/* * Copyright 2012 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define _USE_MATH_DEFINES #include #include "synth.h" #include "sin.h" #define R (1 << 29) #ifdef SIN_DELTA int32_t sintab[SIN_N_SAMPLES << 1]; #else int32_t sintab[SIN_N_SAMPLES + 1]; #endif void Sin::init() { FRAC_NUM dphase = 2 * M_PI / SIN_N_SAMPLES; int32_t c = (int32_t)floor(cos(dphase) * (1 << 30) + 0.5); int32_t s = (int32_t)floor(sin(dphase) * (1 << 30) + 0.5); int32_t u = 1 << 30; int32_t v = 0; for (int i = 0; i < SIN_N_SAMPLES / 2; i++) { #ifdef SIN_DELTA sintab[(i << 1) + 1] = (v + 32) >> 6; sintab[((i + SIN_N_SAMPLES / 2) << 1) + 1] = -((v + 32) >> 6); #else sintab[i] = (v + 32) >> 6; sintab[i + SIN_N_SAMPLES / 2] = -((v + 32) >> 6); #endif int32_t t = ((int64_t)u * (int64_t)s + (int64_t)v * (int64_t)c + R) >> 30; u = ((int64_t)u * (int64_t)c - (int64_t)v * (int64_t)s + R) >> 30; v = t; } #ifdef SIN_DELTA for (int i = 0; i < SIN_N_SAMPLES - 1; i++) { sintab[i << 1] = sintab[(i << 1) + 3] - sintab[(i << 1) + 1]; } sintab[(SIN_N_SAMPLES << 1) - 2] = -sintab[(SIN_N_SAMPLES << 1) - 1]; #else sintab[SIN_N_SAMPLES] = 0; #endif } #ifndef SIN_INLINE int32_t Sin::lookup(int32_t phase) { const int SHIFT = 24 - SIN_LG_N_SAMPLES; int lowbits = phase & ((1 << SHIFT) - 1); #ifdef SIN_DELTA int phase_int = (phase >> (SHIFT - 1)) & ((SIN_N_SAMPLES - 1) << 1); int dy = sintab[phase_int]; int y0 = sintab[phase_int + 1]; return y0 + (((int64_t)dy * (int64_t)lowbits) >> SHIFT); #else int phase_int = (phase >> SHIFT) & (SIN_N_SAMPLES - 1); int y0 = sintab[phase_int]; int y1 = sintab[phase_int + 1]; return y0 + (((int64_t)(y1 - y0) * (int64_t)lowbits) >> SHIFT); #endif } #endif #if 0 // The following is an implementation designed not to use any lookup tables, // based on the following implementation by Basile Graf: // http://www.rossbencina.com/static/code/sinusoids/even_polynomial_sin_approximation.txt #define C0 (1 << 24) #define C1 (331121857 >> 2) #define C2 (1084885537 >> 4) #define C3 (1310449902 >> 6) int32_t Sin::compute(int32_t phase) { int32_t x = (phase & ((1 << 23) - 1)) - (1 << 22); int32_t x2 = ((int64_t)x * (int64_t)x) >> 22; int32_t x4 = ((int64_t)x2 * (int64_t)x2) >> 24; int32_t x6 = ((int64_t)x2 * (int64_t)x4) >> 24; int32_t y = C0 - (((int64_t)C1 * (int64_t)x2) >> 24) + (((int64_t)C2 * (int64_t)x4) >> 24) - (((int64_t)C3 * (int64_t)x6) >> 24); y ^= -((phase >> 23) & 1); return y; } #endif #if 1 // coefficients are Chebyshev polynomial, computed by compute_cos_poly.py #define C8_0 16777216 #define C8_2 -331168742 #define C8_4 1089453524 #define C8_6 -1430910663 #define C8_8 950108533 int32_t Sin::compute(int32_t phase) { int32_t x = (phase & ((1 << 23) - 1)) - (1 << 22); int32_t x2 = ((int64_t)x * (int64_t)x) >> 16; int32_t y = (((((((((((((int64_t)C8_8 * (int64_t)x2) >> 32) + C8_6) * (int64_t)x2) >> 32) + C8_4) * (int64_t)x2) >> 32) + C8_2) * (int64_t)x2) >> 32) + C8_0); y ^= -((phase >> 23) & 1); return y; } #endif #define C10_0 (1 << 30) #define C10_2 -1324675874 // scaled * 4 #define C10_4 1089501821 #define C10_6 -1433689867 #define C10_8 1009356886 #define C10_10 -421101352 int32_t Sin::compute10(int32_t phase) { int32_t x = (phase & ((1 << 29) - 1)) - (1 << 28); int32_t x2 = ((int64_t)x * (int64_t)x) >> 26; int32_t y = ((((((((((((((((int64_t)C10_10 * (int64_t)x2) >> 34) + C10_8) * (int64_t)x2) >> 34) + C10_6) * (int64_t)x2) >> 34) + C10_4) * (int64_t)x2) >> 32) + C10_2) * (int64_t)x2) >> 30) + C10_0); y ^= -((phase >> 29) & 1); return y; }