration.dexed[instance_id].pb_range, DEC); Serial.print(F(" Pitchbend Step ")); Serial.println(configuration.dexed[instance_id].pb_step, DEC); Serial.print(F(" Modwheel Range ")); Serial.println(configuration.dexed[instance_id].mw_range, DEC); Serial.print(F(" Modwheel Assign ")); Serial.println(configuration.dexed[instance_id].mw_assign, DEC); Serial.print(F(" Modwheel Mode ")); Serial.println(configuration.dexed[instance_id].mw_mode, DEC); Serial.print(F(" Footctrl Range ")); Serial.println(configuration.dexed[instance_id].fc_range, DEC); Serial.print(F(" Footctrl Assign ")); Serial.println(configuration.dexed[instance_id].fc_assign, DEC); Serial.print(F(" Footctrl Mode ")); Serial.println(configuration.dexed[instance_id].fc_mode, DEC); Serial.print(F(" BreathCtrl Range ")); Serial.println(configuration.dexed[instance_id].bc_range, DEC); Serial.print(F(" Breathctrl Assign ")); Serial.println(configuration.dexed[instance_id].bc_assign, DEC); Serial.print(F(" Breathctrl Mode ")); Serial.println(configuration.dexed[instance_id].bc_mode, DEC); Serial.print(F(" Aftertouch Range ")); Serial.println(configuration.dexed[instance_id].at_range, DEC); Serial.print(F(" Aftertouch Assign ")); Serial.println(configuration.dexed[instance_id].at_assign, DEC); Serial.print(F(" Aftertouch Mode ")); Serial.println(configuration.dexed[instance_id].at_mode, DEC); Serial.print(F(" Portamento Mode ")); Serial.println(configuration.dexed[instance_id].portamento_mode, DEC); Serial.print(F(" Portamento Glissando ")); Serial.println(configuration.dexed[instance_id].portamento_glissando, DEC); Serial.print(F(" Portamento Time ")); Serial.println(configuration.dexed[instance_id].portamento_time, DEC); Serial.print(F(" OP Enabled ")); Serial.println(configuration.dexed[instance_id].op_enabled, DEC); Serial.flush(); } Serial.println(F("Performance")); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { Serial.print(F(" Bank ")); Serial.print(instance_id, DEC); Serial.print(" "); Serial.println(configuration.performance.bank[instance_id], DEC); Serial.print(F(" Voice ")); Serial.print(instance_id, DEC); Serial.print(" "); Serial.println(configuration.performance.voice[instance_id], DEC); } Serial.print(F(" FX-Number ")); Serial.println(configuration.performance.fx_number, DEC); Serial.println(); Serial.flush(); } void show_patch(uint8_t instance_id) { char vn[VOICE_NAME_LEN]; Serial.print(F("INSTANCE ")); Serial.println(instance_id, DEC); memset(vn, 0, sizeof(vn)); Serial.println(F("+==========================================================================================================+")); for (int8_t i = 5; i >= 0; --i) { Serial.println(F("+==========================================================================================================+")); Serial.print(F("| OP")); Serial.print(6 - i, DEC); Serial.println(F(" |")); Serial.println(F("+======+======+======+======+======+======+======+======+================+================+================+")); Serial.println(F("| R1 | R2 | R3 | R4 | L1 | L2 | L3 | L4 | LEV_SCL_BRK_PT | SCL_LEFT_DEPTH | SCL_RGHT_DEPTH |")); Serial.println(F("+------+------+------+------+------+------+------+------+----------------+----------------+----------------+")); Serial.print("| "); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_EG_R1)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_EG_R2)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_EG_R3)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_EG_R4)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_EG_L1)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_EG_L2)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_EG_L3)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_EG_L4)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_LEV_SCL_BRK_PT)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_SCL_LEFT_DEPTH)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_SCL_RGHT_DEPTH)); Serial.println(F(" |")); Serial.println(F("+======+======+======+======+======+===+==+==+===+======+====+========+==+====+=======+===+================+")); Serial.println(F("| SCL_L_CURVE | SCL_R_CURVE | RT_SCALE | AMS | KVS | OUT_LEV | OP_MOD | FRQ_C | FRQ_F | DETUNE |")); Serial.println(F("+-------------+-------------+----------+-----+-----+---------+--------+-------+-------+--------------------+")); Serial.print(F("| ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_SCL_LEFT_CURVE)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_SCL_RGHT_CURVE)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_OSC_RATE_SCALE)); Serial.print(F(" |")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_AMP_MOD_SENS)); Serial.print(F(" |")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_KEY_VEL_SENS)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_OUTPUT_LEV)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_OSC_MODE)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_FREQ_COARSE)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_FREQ_FINE)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement((i * 21) + DEXED_OP_OSC_DETUNE)); Serial.println(F(" |")); } Serial.println(F("+=======+=====+=+=======+===+===+======++====+==+==+====+====+==+======+======+=====+=+====================+")); Serial.println(F("| PR1 | PR2 | PR3 | PR4 | PL1 | PL2 | PL3 | PL4 | ALG | FB | OKS | TRANSPOSE |")); Serial.println(F("+-------+-------+-------+-------+-------+-------+-------+-------+------+------+-----+----------------------+")); Serial.print(F("| ")); for (int8_t i = 0; i < 8; i++) { SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement(DEXED_VOICE_OFFSET + i)); Serial.print(F(" | ")); } SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement(DEXED_VOICE_OFFSET + DEXED_ALGORITHM)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement(DEXED_VOICE_OFFSET + DEXED_FEEDBACK)); Serial.print(F(" |")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement(DEXED_VOICE_OFFSET + DEXED_OSC_KEY_SYNC)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement(DEXED_VOICE_OFFSET + DEXED_TRANSPOSE)); Serial.println(F(" |")); Serial.println(F("+=======+=+=====+===+===+=====+=+=======+=======+==+====+=====+=+======++=====+=====+======================+")); Serial.println(F("| LFO SPD | LFO DLY | LFO PMD | LFO AMD | LFO SYNC | LFO WAVE | LFO PMS | NAME |")); Serial.println(F("+---------+---------+---------+---------+----------+----------+---------+----------------------------------+")); Serial.print(F("| ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement(DEXED_VOICE_OFFSET + DEXED_LFO_SPEED)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement(DEXED_VOICE_OFFSET + DEXED_LFO_DELAY)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement(DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_DEP)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement(DEXED_VOICE_OFFSET + DEXED_LFO_AMP_MOD_DEP)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement(DEXED_VOICE_OFFSET + DEXED_LFO_SYNC)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement(DEXED_VOICE_OFFSET + DEXED_LFO_WAVE)); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->getVoiceDataElement(DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_SENS)); Serial.print(F(" | ")); MicroDexed[instance_id]->getName(vn); Serial.print(vn); Serial.println(F(" |")); Serial.println(F("+=========+=========+=========+=========+==========+==========+=========+==================================+")); Serial.println(F("+==========================================================================================================+")); } void SerialPrintFormatInt3(uint8_t num) { char buf[4]; sprintf(buf, "%3d", num); Serial.print(buf); } #ifdef TEENSY3_6 /* From: https://forum.pjrc.com/threads/33443-How-to-display-free-ram */ extern "C" char* sbrk(int incr); uint32_t FreeMem(void) { char top; return &top - reinterpret_cast(sbrk(0)); } #else /* From: https://forum.pjrc.com/threads/33443-How-to-display-free-ram */ extern unsigned long _heap_end; extern char *__brkval; int FreeMem(void) { return (char *)&_heap_end - __brkval; } #endif #endif