merge dev branch

pull/4/head
Holger Wirtz 6 years ago
commit 0272eba053
  1. 53
      EEPROMAnything.h
  2. 330
      MicroDexed.ino
  3. 216
      PluginFx.cpp
  4. 72
      PluginFx.h
  5. 170
      UI.cpp
  6. 14
      UI.h
  7. 40
      config.h
  8. 128
      dexed.cpp
  9. 4
      dexed.h

@ -0,0 +1,53 @@
/*
MicroDexed
MicroDexed is a port of the Dexed sound engine
(https://github.com/asb2m10/dexed) for the Teensy-3.5/3.6 with audio shield.
Dexed ist heavily based on https://github.com/google/music-synthesizer-for-android
(c)2018 H. Wirtz <wirtz@parasitstudio.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
// Idea from: https://playground.arduino.cc/Code/EEPROMWriteAnything/
#include <EEPROM.h>
#include <Arduino.h> // for type definitions
uint32_t crc32(uint8_t* calc_start, uint16_t calc_bytes);
template <class T> int EEPROM_writeAnything(int ee, const T& value)
{
uint8_t* p = (uint8_t*)(const void*)&value;
uint16_t i;
uint32_t checksum=crc32(p+4,sizeof(value)-4);
*p=checksum;
for (i = 0; i < sizeof(value); i++)
EEPROM.update(ee++, *p++);
return i;
}
template <class T> int EEPROM_readAnything(int ee, T& value)
{
uint8_t* p = (uint8_t*)(void*)&value;
unsigned int i;
for (i = 0; i < sizeof(value); i++)
*p++ = EEPROM.read(ee++);
return i;
}

@ -29,11 +29,12 @@
#include <SD.h>
#include <MIDI.h>
#include <EEPROM.h>
#include "EEPROMAnything.h"
#include "midi_devices.hpp"
#include <limits.h>
#include "dexed.h"
#include "dexed_sysex.h"
#include "PluginFx.h"
#ifdef I2C_DISPLAY // selecting sounds by encoder, button and display
#include "UI.h"
#include <Bounce.h>
@ -50,89 +51,72 @@ uint8_t ui_main_state = UI_MAIN_VOICE;
AudioPlayQueue queue1;
AudioAnalyzePeak peak1;
AudioFilterStateVariable filter1;
AudioEffectDelay delay1;
AudioMixer4 mixer1;
AudioMixer4 mixer2;
AudioFilterBiquad antialias;
AudioConnection patchCord0(queue1, peak1);
AudioConnection patchCord1(queue1, antialias);
AudioConnection patchCord2(antialias, 0, filter1, 0);
AudioConnection patchCord3(filter1, 0, delay1, 0);
AudioConnection patchCord4(filter1, 0, mixer1, 0);
AudioConnection patchCord5(filter1, 0, mixer2, 0);
AudioConnection patchCord6(delay1, 0, mixer1, 1);
AudioConnection patchCord7(delay1, 0, mixer2, 2);
AudioConnection patchCord8(mixer1, delay1);
AudioConnection patchCord9(queue1, 0, mixer1, 3); // for disabling the filter
AudioConnection patchCord10(mixer1, 0, mixer2, 1);
AudioConnection patchCord1(queue1, 0, mixer1, 0);
AudioConnection patchCord2(queue1, 0, mixer2, 0);
AudioConnection patchCord3(delay1, 0, mixer1, 1);
AudioConnection patchCord4(delay1, 0, mixer2, 2);
AudioConnection patchCord5(mixer1, delay1);
AudioConnection patchCord6(mixer1, 0, mixer2, 1);
#if defined(TEENSY_AUDIO_BOARD)
AudioOutputI2S i2s1;
AudioConnection patchCord111(mixer2, 0, i2s1, 0);
AudioConnection patchCord112(mixer2, 0, i2s1, 1);
AudioConnection patchCord7(mixer2, 0, i2s1, 0);
AudioConnection patchCord8(mixer2, 0, i2s1, 1);
AudioControlSGTL5000 sgtl5000_1;
#elif defined(TGA_AUDIO_BOARD)
AudioOutputI2S i2s1;
AudioAmplifier volume_r;
AudioAmplifier volume_l;
AudioConnection patchCord11(mixer2, volume_r);
AudioConnection patchCord12(mixer2, volume_l);
AudioConnection patchCord13(volume_r, 0, i2s1, 1);
AudioConnection patchCord14(volume_l, 0, i2s1, 0);
AudioConnection patchCord7(mixer2, volume_r);
AudioConnection patchCord8(mixer2, volume_l);
AudioConnection patchCord9(volume_r, 0, i2s1, 1);
AudioConnection patchCord10(volume_l, 0, i2s1, 0);
AudioControlWM8731master wm8731_1;
#else
AudioOutputPT8211 pt8211_1;
AudioAmplifier volume_master;
AudioAmplifier volume_r;
AudioAmplifier volume_l;
AudioConnection patchCord11(mixer2, 0, volume_master, 0);
AudioConnection patchCord12(volume_master, volume_r);
AudioConnection patchCord13(volume_master, volume_l);
AudioConnection patchCord14(volume_r, 0, pt8211_1, 0);
AudioConnection patchCord15(volume_l, 0, pt8211_1, 1);
AudioConnection patchCord7(mixer2, 0, volume_master, 0);
AudioConnection patchCord8(volume_master, volume_r);
AudioConnection patchCord9(volume_master, volume_l);
AudioConnection patchCord10(volume_r, 0, pt8211_1, 0);
AudioConnection patchCord11(volume_l, 0, pt8211_1, 1);
#endif
Dexed* dexed = new Dexed(SAMPLE_RATE);
bool sd_card_available = false;
uint8_t midi_channel = DEFAULT_MIDI_CHANNEL;
uint32_t xrun = 0;
uint32_t overload = 0;
uint32_t peak = 0;
uint16_t render_time_max = 0;
uint8_t bank = 0;
uint8_t max_loaded_banks = 0;
uint8_t voice = 0;
float vol = VOLUME;
float pan = 0.5f;
char bank_name[BANK_NAME_LEN];
char voice_name[VOICE_NAME_LEN];
char bank_names[MAX_BANKS][BANK_NAME_LEN];
char voice_names[MAX_VOICES][VOICE_NAME_LEN];
elapsedMillis autostore;
uint8_t eeprom_update_status = 0;
uint16_t autostore_value = AUTOSTORE_MS;
uint8_t midi_timing_counter = 0; // 24 per qarter
elapsedMillis midi_timing_timestep;
uint16_t midi_timing_quarter = 0;
elapsedMillis long_button_pressed;
uint8_t effect_filter_frq = ENC_FILTER_FRQ_STEPS;
uint8_t effect_filter_cutoff = 0;
uint8_t effect_filter_resonance = 0;
uint8_t effect_filter_octave = (1.0 * ENC_FILTER_RES_STEPS / 8.0) + 0.5;
uint8_t effect_delay_time = 0;
uint8_t effect_delay_feedback = 0;
uint8_t effect_delay_volume = 0;
bool effect_delay_sync = 0;
elapsedMicros fill_audio_buffer;
elapsedMillis control_rate;
uint8_t active_voices = 0;
#ifdef SHOW_CPU_LOAD_MSEC
elapsedMillis cpu_mem_millis;
#endif
#ifdef TEST_NOTE
IntervalTimer sched_note_on;
IntervalTimer sched_note_off;
uint8_t _voice_counter = 0;
#endif
config_t configuration = {0xffff, 0, 0, VOLUME, 0.5f, DEFAULT_MIDI_CHANNEL};
bool eeprom_update_flag = false;
void setup()
{
@ -159,9 +143,10 @@ void setup()
Serial.println(F("MicroDexed based on https://github.com/asb2m10/dexed"));
Serial.println(F("(c)2018,2019 H. Wirtz <wirtz@parasitstudio.de>"));
Serial.println(F("https://github.com/dcoredump/MicroDexed"));
Serial.print(F("Version: "));
Serial.println(VERSION);
Serial.println(F("<setup start>"));
//init_eeprom();
initial_values_from_eeprom();
setup_midi_devices();
@ -192,7 +177,7 @@ void setup()
Serial.println(F("PT8211 enabled."));
#endif
set_volume(vol, pan);
set_volume(configuration.vol, configuration.pan);
// start SD card
SPI.setMOSI(SDCARD_MOSI_PIN);
@ -210,13 +195,13 @@ void setup()
// read all bank names
max_loaded_banks = get_bank_names();
strip_extension(bank_names[bank], bank_name);
strip_extension(bank_names[configuration.bank], bank_name);
// read all voice name for actual bank
get_voice_names_from_bank(bank);
get_voice_names_from_bank(configuration.bank);
#ifdef DEBUG
Serial.print(F("Bank ["));
Serial.print(bank_names[bank]);
Serial.print(bank_names[configuration.bank]);
Serial.print(F("/"));
Serial.print(bank_name);
Serial.println(F("]"));
@ -233,29 +218,25 @@ void setup()
#endif
// Init effects
antialias.setLowpass(0, 6000, 0.707);
filter1.frequency(EXP_FUNC((float)map(effect_filter_frq, 0, ENC_FILTER_FRQ_STEPS, 0, 1024) / 150.0) * 10.0 + 80.0);
//filter1.resonance(mapfloat(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0.7, 5.0));
filter1.resonance(EXP_FUNC(mapfloat(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0.7, 5.0)) * 0.044 + 0.61);
filter1.octaveControl(mapfloat(effect_filter_octave, 0, ENC_FILTER_OCT_STEPS, 0.0, 7.0));
delay1.delay(0, mapfloat(effect_delay_feedback, 0, ENC_DELAY_TIME_STEPS, 0.0, DELAY_MAX_TIME));
// mixer1 is the feedback-adding mixer, mixer2 the whole delay (with/without feedback) mixer
mixer1.gain(0, 1.0); // original signal
mixer1.gain(1, mapfloat(effect_delay_feedback, 0, ENC_DELAY_FB_STEPS, 0.0, 1.0)); // amount of feedback
mixer1.gain(0, 0.0); // filtered signal off
mixer1.gain(3, 1.0); // original signal on
mixer2.gain(0, 1.0 - mapfloat(effect_delay_volume, 0, ENC_DELAY_VOLUME_STEPS, 0.0, 1.0)); // original signal
mixer2.gain(1, mapfloat(effect_delay_volume, 0, ENC_DELAY_VOLUME_STEPS, 0.0, 1.0)); // delayed signal (including feedback)
mixer2.gain(2, mapfloat(effect_delay_volume, 0, ENC_DELAY_VOLUME_STEPS, 0.0, 1.0)); // only delayed signal (without feedback)
dexed->fx.Gain = 1.0;
dexed->fx.Reso = 1.0 - float(effect_filter_resonance) / ENC_FILTER_RES_STEPS;
dexed->fx.Cutoff = 1.0 - float(effect_filter_cutoff) / ENC_FILTER_CUT_STEPS;
// load default SYSEX data
load_sysex(bank, voice);
load_sysex(configuration.bank, configuration.voice);
}
#ifdef I2C_DISPLAY
enc[0].write(map(vol * 100, 0, 100, 0, ENC_VOL_STEPS));
enc[0].write(map(configuration.vol * 100, 0, 100, 0, ENC_VOL_STEPS));
enc_val[0] = enc[0].read();
enc[1].write(voice);
enc[1].write(configuration.voice);
enc_val[1] = enc[1].read();
but[0].update();
but[1].update();
@ -269,9 +250,9 @@ void setup()
#ifdef DEBUG
Serial.print(F("Bank/Voice from EEPROM ["));
Serial.print(EEPROM.read(EEPROM_OFFSET + EEPROM_BANK_ADDR), DEC);
Serial.print(configuration.bank, DEC);
Serial.print(F("/"));
Serial.print(EEPROM.read(EEPROM_OFFSET + EEPROM_VOICE_ADDR), DEC);
Serial.print(configuration.voice, DEC);
Serial.println(F("]"));
show_patch();
#endif
@ -320,23 +301,32 @@ void loop()
}
#ifndef TEENSY_AUDIO_BOARD
for (uint8_t i = 0; i < AUDIO_BLOCK_SAMPLES; i++)
audio_buffer[i] *= vol;
audio_buffer[i] *= configuration.vol;
#endif
queue1.playBuffer();
}
// EEPROM update handling
if (eeprom_update_status > 0 && autostore >= autostore_value)
if (autostore >= AUTOSTORE_MS && active_voices == 0 && eeprom_update_flag == true)
{
autostore = 0;
// only store configuration data to EEPROM when AUTOSTORE_MS is reached and no voices are activated anymore
eeprom_update();
}
// MIDI input handling
check_midi_devices();
// CONTROL-RATE-EVENT-HANDLING
if (control_rate > CONTROL_RATE_MS)
{
control_rate = 0;
// Shutdown unused voices
active_voices = dexed->getNumNotesPlaying();
}
#ifdef I2C_DISPLAY
// UI
// UI-HANDLING
if (master_timer >= TIMER_UI_HANDLING_MS)
{
master_timer -= TIMER_UI_HANDLING_MS;
@ -388,7 +378,7 @@ void handleControlChange(byte inChannel, byte inCtrl, byte inValue)
case 0:
if (inValue < MAX_BANKS)
{
bank = inValue;
configuration.bank = inValue;
handle_ui();
}
break;
@ -405,15 +395,15 @@ void handleControlChange(byte inChannel, byte inCtrl, byte inValue)
dexed->controllers.refresh();
break;
case 7: // Volume
vol = float(inValue) / 0x7f;
set_volume(vol, pan);
configuration.vol = float(inValue) / 0x7f;
set_volume(configuration.vol, configuration.pan);
break;
case 10: // Pan
pan = float(inValue) / 128;
set_volume(vol, pan);
configuration.pan = float(inValue) / 128;
set_volume(configuration.vol, configuration.pan);
break;
case 32: // BankSelect LSB
bank = inValue;
configuration.bank = inValue;
break;
case 64:
dexed->setSustain(inValue > 63);
@ -426,31 +416,14 @@ void handleControlChange(byte inChannel, byte inCtrl, byte inValue)
}
}
break;
case 102: // CC 102: filter frequency
effect_filter_frq = map(inValue, 0, 127, 0, ENC_FILTER_FRQ_STEPS);
if (effect_filter_frq == ENC_FILTER_FRQ_STEPS)
{
// turn "off" filter
mixer1.gain(0, 0.0); // filtered signal off
mixer1.gain(3, 1.0); // original signal on
}
else
{
// turn "on" filter
mixer1.gain(0, 1.0); // filtered signal on
mixer1.gain(3, 0.0); // original signal off
}
filter1.frequency(EXP_FUNC((float)map(effect_filter_frq, 0, ENC_FILTER_FRQ_STEPS, 0, 1024) / 150.0) * 10.0 + 80.0);
handle_ui();
break;
case 103: // CC 103: filter resonance
effect_filter_resonance = map(inValue, 0, 127, 0, ENC_FILTER_RES_STEPS);
filter1.resonance(EXP_FUNC(mapfloat(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0.7, 5.0)) * 0.044 + 0.61);
dexed->fx.Reso = 1.0 - float(effect_filter_resonance) / ENC_FILTER_RES_STEPS;
handle_ui();
break;
case 104: // CC 104: filter octave
effect_filter_octave = map(inValue, 0, 127, 0, ENC_FILTER_OCT_STEPS);
filter1.octaveControl(mapfloat(effect_filter_octave, 0, ENC_FILTER_OCT_STEPS, 0.0, 7.0));
case 104: // CC 104: filter cutoff
effect_filter_cutoff = map(inValue, 0, 127, 0, ENC_FILTER_CUT_STEPS);
dexed->fx.Cutoff = 1.0 - float(effect_filter_cutoff) / ENC_FILTER_CUT_STEPS;
handle_ui();
break;
case 105: // CC 105: delay time
@ -502,12 +475,12 @@ void handleProgramChange(byte inChannel, byte inProgram)
{
if (inProgram < MAX_VOICES)
{
load_sysex(bank, inProgram);
load_sysex(configuration.bank, inProgram);
handle_ui();
}
}
void handleSystemExclusive(byte *sysex, uint len)
void handleSystemExclusive(byte * sysex, uint len)
{
/*
SYSEX MESSAGE: Parameter Change
@ -617,7 +590,7 @@ void handleSystemExclusive(byte *sysex, uint len)
Serial.print(F(" = "));
Serial.print(sysex[5], DEC);
Serial.print(F(", data_index = "));
Serial.println(data_index,DEC);
Serial.println(data_index, DEC);
#endif
}
#ifdef DEBUG
@ -696,23 +669,23 @@ void handleSystemReset(void)
}
/******************************************************************************
END OF MIDI MESSAGE HANDLER
MIDI HELPER
******************************************************************************/
bool checkMidiChannel(byte inChannel)
{
// check for MIDI channel
if (midi_channel == MIDI_CHANNEL_OMNI)
if (configuration.midi_channel == MIDI_CHANNEL_OMNI)
{
return (true);
}
else if (inChannel != midi_channel)
else if (inChannel != configuration.midi_channel)
{
#ifdef DEBUG
Serial.print(F("Ignoring MIDI data on channel "));
Serial.print(inChannel);
Serial.print(F("(listening on "));
Serial.print(midi_channel);
Serial.print(configuration.midi_channel);
Serial.println(F(")"));
#endif
return (false);
@ -720,30 +693,27 @@ bool checkMidiChannel(byte inChannel)
return (true);
}
/******************************************************************************
VOLUME HELPER
******************************************************************************/
void set_volume(float v, float p)
{
vol = v;
pan = p;
configuration.vol = v;
configuration.pan = p;
#ifdef DEBUG
uint8_t tmp;
Serial.print(F("Setting volume: VOL="));
Serial.print(v, DEC);
Serial.print(F("["));
tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR);
Serial.print(tmp, DEC);
Serial.print(F("/"));
Serial.print(float(tmp) / UCHAR_MAX, DEC);
Serial.print(configuration.vol, DEC);
Serial.print(F("] PAN="));
Serial.print(F("["));
tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_PAN_ADDR);
Serial.print(tmp, DEC);
Serial.print(F("/"));
Serial.print(float(tmp) / SCHAR_MAX, DEC);
Serial.print(configuration.pan, DEC);
Serial.print(F("] "));
Serial.print(pow(v * sinf(p * PI / 2), VOLUME_CURVE), 3);
Serial.print(pow(configuration.vol * sinf(configuration.pan * PI / 2), VOLUME_CURVE), 3);
Serial.print(F("/"));
Serial.println(pow(v * cosf(p * PI / 2), VOLUME_CURVE), 3);
Serial.println(pow(configuration.vol * cosf( configuration.pan * PI / 2), VOLUME_CURVE), 3);
#endif
// http://files.csound-tutorial.net/floss_manual/Release03/Cs_FM_03_ScrapBook/b-panning-and-spatialization.html
@ -762,58 +732,58 @@ inline float logvol(float x)
return (0.001 * expf(6.908 * x));
}
/******************************************************************************
EEPROM HELPER
******************************************************************************/
void initial_values_from_eeprom(void)
{
uint32_t crc_eeprom = read_eeprom_checksum();
uint32_t crc = eeprom_crc32(EEPROM_OFFSET, EEPROM_DATA_LENGTH);
uint32_t checksum;
config_t tmp_conf;
EEPROM_readAnything(EEPROM_START_ADDRESS, tmp_conf);
checksum = crc32((byte*)&tmp_conf + 4, sizeof(tmp_conf) - 4);
#ifdef DEBUG
Serial.print(F("EEPROM checksum: 0x"));
Serial.print(crc_eeprom, HEX);
Serial.print(tmp_conf.checksum, HEX);
Serial.print(F(" / 0x"));
Serial.print(crc, HEX);
Serial.print(checksum, HEX);
#endif
if (crc_eeprom != crc)
if (checksum != tmp_conf.checksum)
{
#ifdef DEBUG
Serial.print(F(" - mismatch -> initializing EEPROM!"));
#endif
eeprom_write(EEPROM_UPDATE_BANK + EEPROM_UPDATE_VOICE + EEPROM_UPDATE_VOL + EEPROM_UPDATE_PAN + EEPROM_UPDATE_MIDICHANNEL);
eeprom_update();
}
else
{
bank = EEPROM.read(EEPROM_OFFSET + EEPROM_BANK_ADDR);
voice = EEPROM.read(EEPROM_OFFSET + EEPROM_VOICE_ADDR);
vol = float(EEPROM.read(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR)) / UCHAR_MAX;
pan = float(EEPROM.read(EEPROM_OFFSET + EEPROM_PAN_ADDR)) / SCHAR_MAX;
midi_channel = EEPROM.read(EEPROM_OFFSET + EEPROM_MIDICHANNEL_ADDR);
if (midi_channel > 16)
midi_channel = MIDI_CHANNEL_OMNI;
EEPROM_readAnything(EEPROM_START_ADDRESS, configuration);
Serial.print(F(" - OK, loading!"));
}
#ifdef DEBUG
Serial.println();
#endif
}
uint32_t read_eeprom_checksum(void)
void eeprom_write(void)
{
return (EEPROM.read(EEPROM_CRC32_ADDR) << 24 | EEPROM.read(EEPROM_CRC32_ADDR + 1) << 16 | EEPROM.read(EEPROM_CRC32_ADDR + 2) << 8 | EEPROM.read(EEPROM_CRC32_ADDR + 3));
}
void update_eeprom_checksum(void)
{
write_eeprom_checksum(eeprom_crc32(EEPROM_OFFSET, EEPROM_DATA_LENGTH)); // recalculate crc and write to eeprom
autostore = 0;
eeprom_update_flag = true;
}
void write_eeprom_checksum(uint32_t crc)
void eeprom_update(void)
{
EEPROM.update(EEPROM_CRC32_ADDR, (crc & 0xff000000) >> 24);
EEPROM.update(EEPROM_CRC32_ADDR + 1, (crc & 0x00ff0000) >> 16);
EEPROM.update(EEPROM_CRC32_ADDR + 2, (crc & 0x0000ff00) >> 8);
EEPROM.update(EEPROM_CRC32_ADDR + 3, crc & 0x000000ff);
eeprom_update_flag = false;
configuration.checksum = crc32((byte*)&configuration + 4, sizeof(configuration) - 4);
EEPROM_writeAnything(EEPROM_START_ADDRESS, configuration);
Serial.println(F("Updating EEPROM with configuration data"));
}
uint32_t eeprom_crc32(uint16_t calc_start, uint16_t calc_bytes) // base code from https://www.arduino.cc/en/Tutorial/EEPROMCrc
uint32_t crc32(byte * calc_start, uint16_t calc_bytes) // base code from https://www.arduino.cc/en/Tutorial/EEPROMCrc
{
const uint32_t crc_table[16] =
{
@ -824,97 +794,19 @@ uint32_t eeprom_crc32(uint16_t calc_start, uint16_t calc_bytes) // base code fro
};
uint32_t crc = ~0L;
if (calc_start + calc_bytes > EEPROM.length())
calc_bytes = EEPROM.length() - calc_start;
for (uint16_t index = calc_start ; index < (calc_start + calc_bytes) ; ++index)
for (byte* index = calc_start ; index < (calc_start + calc_bytes) ; ++index)
{
crc = crc_table[(crc ^ EEPROM[index]) & 0x0f] ^ (crc >> 4);
crc = crc_table[(crc ^ (EEPROM[index] >> 4)) & 0x0f] ^ (crc >> 4);
crc = crc_table[(crc ^ *index) & 0x0f] ^ (crc >> 4);
crc = crc_table[(crc ^ (*index >> 4)) & 0x0f] ^ (crc >> 4);
crc = ~crc;
}
return (crc);
}
void eeprom_write(uint8_t status)
{
eeprom_update_status |= status;
if (eeprom_update_status != 0)
autostore = 0;
#ifdef DEBUG
Serial.print(F("Updating EEPROM state to: "));
Serial.println(eeprom_update_status, DEC);
#endif
}
void eeprom_update(void)
{
autostore_value = AUTOSTORE_FAST_MS;
if (eeprom_update_status & EEPROM_UPDATE_BANK)
{
EEPROM.update(EEPROM_OFFSET + EEPROM_BANK_ADDR, bank);
#ifdef DEBUG
Serial.println(F("Bank written to EEPROM"));
#endif
eeprom_update_status &= ~EEPROM_UPDATE_BANK;
}
else if (eeprom_update_status & EEPROM_UPDATE_VOICE)
{
EEPROM.update(EEPROM_OFFSET + EEPROM_VOICE_ADDR, voice);
#ifdef DEBUG
Serial.println(F("Voice written to EEPROM"));
#endif
eeprom_update_status &= ~EEPROM_UPDATE_VOICE;
}
else if (eeprom_update_status & EEPROM_UPDATE_VOL)
{
EEPROM.update(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR, uint8_t(vol * UCHAR_MAX));
#ifdef DEBUG
Serial.println(F("Volume written to EEPROM"));
#endif
eeprom_update_status &= ~EEPROM_UPDATE_VOL;
}
else if (eeprom_update_status & EEPROM_UPDATE_PAN)
{
EEPROM.update(EEPROM_OFFSET + EEPROM_PAN_ADDR, uint8_t(pan * SCHAR_MAX));
#ifdef DEBUG
Serial.println(F("Panorama written to EEPROM"));
#endif
eeprom_update_status &= ~EEPROM_UPDATE_PAN;
}
else if (eeprom_update_status & EEPROM_UPDATE_MIDICHANNEL )
{
EEPROM.update(EEPROM_OFFSET + EEPROM_MIDICHANNEL_ADDR, midi_channel);
update_eeprom_checksum();
#ifdef DEBUG
Serial.println(F("MIDI channel written to EEPROM"));
#endif
eeprom_update_status &= ~EEPROM_UPDATE_MIDICHANNEL;
}
else if (eeprom_update_status & EEPROM_UPDATE_CHECKSUM)
{
update_eeprom_checksum();
#ifdef DEBUG
Serial.println(F("Checksum written to EEPROM"));
#endif
eeprom_update_status &= ~EEPROM_UPDATE_CHECKSUM;
autostore_value = AUTOSTORE_MS;
return;
}
if (eeprom_update_status == 0)
eeprom_update_status |= EEPROM_UPDATE_CHECKSUM;
}
void init_eeprom(void)
{
for (uint8_t i = 0; i < EEPROM_DATA_LENGTH; i++)
{
EEPROM.update(EEPROM_OFFSET + i, 0);
}
}
/******************************************************************************
DEBUG HELPER
******************************************************************************/
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
void show_cpu_and_mem_usage(void)
@ -937,6 +829,8 @@ void show_cpu_and_mem_usage(void)
Serial.print(peak, DEC);
Serial.print(F(" BLOCKSIZE: "));
Serial.print(AUDIO_BLOCK_SAMPLES, DEC);
Serial.print(F(" ACTIVE_VOICES: "));
Serial.print(active_voices, DEC);
Serial.println();
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();

@ -0,0 +1,216 @@
/**
Copyright (c) 2013-2014 Pascal Gauthier.
Copyright (c) 2013-2014 Filatov Vadim.
Filter taken from the Obxd project :
https://github.com/2DaT/Obxd
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define _USE_MATH_DEFINES
#include <math.h>
#include "PluginFx.h"
const float dc = 1e-18;
inline static float tptpc(float& state, float inp, float cutoff) {
float v = (inp - state) * cutoff / (1 + cutoff);
float res = v + state;
state = res + v;
return res;
}
inline static float tptlpupw(float & state , float inp , float cutoff , float srInv) {
cutoff = (cutoff * srInv) * M_PI;
float v = (inp - state) * cutoff / (1 + cutoff);
float res = v + state;
state = res + v;
return res;
}
//static float linsc(float param,const float min,const float max) {
// return (param) * (max - min) + min;
//}
static float logsc(float param, const float min, const float max, const float rolloff = 19.0f) {
return ((expf(param * logf(rolloff + 1)) - 1.0f) / (rolloff)) * (max - min) + min;
}
PluginFx::PluginFx() {
Cutoff = 1;
Reso = 0;
Gain = 1;
}
void PluginFx::init(int sr) {
mm = 0;
s1 = s2 = s3 = s4 = c = d = 0;
R24 = 0;
mmch = (int)(mm * 3);
mmt = mm * 3 - mmch;
sampleRate = sr;
sampleRateInv = 1 / sampleRate;
float rcrate = sqrt((44000 / sampleRate));
rcor24 = (970.0 / 44000) * rcrate;
rcor24Inv = 1 / rcor24;
bright = tanf((sampleRate * 0.5f - 10) * M_PI * sampleRateInv);
R = 1;
rcor = (480.0 / 44000) * rcrate;
rcorInv = 1 / rcor;
bandPassSw = false;
pCutoff = -1;
pReso = -1;
dc_r = 1.0 - (126.0 / sr);
dc_id = 0;
dc_od = 0;
}
inline float PluginFx::NR24(float sample, float g, float lpc) {
float ml = 1 / (1 + g);
float S = (lpc * (lpc * (lpc * s1 + s2) + s3) + s4) * ml;
float G = lpc * lpc * lpc * lpc;
float y = (sample - R24 * S) / (1 + R24 * G);
return y + 1e-8;
};
inline float PluginFx::NR(float sample, float g) {
float y = ((sample - R * s1 * 2 - g * s1 - s2) / (1 + g * (2 * R + g))) + dc;
return y;
}
void PluginFx::process(float *work, int sampleSize) {
// very basic DC filter
float t_fd = work[0];
work[0] = work[0] - dc_id + dc_r * dc_od;
dc_id = t_fd;
for (int i = 1; i < sampleSize; i++) {
t_fd = work[i];
work[i] = work[i] - dc_id + dc_r * work[i - 1];
dc_id = t_fd;
}
dc_od = work[sampleSize - 1];
if ( Gain != 1 ) {
for (int i = 0; i < sampleSize; i++ )
work[i] *= Gain;
}
// don't apply the LPF if the cutoff is to maximum
if ( Cutoff == 1 )
return;
if ( Cutoff != pCutoff || Reso != pReso ) {
rReso = (0.991 - logsc(1 - Reso, 0, 0.991));
R24 = 3.5 * rReso;
float cutoffNorm = logsc(Cutoff, 60, 19000);
rCutoff = (float)tanf(cutoffNorm * sampleRateInv * M_PI);
pCutoff = Cutoff;
pReso = Reso;
R = 1 - rReso;
}
// THIS IS MY FAVORITE 4POLE OBXd filter
// maybe smooth this value
float g = rCutoff;
float lpc = g / (1 + g);
for (int i = 0; i < sampleSize; i++ ) {
float s = work[i];
s = s - 0.45 * tptlpupw(c, s, 15, sampleRateInv);
s = tptpc(d, s, bright);
float y0 = NR24(s, g, lpc);
//first low pass in cascade
float v = (y0 - s1) * lpc;
float res = v + s1;
s1 = res + v;
//damping
s1 = atanf(s1 * rcor24) * rcor24Inv;
float y1 = res;
float y2 = tptpc(s2, y1, g);
float y3 = tptpc(s3, y2, g);
float y4 = tptpc(s4, y3, g);
float mc = 0.0;
switch (mmch) {
case 0:
mc = ((1 - mmt) * y4 + (mmt) * y3);
break;
case 1:
mc = ((1 - mmt) * y3 + (mmt) * y2);
break;
case 2:
mc = ((1 - mmt) * y2 + (mmt) * y1);
break;
case 3:
mc = y1;
break;
}
//half volume comp
work[i] = mc * (1 + R24 * 0.45);
}
}
/*
// THIS IS THE 2POLE FILTER
for(int i=0; i < sampleSize; i++ ) {
float s = work[i];
s = s - 0.45*tptlpupw(c,s,15,sampleRateInv);
s = tptpc(d,s,bright);
//float v = ((sample- R * s1*2 - g2*s1 - s2)/(1+ R*g1*2 + g1*g2));
float v = NR(s,g);
float y1 = v*g + s1;
//damping
s1 = atanf(s1 * rcor) * rcorInv;
float y2 = y1*g + s2;
s2 = y2 + y1*g;
float mc;
if(!bandPassSw)
mc = (1-mm)*y2 + (mm)*v;
else
{
mc =2 * ( mm < 0.5 ?
((0.5 - mm) * y2 + (mm) * y1):
((1-mm) * y1 + (mm-0.5) * v)
);
}
work[i] = mc;
}
*/

@ -0,0 +1,72 @@
/**
Copyright (c) 2013 Pascal Gauthier.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef PLUGINFX_H_INCLUDED
#define PLUGINFX_H_INCLUDED
class PluginFx {
float s1, s2, s3, s4;
float sampleRate;
float sampleRateInv;
float d, c;
float R24;
float rcor24, rcor24Inv;
float bright;
// 24 db multimode
float mm;
float mmt;
int mmch;
inline float NR24(float sample, float g, float lpc);
// preprocess values taken the UI
float rCutoff;
float rReso;
float rGain;
// thread values; if these are different from the UI,
// it needs to be recalculated.
float pReso;
float pCutoff;
float pGain;
// I am still keeping the 2pole w/multimode filter
inline float NR(float sample, float g);
bool bandPassSw;
float rcor, rcorInv;
int R;
float dc_id;
float dc_od;
float dc_r;
public:
PluginFx();
// this is set directly by the ui / parameter
float Cutoff;
float Reso;
float Gain;
void init(int sampleRate);
void process(float *work, int sampleSize);
};
#endif // PLUGINFX_H_INCLUDED

170
UI.cpp

@ -38,7 +38,7 @@ void handle_ui(void)
{
if (ui_back_to_main >= UI_AUTO_BACK_MS && (ui_state != UI_MAIN && ui_state != UI_EFFECTS_FILTER && ui_state != UI_EFFECTS_DELAY))
{
enc[0].write(map(vol * 100, 0, 100, 0, ENC_VOL_STEPS));
enc[0].write(map(configuration.vol * 100, 0, 100, 0, ENC_VOL_STEPS));
enc_val[0] = enc[0].read();
ui_show_main();
}
@ -84,8 +84,8 @@ void handle_ui(void)
switch (ui_state)
{
case UI_MAIN:
ui_main_state = UI_MAIN_FILTER_FRQ;
enc[i].write(effect_filter_frq);
ui_main_state = UI_MAIN_FILTER_RES;
enc[i].write(effect_filter_resonance);
enc_val[i] = enc[i].read();
ui_show_effects_filter();
break;
@ -97,7 +97,7 @@ void handle_ui(void)
break;
case UI_EFFECTS_DELAY:
ui_main_state = UI_MAIN_VOICE;
enc[i].write(voice);
enc[i].write(configuration.voice);
enc_val[i] = enc[i].read();
ui_show_main();
break;
@ -114,17 +114,17 @@ void handle_ui(void)
switch (ui_state)
{
case UI_MAIN:
enc[i].write(map(vol * 100, 0, 100, 0, ENC_VOL_STEPS));
enc[i].write(map(configuration.vol * 100, 0, 100, 0, ENC_VOL_STEPS));
enc_val[i] = enc[i].read();
ui_show_volume();
break;
case UI_VOLUME:
enc[i].write(midi_channel);
enc[i].write(configuration.midi_channel);
enc_val[i] = enc[i].read();
ui_show_midichannel();
break;
case UI_MIDICHANNEL:
enc[i].write(map(vol * 100, 0, 100, 0, ENC_VOL_STEPS));
enc[i].write(map(configuration.vol * 100, 0, 100, 0, ENC_VOL_STEPS));
enc_val[i] = enc[i].read();
ui_show_main();
break;
@ -139,13 +139,13 @@ void handle_ui(void)
case UI_MAIN_BANK:
case UI_MAIN_BANK_SELECTED:
ui_main_state = UI_MAIN_VOICE;
enc[i].write(voice);
enc[i].write(configuration.voice);
enc_val[i] = enc[i].read();
break;
case UI_MAIN_VOICE:
case UI_MAIN_VOICE_SELECTED:
ui_main_state = UI_MAIN_BANK;
enc[i].write(bank);
enc[i].write(configuration.bank);
enc_val[i] = enc[i].read();
break;
}
@ -155,21 +155,15 @@ void handle_ui(void)
case UI_EFFECTS_DELAY:
switch (ui_main_state)
{
case UI_MAIN_FILTER_FRQ:
ui_main_state = UI_MAIN_FILTER_RES;
enc[i].write(effect_filter_resonance);
enc_val[i] = enc[i].read();
ui_show_effects_filter();
break;
case UI_MAIN_FILTER_RES:
ui_main_state = UI_MAIN_FILTER_OCT;
enc[i].write(effect_filter_octave);
ui_main_state = UI_MAIN_FILTER_CUT;
enc[i].write(effect_filter_cutoff);
enc_val[i] = enc[i].read();
ui_show_effects_filter();
break;
case UI_MAIN_FILTER_OCT:
ui_main_state = UI_MAIN_FILTER_FRQ;
enc[i].write(effect_filter_frq);
case UI_MAIN_FILTER_CUT:
ui_main_state = UI_MAIN_FILTER_RES;
enc[i].write(effect_filter_resonance);
enc_val[i] = enc[i].read();
ui_show_effects_filter();
break;
@ -217,8 +211,8 @@ void handle_ui(void)
enc[i].write(0);
else if (enc[i].read() >= ENC_VOL_STEPS)
enc[i].write(ENC_VOL_STEPS);
set_volume(float(map(enc[i].read(), 0, ENC_VOL_STEPS, 0, 100)) / 100, pan);
eeprom_write(EEPROM_UPDATE_VOL);
set_volume(float(map(enc[i].read(), 0, ENC_VOL_STEPS, 0, 100)) / 100, configuration.pan);
eeprom_write();
ui_show_volume();
break;
case UI_MIDICHANNEL:
@ -226,8 +220,8 @@ void handle_ui(void)
enc[i].write(0);
else if (enc[i].read() >= 16)
enc[i].write(16);
midi_channel = enc[i].read();
eeprom_write(EEPROM_UPDATE_MIDICHANNEL);
configuration.midi_channel = enc[i].read();
eeprom_write();
ui_show_midichannel();
break;
}
@ -235,6 +229,12 @@ void handle_ui(void)
case 1: // right encoder moved
switch (ui_state)
{
case UI_VOLUME:
ui_state = UI_MAIN;
lcd.clear();
enc[1].write(configuration.voice);
ui_show_main();
break;
case UI_MAIN:
switch (ui_main_state)
{
@ -245,39 +245,39 @@ void handle_ui(void)
enc[i].write(0);
else if (enc[i].read() > max_loaded_banks - 1)
enc[i].write(max_loaded_banks - 1);
bank = enc[i].read();
get_voice_names_from_bank(bank);
load_sysex(bank, voice);
eeprom_write(EEPROM_UPDATE_BANK);
configuration.bank = enc[i].read();
get_voice_names_from_bank(configuration.bank);
load_sysex(configuration.bank, configuration.voice);
eeprom_write();
break;
case UI_MAIN_VOICE:
ui_main_state = UI_MAIN_VOICE_SELECTED;
case UI_MAIN_VOICE_SELECTED:
if (enc[i].read() <= 0)
{
if (bank > 0)
if (configuration.bank > 0)
{
enc[i].write(MAX_VOICES - 1);
bank--;
get_voice_names_from_bank(bank);
configuration.bank--;
get_voice_names_from_bank(configuration.bank);
}
else
enc[i].write(0);
}
else if (enc[i].read() > MAX_VOICES - 1)
{
if (bank < MAX_BANKS - 1)
if (configuration.bank < MAX_BANKS - 1)
{
enc[i].write(0);
bank++;
get_voice_names_from_bank(bank);
configuration.bank++;
get_voice_names_from_bank(configuration.bank);
}
else
enc[i].write(MAX_VOICES - 1);
}
voice = enc[i].read();
load_sysex(bank, voice);
eeprom_write(EEPROM_UPDATE_VOICE);
configuration.voice = enc[i].read();
load_sysex(configuration.bank, configuration.voice);
eeprom_write();
break;
}
ui_show_main();
@ -285,54 +285,28 @@ void handle_ui(void)
case UI_EFFECTS_FILTER:
switch (ui_main_state)
{
case UI_MAIN_FILTER_FRQ:
if (enc[i].read() <= 0)
enc[i].write(0);
else if (enc[i].read() > ENC_FILTER_FRQ_STEPS)
enc[i].write(ENC_FILTER_FRQ_STEPS);
effect_filter_frq = enc[i].read();
if (effect_filter_frq == ENC_FILTER_FRQ_STEPS)
{
// turn "off" filter
mixer1.gain(0, 0.0); // filtered signal off
mixer1.gain(3, 1.0); // original signal on
}
else
{
// turn "on" filter
mixer1.gain(0, 1.0); // filtered signal on
mixer1.gain(3, 0.0); // original signal off
}
filter1.frequency(EXP_FUNC((float)map(effect_filter_frq, 0, ENC_FILTER_FRQ_STEPS, 0, 1024) / 150.0) * 10.0 + 80.0);
#ifdef DEBUG
Serial.print(F("Setting filter frequency to: "));
Serial.println(EXP_FUNC((float)map(effect_filter_frq, 0, ENC_FILTER_FRQ_STEPS, 0, 1024) / 150.0) * 10.0 + 80.0, DEC);
#endif
break;
case UI_MAIN_FILTER_RES:
if (enc[i].read() <= 0)
enc[i].write(0);
else if (enc[i].read() > ENC_FILTER_RES_STEPS)
enc[i].write(ENC_FILTER_RES_STEPS);
effect_filter_resonance = enc[i].read();
//filter1.resonance(mapfloat(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0.7, 5.0));
filter1.resonance(EXP_FUNC(mapfloat(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0.7, 5.0)) * 0.044 + 0.61);
dexed->fx.Reso = 1.0 - float(effect_filter_resonance) / ENC_FILTER_RES_STEPS;
#ifdef DEBUG
Serial.print(F("Setting filter resonance to: "));
Serial.println(EXP_FUNC(mapfloat(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0.7, 5.0)) * 0.044 + 0.61, 2);
Serial.println(1.0 - float(effect_filter_resonance) / ENC_FILTER_RES_STEPS, 5);
#endif
break;
case UI_MAIN_FILTER_OCT:
case UI_MAIN_FILTER_CUT:
if (enc[i].read() <= 0)
enc[i].write(0);
else if (enc[i].read() > ENC_FILTER_OCT_STEPS)
enc[i].write(ENC_FILTER_OCT_STEPS);
effect_filter_octave = enc[i].read();
filter1.octaveControl(mapfloat(effect_filter_octave, 0, ENC_FILTER_OCT_STEPS, 0.0, 7.0));
else if (enc[i].read() > ENC_FILTER_CUT_STEPS)
enc[i].write(ENC_FILTER_CUT_STEPS);
effect_filter_cutoff = enc[i].read();
dexed->fx.Cutoff = 1.0 - float(effect_filter_cutoff) / ENC_FILTER_CUT_STEPS;
#ifdef DEBUG
Serial.print(F("Setting filter octave control to: "));
Serial.println(mapfloat(effect_filter_octave, 0, ENC_FILTER_OCT_STEPS, 0.0, 7.0), 2);
Serial.print(F("Setting filter cutoff to: "));
Serial.println(1.0 - float(effect_filter_cutoff) / ENC_FILTER_CUT_STEPS, 5);
#endif
break;
}
@ -405,9 +379,9 @@ void ui_show_main(void)
lcd.clear();
}
lcd.show(0, 0, 2, bank);
lcd.show(0, 0, 2, configuration.bank);
lcd.show(0, 2, 1, " ");
strip_extension(bank_names[bank], bank_name);
strip_extension(bank_names[configuration.bank], bank_name);
if (ui_main_state == UI_MAIN_BANK || ui_main_state == UI_MAIN_BANK_SELECTED)
{
@ -422,18 +396,18 @@ void ui_show_main(void)
lcd.show(0, 11, 1, " ");
}
lcd.show(1, 0, 2, voice + 1);
lcd.show(1, 0, 2, configuration.voice + 1);
lcd.show(1, 2, 1, " ");
if (ui_main_state == UI_MAIN_VOICE || ui_main_state == UI_MAIN_VOICE_SELECTED)
{
lcd.show(1, 2, 1, "[");
lcd.show(1, 3, 10, voice_names[voice]);
lcd.show(1, 3, 10, voice_names[configuration.voice]);
lcd.show(1, 14, 1, "]");
}
else
{
lcd.show(1, 2, 1, " ");
lcd.show(1, 3, 10, voice_names[voice]);
lcd.show(1, 3, 10, voice_names[configuration.voice]);
lcd.show(1, 14, 1, " ");
}
@ -450,18 +424,18 @@ void ui_show_volume(void)
lcd.show(0, 0, LCD_CHARS, "Volume");
}
lcd.show(0, LCD_CHARS - 3, 3, vol * 100);
if (vol == 0.0)
lcd.show(0, LCD_CHARS - 3, 3, configuration.vol * 100);
if (configuration.vol == 0.0)
lcd.show(1, 0, LCD_CHARS , " ");
else
{
if (vol < (float(LCD_CHARS) / 100))
if (configuration.vol < (float(LCD_CHARS) / 100))
lcd.show(1, 0, LCD_CHARS, "*");
else
{
for (uint8_t i = 0; i < map(vol * 100, 0, 100, 0, LCD_CHARS); i++)
for (uint8_t i = 0; i < map(configuration.vol * 100, 0, 100, 0, LCD_CHARS); i++)
lcd.show(1, i, 1, "*");
for (uint8_t i = map(vol * 100, 0, 100, 0, LCD_CHARS); i < LCD_CHARS; i++)
for (uint8_t i = map(configuration.vol * 100, 0, 100, 0, LCD_CHARS); i < LCD_CHARS; i++)
lcd.show(1, i, 1, " ");
}
}
@ -479,12 +453,12 @@ void ui_show_midichannel(void)
lcd.show(0, 0, LCD_CHARS, "MIDI Channel");
}
if (midi_channel == MIDI_CHANNEL_OMNI)
if (configuration.midi_channel == MIDI_CHANNEL_OMNI)
lcd.show(1, 0, 4, "OMNI");
else
{
lcd.show(1, 0, 2, midi_channel);
if (midi_channel == 1)
lcd.show(1, 0, 2, configuration.midi_channel);
if (configuration.midi_channel == 1)
lcd.show(1, 2, 2, " ");
}
@ -497,32 +471,12 @@ void ui_show_effects_filter(void)
{
lcd.clear();
lcd.show(0, 0, LCD_CHARS, "Filter");
lcd.show(0, 7, 2, "F:");
lcd.show(1, 0, 4, "Res:");
lcd.show(1, 8, 4, "Oct:");
lcd.show(1, 8, 4, "Cut:");
}
if (effect_filter_frq == ENC_FILTER_FRQ_STEPS)
{
lcd.show(0, 10, 4, "OFF ");
}
else
{
lcd.show(0, 10, 4, uint16_t(EXP_FUNC((float)map(effect_filter_frq, 0, ENC_FILTER_FRQ_STEPS, 0, 1024) / 150.0) * 10.0 + 80.5));
}
lcd.show(1, 5, 2, map(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0, 99));
lcd.show(1, 13, 2, map(effect_filter_octave, 0, ENC_FILTER_OCT_STEPS, 0, 80));
if (ui_main_state == UI_MAIN_FILTER_FRQ)
{
lcd.show(0, 9, 1, "[");
lcd.show(0, 14, 1, "]");
}
else
{
lcd.show(0, 9, 1, " ");
lcd.show(0, 14, 1, " ");
}
lcd.show(1, 13, 2, map(effect_filter_cutoff, 0, ENC_FILTER_CUT_STEPS, 0, 99));
if (ui_main_state == UI_MAIN_FILTER_RES)
{
@ -535,7 +489,7 @@ void ui_show_effects_filter(void)
lcd.show(1, 7, 1, " ");
}
if (ui_main_state == UI_MAIN_FILTER_OCT)
if (ui_main_state == UI_MAIN_FILTER_CUT)
{
lcd.show(1, 12, 1, "[");
lcd.show(1, 15, 1, "]");

14
UI.h

@ -36,29 +36,23 @@
extern Encoder4 enc[2];
extern int32_t enc_val[2];
extern Bounce but[2];
extern float vol;
extern float pan;
extern LiquidCrystalPlus_I2C lcd;
extern uint8_t bank;
extern config_t configuration;
extern uint8_t max_loaded_banks;
extern uint8_t voice;
extern char bank_name[BANK_NAME_LEN];
extern char voice_name[VOICE_NAME_LEN];
extern uint8_t ui_state;
extern uint8_t ui_main_state;
extern uint8_t midi_channel;
extern void eeprom_write(uint8_t status);
extern void eeprom_write(void);
extern void set_volume(float v, float pan);
extern elapsedMillis autostore;
extern elapsedMillis long_button_pressed;
extern uint8_t effect_filter_frq;
extern uint8_t effect_filter_cutoff;
extern uint8_t effect_filter_resonance;
extern uint8_t effect_filter_octave;
extern uint8_t effect_delay_time;
extern uint8_t effect_delay_feedback;
extern uint8_t effect_delay_volume;
extern bool effect_delay_sync;
extern AudioFilterStateVariable filter1;
extern AudioEffectDelay delay1;
extern AudioMixer4 mixer1;
extern AudioMixer4 mixer2;
@ -72,7 +66,7 @@ void ui_show_effects_delay(void);
float mapfloat(float val, float in_min, float in_max, float out_min, float out_max);
enum ui_states {UI_MAIN, UI_VOLUME, UI_MIDICHANNEL, UI_EFFECTS_FILTER, UI_EFFECTS_DELAY};
enum ui_main_states {UI_MAIN_BANK, UI_MAIN_VOICE, UI_MAIN_BANK_SELECTED, UI_MAIN_VOICE_SELECTED, UI_MAIN_FILTER_FRQ, UI_MAIN_FILTER_RES, UI_MAIN_FILTER_OCT, UI_MAIN_DELAY_TIME, UI_MAIN_DELAY_FEEDBACK, UI_MAIN_DELAY_VOLUME};
enum ui_main_states {UI_MAIN_BANK, UI_MAIN_VOICE, UI_MAIN_BANK_SELECTED, UI_MAIN_VOICE_SELECTED, UI_MAIN_FILTER_RES, UI_MAIN_FILTER_CUT, UI_MAIN_DELAY_TIME, UI_MAIN_DELAY_FEEDBACK, UI_MAIN_DELAY_VOLUME};
class MyEncoder : public Encoder
{

@ -31,7 +31,7 @@
// ATTENTION! For better latency you have to redefine AUDIO_BLOCK_SAMPLES from
// 128 to 64 in <ARDUINO-IDE-DIR>/cores/teensy3/AudioStream.h
#define VERSION "0.9.2"
#define VERSION "0.9.4"
//*************************************************************************************************
//* DEVICE SETTINGS
@ -41,6 +41,7 @@
#define MIDI_DEVICE_DIN Serial1
#define MIDI_DEVICE_USB 1
#define MIDI_DEVICE_USB_HOST 1
#define MIDI_DEVICE_NUMBER 0
// AUDIO
// If nothing is defined PT8211 is used as audio output device!
@ -89,6 +90,11 @@
#endif
#define SAMPLE_RATE 44100
//*************************************************************************************************
//* UI AND DATA-STORE SETTINGS
//*************************************************************************************************
#define CONTROL_RATE_MS 200
#define TIMER_UI_HANDLING_MS 100
//*************************************************************************************************
//* DEBUG OUTPUT SETTINGS
@ -114,13 +120,11 @@
// Encoder with button
#define ENC_VOL_STEPS 43
#define ENC_FILTER_FRQ_STEPS 50
#define ENC_FILTER_RES_STEPS 35
#define ENC_FILTER_OCT_STEPS 27
#define ENC_FILTER_RES_STEPS 100
#define ENC_FILTER_CUT_STEPS 100
#define ENC_DELAY_TIME_STEPS 50
#define ENC_DELAY_FB_STEPS 35
#define ENC_DELAY_VOLUME_STEPS 50
#define TIMER_UI_HANDLING_MS 100
#define NUM_ENCODER 2
#define ENC_L_PIN_A 3
#define ENC_L_PIN_B 2
@ -144,22 +148,7 @@
#define AUTOSTORE_FAST_MS 50
// EEPROM address
#define EEPROM_OFFSET 0
#define EEPROM_DATA_LENGTH 5
#define EEPROM_CRC32_ADDR EEPROM.length()-sizeof(uint32_t)-33
#define EEPROM_BANK_ADDR 0
#define EEPROM_VOICE_ADDR 1
#define EEPROM_MASTER_VOLUME_ADDR 2
#define EEPROM_PAN_ADDR 3
#define EEPROM_MIDICHANNEL_ADDR 4
#define EEPROM_UPDATE_BANK (1<<0)
#define EEPROM_UPDATE_VOICE (1<<1)
#define EEPROM_UPDATE_VOL (1<<2)
#define EEPROM_UPDATE_PAN (1<<3)
#define EEPROM_UPDATE_MIDICHANNEL (1<<4)
#define EEPROM_UPDATE_CHECKSUM (1<<7)
#define EEPROM_START_ADDRESS 0
#define MAX_BANKS 100
#define MAX_VOICES 32 // voices per bank
@ -193,4 +182,13 @@
#define USE_TEENSY_DSP 1
#define SUM_UP_AS_INT 1
// struct for holding the current configuration
struct config_t {
uint32_t checksum;
uint8_t bank;
uint8_t voice;
float vol;
float pan;
uint8_t midi_channel;
};
#endif // CONFIG_H_INCLUDED

@ -33,6 +33,7 @@
#include "sin.h"
#include "freqlut.h"
#include "controllers.h"
#include "PluginFx.h"
#include <unistd.h>
#include <limits.h>
#ifdef USE_TEENSY_DSP
@ -51,6 +52,7 @@ Dexed::Dexed(int rate)
Lfo::init(rate);
PitchEnv::init(rate);
Env::init_sr(rate);
fx.init(rate);
engineMkI = new EngineMkI;
engineOpl = new EngineOpl;
@ -63,7 +65,7 @@ Dexed::Dexed(int rate)
voices[i].live = false;
}
max_notes = 16;
max_notes = MAX_NOTES;
currentNote = 0;
resetControllers();
controllers.masterTune = 0;
@ -107,41 +109,41 @@ void Dexed::deactivate(void)
void Dexed::getSamples(uint16_t n_samples, int16_t* buffer)
{
uint16_t i;
float sumbuf[n_samples];
if (refreshVoice) {
for (i = 0; i < max_notes; i++) {
if (refreshVoice)
{
for (i = 0; i < max_notes; i++)
{
if ( voices[i].live )
voices[i].dx7_note->update(data, voices[i].midi_note, voices[i].velocity);
}
lfo.reset(data + 137);
refreshVoice = false;
}
for (i = 0; i < n_samples; i += _N_) {
for (i = 0; i < n_samples; i += _N_)
{
AlignedBuf<int32_t, _N_> audiobuf;
#ifndef SUM_UP_AS_INT
float sumbuf[_N_];
#endif
for (uint8_t j = 0; j < _N_; ++j) {
for (uint8_t j = 0; j < _N_; ++j)
{
audiobuf.get()[j] = 0;
#ifndef SUM_UP_AS_INT
sumbuf[j] = 0.0;
#else
buffer[i + j] = 0;
#endif
sumbuf[i + j] = 0.0;
}
int32_t lfovalue = lfo.getsample();
int32_t lfodelay = lfo.getdelay();
#ifdef SUM_UP_AS_INT
int32_t sum;
#endif
for (uint8_t note = 0; note < max_notes; ++note) {
if (voices[note].live) {
for (uint8_t note = 0; note < max_notes; ++note)
{
if (voices[note].live)
{
voices[note].dx7_note->compute(audiobuf.get(), lfovalue, lfodelay, &controllers);
for (uint8_t j = 0; j < _N_; ++j) {
for (uint8_t j = 0; j < _N_; ++j)
{
int32_t val = audiobuf.get()[j];
val = val >> 4;
#ifdef USE_TEENSY_DSP
@ -149,45 +151,29 @@ void Dexed::getSamples(uint16_t n_samples, int16_t* buffer)
#else
int32_t clip_val = val < -(1 << 24) ? 0x8000 : val >= (1 << 24) ? 0x7fff : val >> 9;
#endif
#ifdef SUM_UP_AS_INT
//sum = buffer[i + j] + (clip_val >> REDUCE_LOUDNESS)*(float(data[DEXED_GLOBAL_PARAMETER_OFFSET+DEXED_VOICE_VOLUME])/255);
sum = buffer[i + j] + (clip_val >> REDUCE_LOUDNESS);
if (buffer[i + j] > 0 && clip_val > 0 && sum < 0)
{
sum = INT_MAX;
overload++;
}
else if (buffer[i + j] < 0 && clip_val < 0 && sum > 0)
{
sum = INT_MIN;
overload++;
}
buffer[i + j] = sum;
audiobuf.get()[j] = 0;
#else
float f = static_cast<float>(clip_val >> REDUCE_LOUDNESS) / 0x8000;
if (f > 1)
float f = static_cast<float>(clip_val >> REDUCE_LOUDNESS) / 0x7fff;
if (f > 1.0)
{
f = 1;
f = 1.0;
overload++;
}
else if (f < -1)
else if (f < -1.0)
{
f = -1;
f = -1.0;
overload++;
}
sumbuf[j] += f;
sumbuf[i + j] += f;
audiobuf.get()[j] = 0;
#endif
}
}
}
#ifndef SUM_UP_AS_INT
for (uint8_t j = 0; j < _N_; ++j) {
buffer[i + j] = static_cast<int16_t>(sumbuf[j] * 0x8000);
}
#endif
}
fx.process(sumbuf, n_samples);
for (i = 0; i < n_samples; ++i)
buffer[i] = static_cast<int16_t>(sumbuf[i] * 0x7fff);
}
void Dexed::keydown(uint8_t pitch, uint8_t velo) {
@ -391,6 +377,54 @@ uint8_t Dexed::getMaxNotes(void)
return max_notes;
}
uint8_t Dexed::getNumNotesPlaying(void)
{
uint8_t op_carrier = controllers.core->get_carrier_operators(data[134]); // look for carriers
uint8_t i;
uint8_t count_playing_voices = 0;
for (i = 0; i < max_notes; i++)
{
if (voices[i].live == true)
{
uint8_t op_amp = 0;
uint8_t op_carrier_num = 0;
memset(&voiceStatus, 0, sizeof(VoiceStatus));
voices[i].dx7_note->peekVoiceStatus(voiceStatus);
for (uint8_t op = 0; op < 6; op++)
{
if ((op_carrier & (1 << op)))
{
// this voice is a carrier!
op_carrier_num++;
if (voiceStatus.amp[op] <= 1069 && voiceStatus.ampStep[op] == 4)
{
// this voice produces no audio output
op_amp++;
}
}
}
if (op_amp == op_carrier_num)
{
// all carrier-operators are silent -> disable the voice
voices[i].live = false;
voices[i].sustained = false;
voices[i].keydown = false;
#ifdef DEBUG
Serial.print(F("Shutdown voice: "));
Serial.println(i, DEC);
#endif
}
else
count_playing_voices++;
}
}
return (count_playing_voices);
}
bool Dexed::loadSysexVoice(uint8_t* new_data)
{
uint8_t* p_data = data;

@ -34,6 +34,7 @@
#include "fm_core.h"
#include "EngineMkI.h"
#include "EngineOpl.h"
#include "PluginFx.h"
#include <Audio.h>
#include "config.h"
@ -160,9 +161,11 @@ class Dexed
void keydown(uint8_t pitch, uint8_t velo);
void setSustain(bool sustain);
bool getSustain(void);
uint8_t getNumNotesPlaying(void);
ProcessorVoice voices[MAX_NOTES];
Controllers controllers;
PluginFx fx;
uint8_t data[173] = {
95, 29, 20, 50, 99, 95, 00, 00, 41, 00, 19, 00, 00, 03, 00, 06, 79, 00, 01, 00, 14, // OP6 eg_rate_1-4, level_1-4, kbd_lev_scl_brk_pt, kbd_lev_scl_lft_depth, kbd_lev_scl_rht_depth, kbd_lev_scl_lft_curve, kbd_lev_scl_rht_curve, kbd_rate_scaling, amp_mod_sensitivity, key_vel_sensitivity, operator_output_level, osc_mode, osc_freq_coarse, osc_freq_fine, osc_detune
@ -190,6 +193,7 @@ class Dexed
bool monoMode;
bool refreshVoice;
uint8_t engineType;
VoiceStatus voiceStatus;
Lfo lfo;
FmCore* engineMsfa;
EngineMkI* engineMkI;

Loading…
Cancel
Save