You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1030 lines
40 KiB
1030 lines
40 KiB
4 years ago
|
/*
|
||
|
* ***** output_i2s_f32.cpp *****
|
||
|
*
|
||
|
* Audio Library for Teensy 3.X
|
||
|
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
|
||
|
*
|
||
|
* Development of this audio library was funded by PJRC.COM, LLC by sales of
|
||
|
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
|
||
|
* open source software by purchasing Teensy or other PJRC products.
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
* of this software and associated documentation files (the "Software"), to deal
|
||
|
* in the Software without restriction, including without limitation the rights
|
||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
* copies of the Software, and to permit persons to whom the Software is
|
||
|
* furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice, development funding notice, and this permission
|
||
|
* notice shall be included in all copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
* THE SOFTWARE.
|
||
|
*/
|
||
|
/*
|
||
|
* Extended by Chip Audette, OpenAudio, May 2019
|
||
|
* Converted to F32 and to variable audio block length
|
||
|
* The F32 conversion is under the MIT License. Use at your own risk.
|
||
|
*/
|
||
|
// Updated OpenAudio F32 with this version from Chip Audette's Tympan Library Jan 2021 RSL
|
||
|
|
||
|
#include "output_i2s_f32.h"
|
||
|
//#include "input_i2s_f32.h"
|
||
|
//include "memcpy_audio.h"
|
||
|
//#include "memcpy_interleave.h"
|
||
|
#include <arm_math.h>
|
||
|
#include <Audio.h> //to get access to Audio/utlity/imxrt_hw.h...do we really need this??? WEA 2020-10-31
|
||
|
|
||
|
/* Comment this out
|
||
|
//taken from Teensy Audio utility/imxrt_hw.h and imxrt_hw.cpp...
|
||
|
#if defined(__IMXRT1062__)
|
||
|
#ifndef imxr_hw_h_
|
||
|
#define imxr_hw_h_
|
||
|
#define IMXRT_CACHE_ENABLED 2 // 0=disabled, 1=WT, 2= WB
|
||
|
#include <Arduino.h>
|
||
|
#include <imxrt.h>
|
||
|
PROGMEM
|
||
|
void set_audioClock_tympan(int nfact, int32_t nmult, uint32_t ndiv, bool force = false) // sets PLL4
|
||
|
{
|
||
|
if (!force && (CCM_ANALOG_PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_ENABLE)) return;
|
||
|
CCM_ANALOG_PLL_AUDIO = CCM_ANALOG_PLL_AUDIO_BYPASS | CCM_ANALOG_PLL_AUDIO_ENABLE
|
||
|
| CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2) // 2: 1/4; 1: 1/2; 0: 1/1
|
||
|
| CCM_ANALOG_PLL_AUDIO_DIV_SELECT(nfact);
|
||
|
CCM_ANALOG_PLL_AUDIO_NUM = nmult & CCM_ANALOG_PLL_AUDIO_NUM_MASK;
|
||
|
CCM_ANALOG_PLL_AUDIO_DENOM = ndiv & CCM_ANALOG_PLL_AUDIO_DENOM_MASK;
|
||
|
|
||
|
CCM_ANALOG_PLL_AUDIO &= ~CCM_ANALOG_PLL_AUDIO_POWERDOWN;//Switch on PLL
|
||
|
while (!(CCM_ANALOG_PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_LOCK)) {}; //Wait for pll-lock
|
||
|
|
||
|
const int div_post_pll = 1; // other values: 2,4
|
||
|
CCM_ANALOG_MISC2 &= ~(CCM_ANALOG_MISC2_DIV_MSB | CCM_ANALOG_MISC2_DIV_LSB);
|
||
|
if(div_post_pll>1) CCM_ANALOG_MISC2 |= CCM_ANALOG_MISC2_DIV_LSB;
|
||
|
if(div_post_pll>3) CCM_ANALOG_MISC2 |= CCM_ANALOG_MISC2_DIV_MSB;
|
||
|
|
||
|
CCM_ANALOG_PLL_AUDIO &= ~CCM_ANALOG_PLL_AUDIO_BYPASS;//Disable Bypass
|
||
|
}
|
||
|
#endif
|
||
|
#else
|
||
|
//No IMXRT
|
||
|
#define IMXRT_CACHE_ENABLED 0
|
||
|
#endif
|
||
|
*/ //end of commented block
|
||
|
|
||
|
////////////
|
||
|
//
|
||
|
// Changing the sample rate based on changing the I2S bus freuqency (just for Teensy 3.x??)
|
||
|
//
|
||
|
//Here's the function to change the sample rate of the system (via changing the clocking of the I2S bus)
|
||
|
//https://forum.pjrc.com/threads/38753-Discussion-about-a-simple-way-to-change-the-sample-rate?p=121365&viewfull=1#post121365
|
||
|
//
|
||
|
//And, a post on how to compute the frac and div portions? I haven't checked the code presented in this post:
|
||
|
//https://forum.pjrc.com/threads/38753-Discussion-about-a-simple-way-to-change-the-sample-rate?p=188812&viewfull=1#post188812
|
||
|
//
|
||
|
//Finally, here is my own Matlab code for computing the mult and div values...(again, just for Teensy 3.x??)
|
||
|
/*
|
||
|
%choose the sample rates that you are hoping to hit
|
||
|
targ_fs_Hz = [2000, 8000, 11025, 16000, 22050, 24000, 32000, 44100, floor(44117.64706) , ...
|
||
|
48000, 88200, floor(44117.64706 * 2), (37000/256*662), 96000, 176400, floor(44117.64706 * 4), 192000];
|
||
|
F_PLL = 180e6; %choose the clock rate used for this calculation
|
||
|
PLL_div = 256;
|
||
|
all_n=[];all_d=[];
|
||
|
for Itarg=1:length(targ_fs_Hz)
|
||
|
if (0)
|
||
|
[best_d,best_n]=rat((F_PLL/PLL_div)/targ_fs_Hz(Itarg));
|
||
|
else
|
||
|
best_n = 1; best_d = 1; best_err = 1e10;
|
||
|
for n=1:255
|
||
|
d = [1:4095];
|
||
|
act_fs_Hz = F_PLL / PLL_div * n ./ d;
|
||
|
[err,I] = min(abs(act_fs_Hz - targ_fs_Hz(Itarg)));
|
||
|
if err < best_err
|
||
|
best_n = n; best_d = d(I);
|
||
|
best_err = err;
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
all_n(Itarg) = best_n;
|
||
|
all_d(Itarg) = best_d;
|
||
|
disp(['fs = ' num2str(targ_fs_Hz(Itarg)) ', n = ' num2str(best_n) ', d = ' num2str(best_d) ', true = ' num2str(F_PLL/PLL_div * best_n / best_d)])
|
||
|
end
|
||
|
*/
|
||
|
|
||
|
float AudioOutputI2S_F32::setI2SFreq_T3(const float freq_Hz) {
|
||
|
#if defined(KINETISK) //for Teensy 3.x only!
|
||
|
int freq = (int)(freq_Hz+0.5);
|
||
|
typedef struct {
|
||
|
uint8_t mult;
|
||
|
uint16_t div;
|
||
|
} __attribute__((__packed__)) tmclk;
|
||
|
|
||
|
const int numfreqs = 17;
|
||
|
const int samplefreqs[numfreqs] = { 2000, 8000, 11025, 16000, 22050, 24000, 32000, 44100, (int)44117.64706 , 48000, 88200, (int)(44117.64706 * 2), (int)(95679.69+0.5), 96000, 176400, (int)(44117.64706 * 4), 192000};
|
||
|
|
||
|
#if (F_PLL==16000000)
|
||
|
const tmclk clkArr[numfreqs] = {{4, 125}, {16, 125}, {148, 839}, {32, 125}, {145, 411}, {48, 125}, {64, 125}, {151, 214}, {12, 17}, {96, 125}, {151, 107}, {24, 17}, {124,81}, {192, 125}, {127, 45}, {48, 17}, {255, 83} };
|
||
|
#elif (F_PLL==72000000)
|
||
|
const tmclk clkArr[numfreqs] = {{832, 1125}, {32, 1125}, {49, 1250}, {64, 1125}, {49, 625}, {32, 375}, {128, 1125}, {98, 625}, {8, 51}, {64, 375}, {196, 625}, {16, 51}, {248,729}, {128, 375}, {249, 397}, {32, 51}, {185, 271} };
|
||
|
#elif (F_PLL==96000000)
|
||
|
const tmclk clkArr[numfreqs] = {{2, 375},{8, 375}, {73, 2483}, {16, 375}, {147, 2500}, {8, 125}, {32, 375}, {147, 1250}, {2, 17}, {16, 125}, {147, 625}, {4, 17}, {62,243},{32, 125}, {151, 321}, {8, 17}, {64, 125} };
|
||
|
#elif (F_PLL==120000000)
|
||
|
const tmclk clkArr[numfreqs] = {{8, 1875},{32, 1875}, {89, 3784}, {64, 1875}, {147, 3125}, {32, 625}, {128, 1875}, {205, 2179}, {8, 85}, {64, 625}, {89, 473}, {16, 85}, {119,583}, {128, 625}, {178, 473}, {32, 85}, {145, 354} };
|
||
|
#elif (F_PLL==144000000)
|
||
|
const tmclk clkArr[numfreqs] = {{4, 1125},{16, 1125}, {49, 2500}, {32, 1125}, {49, 1250}, {16, 375}, {64, 1125}, {49, 625}, {4, 51}, {32, 375}, {98, 625}, {8, 51}, {157,923}, {64, 375}, {196, 625}, {16, 51}, {128, 375} };
|
||
|
#elif (F_PLL==180000000)
|
||
|
const tmclk clkArr[numfreqs] = {{9, 3164}, {46, 4043}, {49, 3125}, {73, 3208}, {98, 3125}, {64, 1875}, {183, 4021}, {196, 3125}, {16, 255}, {128, 1875}, {107, 853}, {32, 255}, {238,1749}, {219, 1604}, {214, 853}, {64, 255}, {219, 802} };
|
||
|
#elif (F_PLL==192000000)
|
||
|
const tmclk clkArr[numfreqs] = {{1, 375}, {4, 375}, {37, 2517}, {8, 375}, {73, 2483}, {4, 125}, {16, 375}, {147, 2500}, {1, 17}, {8, 125}, {147, 1250}, {2, 17}, {31,243}, {16, 125}, {147, 625}, {4, 17}, {32, 125} };
|
||
|
#elif (F_PLL==216000000)
|
||
|
const tmclk clkArr[numfreqs] = {{8, 3375}, {32, 3375}, {49, 3750}, {64, 3375}, {49, 1875}, {32, 1125}, {128, 3375}, {98, 1875}, {8, 153}, {64, 1125}, {196, 1875}, {16, 153}, {248,2187}, {128, 1125}, {226, 1081}, {32, 153}, {147, 646} };
|
||
|
#elif (F_PLL==240000000)
|
||
|
const tmclk clkArr[numfreqs] = {{4, 1875}, {16, 1875}, {29, 2466}, {32, 1875}, {89, 3784}, {16, 625}, {64, 1875}, {147, 3125}, {4, 85}, {32, 625}, {205, 2179}, {8, 85}, {119,1166}, {64, 625}, {89, 473}, {16, 85}, {128, 625} };
|
||
|
#endif
|
||
|
|
||
|
for (int f = 0; f < numfreqs; f++) {
|
||
|
if ( freq == samplefreqs[f] ) {
|
||
|
while (I2S0_MCR & I2S_MCR_DUF) ;
|
||
|
I2S0_MDR = I2S_MDR_FRACT((clkArr[f].mult - 1)) | I2S_MDR_DIVIDE((clkArr[f].div - 1));
|
||
|
return (float)(F_PLL / 256 * clkArr[f].mult / clkArr[f].div);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
return 0.0f;
|
||
|
}
|
||
|
|
||
|
audio_block_f32_t * AudioOutputI2S_F32::block_left_1st = NULL;
|
||
|
audio_block_f32_t * AudioOutputI2S_F32::block_right_1st = NULL;
|
||
|
audio_block_f32_t * AudioOutputI2S_F32::block_left_2nd = NULL;
|
||
|
audio_block_f32_t * AudioOutputI2S_F32::block_right_2nd = NULL;
|
||
|
uint16_t AudioOutputI2S_F32::block_left_offset = 0;
|
||
|
uint16_t AudioOutputI2S_F32::block_right_offset = 0;
|
||
|
bool AudioOutputI2S_F32::update_responsibility = false;
|
||
|
DMAChannel AudioOutputI2S_F32::dma(false);
|
||
|
DMAMEM __attribute__((aligned(32))) static uint32_t i2s_tx_buffer[AUDIO_BLOCK_SAMPLES];
|
||
|
//DMAMEM static int32_t i2s_tx_buffer[2*AUDIO_BLOCK_SAMPLES]; //2 channels at 32-bits per sample. Local "audio_block_samples" should be no larger than global "AUDIO_BLOCK_SAMPLES"
|
||
|
|
||
|
float AudioOutputI2S_F32::sample_rate_Hz = AUDIO_SAMPLE_RATE;
|
||
|
int AudioOutputI2S_F32::audio_block_samples = AUDIO_BLOCK_SAMPLES;
|
||
|
|
||
|
#if defined(__IMXRT1062__)
|
||
|
#include <utility/imxrt_hw.h> //from Teensy Audio library. For set_audioClock()
|
||
|
#endif
|
||
|
|
||
|
//#for 16-bit transfers
|
||
|
#define I2S_BUFFER_TO_USE_BYTES (AudioOutputI2S_F32::audio_block_samples*sizeof(i2s_tx_buffer[0]))
|
||
|
|
||
|
//#for 32-bit transfers
|
||
|
//#define I2S_BUFFER_TO_USE_BYTES (AudioOutputI2S_F32::audio_block_samples*2*sizeof(i2s_tx_buffer[0]))
|
||
|
|
||
|
void AudioOutputI2S_F32::begin(void)
|
||
|
{
|
||
|
bool transferUsing32bit = false;
|
||
|
begin(transferUsing32bit);
|
||
|
}
|
||
|
|
||
|
void AudioOutputI2S_F32::begin(bool transferUsing32bit) {
|
||
|
|
||
|
dma.begin(true); // Allocate the DMA channel first
|
||
|
|
||
|
block_left_1st = NULL;
|
||
|
block_right_1st = NULL;
|
||
|
|
||
|
AudioOutputI2S_F32::config_i2s(transferUsing32bit, sample_rate_Hz);
|
||
|
|
||
|
#if defined(KINETISK)
|
||
|
CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0
|
||
|
|
||
|
dma.TCD->SADDR = i2s_tx_buffer;
|
||
|
dma.TCD->SOFF = 2;
|
||
|
dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
|
||
|
dma.TCD->NBYTES_MLNO = 2;
|
||
|
//dma.TCD->SLAST = -sizeof(i2s_tx_buffer);//orig from Teensy Audio Library 2020-10-31
|
||
|
dma.TCD->SLAST = -I2S_BUFFER_TO_USE_BYTES;
|
||
|
dma.TCD->DADDR = (void *)((uint32_t)&I2S0_TDR0 + 2);
|
||
|
dma.TCD->DOFF = 0;
|
||
|
//dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //orig from Teensy Audio Library 2020-10-31
|
||
|
dma.TCD->CITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2;
|
||
|
dma.TCD->DLASTSGA = 0;
|
||
|
//dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;//orig from Teensy Audio Library 2020-10-31
|
||
|
dma.TCD->BITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2;
|
||
|
dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
|
||
|
dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX);
|
||
|
dma.enable(); //newer location of this line in Teensy Audio library
|
||
|
|
||
|
I2S0_TCSR = I2S_TCSR_SR;
|
||
|
I2S0_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE;
|
||
|
|
||
|
#elif defined(__IMXRT1062__)
|
||
|
CORE_PIN7_CONFIG = 3; //1:TX_DATA0
|
||
|
|
||
|
dma.TCD->SADDR = i2s_tx_buffer;
|
||
|
dma.TCD->SOFF = 2;
|
||
|
dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
|
||
|
dma.TCD->NBYTES_MLNO = 2;
|
||
|
//dma.TCD->SLAST = -sizeof(i2s_tx_buffer);//orig from Teensy Audio Library 2020-10-31
|
||
|
dma.TCD->SLAST = -I2S_BUFFER_TO_USE_BYTES;
|
||
|
dma.TCD->DOFF = 0;
|
||
|
//dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //orig from Teensy Audio Library 2020-10-31
|
||
|
dma.TCD->CITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2;
|
||
|
dma.TCD->DLASTSGA = 0;
|
||
|
//dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;//orig from Teensy Audio Library 2020-10-31
|
||
|
dma.TCD->BITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2;
|
||
|
dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
|
||
|
dma.TCD->DADDR = (void *)((uint32_t)&I2S1_TDR0 + 2);
|
||
|
dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SAI1_TX);
|
||
|
dma.enable(); //newer location of this line in Teensy Audio library
|
||
|
|
||
|
I2S1_RCSR |= I2S_RCSR_RE | I2S_RCSR_BCE;
|
||
|
I2S1_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE;
|
||
|
#endif
|
||
|
update_responsibility = update_setup();
|
||
|
dma.attachInterrupt(AudioOutputI2S_F32::isr);
|
||
|
//dma.enable(); //original location of this line in older Tympan_Library
|
||
|
|
||
|
enabled = 1;
|
||
|
|
||
|
//AudioInputI2S_F32::begin_guts();
|
||
|
}
|
||
|
|
||
|
void AudioOutputI2S_F32::isr(void)
|
||
|
{
|
||
|
#if defined(KINETISK) || defined(__IMXRT1062__)
|
||
|
int16_t *dest;
|
||
|
audio_block_f32_t *blockL, *blockR;
|
||
|
uint32_t saddr, offsetL, offsetR;
|
||
|
|
||
|
saddr = (uint32_t)(dma.TCD->SADDR);
|
||
|
dma.clearInterrupt();
|
||
|
//if (saddr < (uint32_t)i2s_tx_buffer + sizeof(i2s_tx_buffer) / 2) { //original 16-bit
|
||
|
if (saddr < (uint32_t)i2s_tx_buffer + I2S_BUFFER_TO_USE_BYTES / 2) { //are we transmitting the first half or second half of the buffer?
|
||
|
// DMA is transmitting the first half of the buffer
|
||
|
// so we must fill the second half
|
||
|
//dest = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2]; //original Teensy Audio
|
||
|
dest = (int16_t *)&i2s_tx_buffer[audio_block_samples/2]; //this will be diff if we were to do 32-bit samples
|
||
|
if (AudioOutputI2S_F32::update_responsibility) AudioStream_F32::update_all();
|
||
|
} else {
|
||
|
// DMA is transmitting the second half of the buffer
|
||
|
// so we must fill the first half
|
||
|
dest = (int16_t *)i2s_tx_buffer;
|
||
|
}
|
||
|
|
||
|
blockL = AudioOutputI2S_F32::block_left_1st;
|
||
|
blockR = AudioOutputI2S_F32::block_right_1st;
|
||
|
offsetL = AudioOutputI2S_F32::block_left_offset;
|
||
|
offsetR = AudioOutputI2S_F32::block_right_offset;
|
||
|
|
||
|
int16_t *d = dest;
|
||
|
if (blockL && blockR) {
|
||
|
//memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR);
|
||
|
//memcpy_tointerleaveLRwLen(dest, blockL->data + offsetL, blockR->data + offsetR, audio_block_samples/2);
|
||
|
float32_t *pL = blockL->data + offsetL;
|
||
|
float32_t *pR = blockR->data + offsetR;
|
||
|
for (int i=0; i < audio_block_samples/2; i++) {
|
||
|
*d++ = (int16_t) *pL++;
|
||
|
*d++ = (int16_t) *pR++; //interleave
|
||
|
//*d++ = 0;
|
||
|
//*d++ = 0;
|
||
|
}
|
||
|
offsetL += audio_block_samples / 2;
|
||
|
offsetR += audio_block_samples / 2;
|
||
|
} else if (blockL) {
|
||
|
//memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR);
|
||
|
float32_t *pL = blockL->data + offsetL;
|
||
|
for (int i=0; i < audio_block_samples / 2 * 2; i+=2) { *(d+i) = (int16_t) *pL++; } //interleave
|
||
|
offsetL += audio_block_samples / 2;
|
||
|
} else if (blockR) {
|
||
|
float32_t *pR = blockR->data + offsetR;
|
||
|
for (int i=0; i < audio_block_samples /2 * 2; i+=2) { *(d+i) = (int16_t) *pR++; } //interleave
|
||
|
offsetR += audio_block_samples / 2;
|
||
|
} else {
|
||
|
//memset(dest,0,AUDIO_BLOCK_SAMPLES * 2);
|
||
|
memset(dest,0,audio_block_samples * 2);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
arm_dcache_flush_delete(dest, sizeof(i2s_tx_buffer) / 2 );
|
||
|
|
||
|
//if (offsetL < AUDIO_BLOCK_SAMPLES) { //orig Teensy Audio
|
||
|
if (offsetL < (uint16_t)audio_block_samples) {
|
||
|
AudioOutputI2S_F32::block_left_offset = offsetL;
|
||
|
} else {
|
||
|
AudioOutputI2S_F32::block_left_offset = 0;
|
||
|
AudioStream_F32::release(blockL);
|
||
|
AudioOutputI2S_F32::block_left_1st = AudioOutputI2S_F32::block_left_2nd;
|
||
|
AudioOutputI2S_F32::block_left_2nd = NULL;
|
||
|
}
|
||
|
//if (offsetR < AUDIO_BLOCK_SAMPLES) { //orig Teensy Audio
|
||
|
if (offsetR < (uint16_t)audio_block_samples) {
|
||
|
AudioOutputI2S_F32::block_right_offset = offsetR;
|
||
|
} else {
|
||
|
AudioOutputI2S_F32::block_right_offset = 0;
|
||
|
AudioStream_F32::release(blockR);
|
||
|
AudioOutputI2S_F32::block_right_1st = AudioOutputI2S_F32::block_right_2nd;
|
||
|
AudioOutputI2S_F32::block_right_2nd = NULL;
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* void AudioOutputI2S_F32::begin(bool transferUsing32bit) {
|
||
|
dma.begin(true); // Allocate the DMA channel first
|
||
|
block_left_1st = NULL;
|
||
|
block_right_1st = NULL;
|
||
|
// TODO: should we set & clear the I2S_TCSR_SR bit here?
|
||
|
config_i2s(transferUsing32bit);
|
||
|
CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0
|
||
|
//setup DMA parameters
|
||
|
//if (transferUsing32bit) {
|
||
|
sub_begin_i32();
|
||
|
//} else {
|
||
|
// sub_begin_i16();
|
||
|
//}
|
||
|
|
||
|
dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX);
|
||
|
update_responsibility = update_setup();
|
||
|
dma.enable();
|
||
|
I2S0_TCSR = I2S_TCSR_SR;
|
||
|
I2S0_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE;
|
||
|
dma.attachInterrupt(isr_32);
|
||
|
|
||
|
// change the I2S frequencies to make the requested sample rate
|
||
|
setI2SFreq(AudioOutputI2S_F32::sample_rate_Hz);
|
||
|
|
||
|
enabled = 1;
|
||
|
|
||
|
//AudioInputI2S_F32::begin_guts();
|
||
|
} */
|
||
|
|
||
|
/* void AudioOutputI2S_F32::sub_begin_i16(void) {
|
||
|
dma.TCD->SADDR = i2s_tx_buffer;
|
||
|
dma.TCD->SOFF = 2;
|
||
|
dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
|
||
|
dma.TCD->NBYTES_MLNO = 2;
|
||
|
//dma.TCD->SLAST = -sizeof(i2s_tx_buffer); //original
|
||
|
dma.TCD->SLAST = -I2S_BUFFER_TO_USE_BYTES;
|
||
|
dma.TCD->DADDR = &I2S0_TDR0;
|
||
|
dma.TCD->DOFF = 0;
|
||
|
//dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //original
|
||
|
dma.TCD->CITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2;
|
||
|
dma.TCD->DLASTSGA = 0;
|
||
|
//dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //original
|
||
|
dma.TCD->BITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2;
|
||
|
dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
|
||
|
}
|
||
|
void AudioOutputI2S_F32::sub_begin_i32(void) {
|
||
|
dma.TCD->SADDR = i2s_tx_buffer; //here's where to get the data from
|
||
|
|
||
|
//let's assume that we'll transfer each sample (left or right) independently. So 4-byte (32bit) transfers.
|
||
|
dma.TCD->SOFF = 4; //step forward pointer for source data by 4 bytes (ie, 32 bits) after each read
|
||
|
dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(DMA_TCD_ATTR_SIZE_32BIT) | DMA_TCD_ATTR_DSIZE(DMA_TCD_ATTR_SIZE_32BIT); //each read is 32 bits
|
||
|
dma.TCD->NBYTES_MLNO = 4; //how many bytes to send per minor loop. Do each sample (left or right) independently. So, 4 bytes? Should be 4 or 8?
|
||
|
|
||
|
//dma.TCD->SLAST = -sizeof(i2s_tx_buffer); //original
|
||
|
dma.TCD->SLAST = -I2S_BUFFER_TO_USE_BYTES; //jump back to beginning of source data when hit the end
|
||
|
dma.TCD->DADDR = &I2S0_TDR0; //destination of DMA transfers
|
||
|
dma.TCD->DOFF = 0; //do not increment the destination pointer
|
||
|
//dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //original
|
||
|
dma.TCD->CITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 4; //number of minor loops in a major loop. I2S_BUFFER_TO_USE_BYTES/NBYTES_MLNO? Should be 4 or 8?
|
||
|
dma.TCD->DLASTSGA = 0;
|
||
|
//dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //original
|
||
|
dma.TCD->BITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 4; //number of minor loops in a major loop. I2S_BUFFER_TO_USE_BYTES/NBYTES_MLNO? should be 4 or 8?
|
||
|
dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
/* void AudioOutputI2S_F32::isr_16(void)
|
||
|
{
|
||
|
#if defined(KINETISK)
|
||
|
int16_t *dest;
|
||
|
audio_block_t *blockL, *blockR;
|
||
|
uint32_t saddr, offsetL, offsetR;
|
||
|
saddr = (uint32_t)(dma.TCD->SADDR);
|
||
|
dma.clearInterrupt();
|
||
|
//if (saddr < (uint32_t)i2s_tx_buffer + sizeof(i2s_tx_buffer) / 2) { //original
|
||
|
if (saddr < (uint32_t)i2s_tx_buffer + I2S_BUFFER_TO_USE_BYTES / 2) {
|
||
|
// DMA is transmitting the first half of the buffer
|
||
|
// so we must fill the second half
|
||
|
//dest = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2]; //original
|
||
|
dest = (int16_t *)&i2s_tx_buffer[audio_block_samples/2];
|
||
|
if (AudioOutputI2S_F32::update_responsibility) AudioStream_F32::update_all();
|
||
|
} else {
|
||
|
// DMA is transmitting the second half of the buffer
|
||
|
// so we must fill the first half
|
||
|
dest = (int16_t *)i2s_tx_buffer;
|
||
|
}
|
||
|
blockL = AudioOutputI2S_F32::block_left_1st;
|
||
|
blockR = AudioOutputI2S_F32::block_right_1st;
|
||
|
offsetL = AudioOutputI2S_F32::block_left_offset;
|
||
|
offsetR = AudioOutputI2S_F32::block_right_offset;
|
||
|
|
||
|
int16_t *d = dest;
|
||
|
if (blockL && blockR) {
|
||
|
//memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR);
|
||
|
//memcpy_tointerleaveLRwLen(dest, blockL->data + offsetL, blockR->data + offsetR, audio_block_samples/2);
|
||
|
int16_t *pL = blockL->data + offsetL;
|
||
|
int16_t *pR = blockR->data + offsetR;
|
||
|
for (int i=0; i < audio_block_samples/2; i++) { *d++ = *pL++; *d++ = *pR++; } //interleave
|
||
|
offsetL += audio_block_samples / 2;
|
||
|
offsetR += audio_block_samples / 2;
|
||
|
} else if (blockL) {
|
||
|
//memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR);
|
||
|
int16_t *pL = blockL->data + offsetL;
|
||
|
for (int i=0; i < audio_block_samples / 2 * 2; i+=2) { *(d+i) = *pL++; } //interleave
|
||
|
offsetL += audio_block_samples / 2;
|
||
|
} else if (blockR) {
|
||
|
int16_t *pR = blockR->data + offsetR;
|
||
|
for (int i=0; i < audio_block_samples /2 * 2; i+=2) { *(d+i) = *pR++; } //interleave
|
||
|
offsetR += audio_block_samples / 2;
|
||
|
} else {
|
||
|
//memset(dest,0,AUDIO_BLOCK_SAMPLES * 2);
|
||
|
memset(dest,0,audio_block_samples * 2);
|
||
|
return;
|
||
|
}
|
||
|
//if (offsetL < AUDIO_BLOCK_SAMPLES) { //original
|
||
|
if (offsetL < (uint16_t)audio_block_samples) {
|
||
|
AudioOutputI2S_F32::block_left_offset = offsetL;
|
||
|
} else {
|
||
|
AudioOutputI2S_F32::block_left_offset = 0;
|
||
|
AudioStream::release(blockL);
|
||
|
AudioOutputI2S_F32::block_left_1st = AudioOutputI2S_F32::block_left_2nd;
|
||
|
AudioOutputI2S_F32::block_left_2nd = NULL;
|
||
|
}
|
||
|
//if (offsetR < AUDIO_BLOCK_SAMPLES) {
|
||
|
if (offsetR < (uint16_t)audio_block_samples) {
|
||
|
AudioOutputI2S_F32::block_right_offset = offsetR;
|
||
|
} else {
|
||
|
AudioOutputI2S_F32::block_right_offset = 0;
|
||
|
AudioStream::release(blockR);
|
||
|
AudioOutputI2S_F32::block_right_1st = AudioOutputI2S_F32::block_right_2nd;
|
||
|
AudioOutputI2S_F32::block_right_2nd = NULL;
|
||
|
}
|
||
|
#else
|
||
|
const int16_t *src, *end;
|
||
|
int16_t *dest;
|
||
|
audio_block_t *block;
|
||
|
uint32_t saddr, offset;
|
||
|
saddr = (uint32_t)(dma.CFG->SAR);
|
||
|
dma.clearInterrupt();
|
||
|
if (saddr < (uint32_t)i2s_tx_buffer + sizeof(i2s_tx_buffer) / 2) {
|
||
|
// DMA is transmitting the first half of the buffer
|
||
|
// so we must fill the second half
|
||
|
dest = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2];
|
||
|
end = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES];
|
||
|
if (AudioOutputI2S_F32::update_responsibility) AudioStream_F32::update_all();
|
||
|
} else {
|
||
|
// DMA is transmitting the second half of the buffer
|
||
|
// so we must fill the first half
|
||
|
dest = (int16_t *)i2s_tx_buffer;
|
||
|
end = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2];
|
||
|
}
|
||
|
block = AudioOutputI2S_F32::block_left_1st;
|
||
|
if (block) {
|
||
|
offset = AudioOutputI2S_F32::block_left_offset;
|
||
|
src = &block->data[offset];
|
||
|
do {
|
||
|
*dest = *src++;
|
||
|
dest += 2;
|
||
|
} while (dest < end);
|
||
|
offset += AUDIO_BLOCK_SAMPLES/2;
|
||
|
if (offset < AUDIO_BLOCK_SAMPLES) {
|
||
|
AudioOutputI2S_F32::block_left_offset = offset;
|
||
|
} else {
|
||
|
AudioOutputI2S_F32::block_left_offset = 0;
|
||
|
AudioStream::release(block);
|
||
|
AudioOutputI2S_F32::block_left_1st = AudioOutputI2S_F32::block_left_2nd;
|
||
|
AudioOutputI2S_F32::block_left_2nd = NULL;
|
||
|
}
|
||
|
} else {
|
||
|
do {
|
||
|
*dest = 0;
|
||
|
dest += 2;
|
||
|
} while (dest < end);
|
||
|
}
|
||
|
dest -= AUDIO_BLOCK_SAMPLES - 1;
|
||
|
block = AudioOutputI2S_F32::block_right_1st;
|
||
|
if (block) {
|
||
|
offset = AudioOutputI2S_F32::block_right_offset;
|
||
|
src = &block->data[offset];
|
||
|
do {
|
||
|
*dest = *src++;
|
||
|
dest += 2;
|
||
|
} while (dest < end);
|
||
|
offset += AUDIO_BLOCK_SAMPLES/2;
|
||
|
if (offset < AUDIO_BLOCK_SAMPLES) {
|
||
|
AudioOutputI2S_F32::block_right_offset = offset;
|
||
|
} else {
|
||
|
AudioOutputI2S_F32::block_right_offset = 0;
|
||
|
AudioStream::release(block);
|
||
|
AudioOutputI2S_F32::block_right_1st = AudioOutputI2S_F32::block_right_2nd;
|
||
|
AudioOutputI2S_F32::block_right_2nd = NULL;
|
||
|
}
|
||
|
} else {
|
||
|
do {
|
||
|
*dest = 0;
|
||
|
dest += 2;
|
||
|
} while (dest < end);
|
||
|
}
|
||
|
#endif
|
||
|
} */
|
||
|
|
||
|
/* void AudioOutputI2S_F32::isr_32(void) //should be called every half of an audio block
|
||
|
{
|
||
|
int32_t *dest; //int32 is the data type being sent to the audio codec
|
||
|
audio_block_f32_t *blockL, *blockR;
|
||
|
uint32_t saddr;
|
||
|
uint32_t offsetL, offsetR;
|
||
|
|
||
|
saddr = (uint32_t)(dma.TCD->SADDR);
|
||
|
dma.clearInterrupt();
|
||
|
//if (saddr < (uint32_t)i2s_tx_buffer + sizeof(i2s_tx_buffer) / 2) { //original 16-bit
|
||
|
if (saddr < (uint32_t)i2s_tx_buffer + I2S_BUFFER_TO_USE_BYTES / 2) { //are we transmitting the first half or second half of the buffer?
|
||
|
// DMA is transmitting the first half of the buffer
|
||
|
// so we must fill the second half
|
||
|
//dest = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2]; //original, half-way through buffer (buffer is 32-bit elements filled with 16-bit stereo samples)
|
||
|
dest = (int32_t *)&i2s_tx_buffer[2*(audio_block_samples/2)]; //half-way through the buffer..remember, buffer is 32-bit elements filled with 32-bit stereo samples)
|
||
|
if (AudioOutputI2S_F32::update_responsibility) AudioStream_F32::update_all();
|
||
|
} else {
|
||
|
// DMA is transmitting the second half of the buffer so we must fill the first half
|
||
|
dest = (int32_t *)i2s_tx_buffer; //beginning of the buffer
|
||
|
}
|
||
|
blockL = AudioOutputI2S_F32::block_left_1st;
|
||
|
blockR = AudioOutputI2S_F32::block_right_1st;
|
||
|
offsetL = AudioOutputI2S_F32::block_left_offset;
|
||
|
offsetR = AudioOutputI2S_F32::block_right_offset;
|
||
|
|
||
|
int32_t *d = dest;
|
||
|
if (blockL && blockR) {
|
||
|
//memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR);
|
||
|
//memcpy_tointerleaveLRwLen(dest, blockL->data + offsetL, blockR->data + offsetR, audio_block_samples/2);
|
||
|
float32_t *pL = blockL->data + offsetL;
|
||
|
float32_t *pR = blockR->data + offsetR;
|
||
|
for (int i=0; i < audio_block_samples/2; i++) { //loop over half of the audio block (this routine gets called every half an audio block)
|
||
|
*d++ = (int32_t) (*pL++);
|
||
|
*d++ = (int32_t) (*pR++); //cast and interleave
|
||
|
}
|
||
|
offsetL += (audio_block_samples / 2);
|
||
|
offsetR += (audio_block_samples / 2);
|
||
|
} else if (blockL) {
|
||
|
//memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR);
|
||
|
float32_t *pL = blockL->data + offsetL;
|
||
|
for (int i=0; i < audio_block_samples /2; i++) {
|
||
|
*d++ = (int32_t) *pL++; //cast and interleave
|
||
|
*d++ = 0;
|
||
|
}
|
||
|
offsetL += (audio_block_samples / 2);
|
||
|
} else if (blockR) {
|
||
|
float32_t *pR = blockR->data + offsetR;
|
||
|
for (int i=0; i < audio_block_samples /2; i++) {
|
||
|
*d++ = 0;
|
||
|
*d++ = (int32_t) *pR++; //cast and interleave
|
||
|
}
|
||
|
offsetR += (audio_block_samples / 2);
|
||
|
} else {
|
||
|
//memset(dest,0,AUDIO_BLOCK_SAMPLES * 2); //half buffer (AUDIO_BLOCK_SAMPLES/2), 16-bits per sample (AUDIO_BLOCK_SAMPLES/2*2), stereo (AUDIO_BLOCK_SAMPLES/2*2*2)
|
||
|
//memset(dest,0,audio_block_samples * 2 * 4 / 2);//half buffer (AUDIO_BLOCK_SAMPLES/2), 32-bits per sample (AUDIO_BLOCK_SAMPLES/2*4), stereo (AUDIO_BLOCK_SAMPLES/2*4*2)
|
||
|
for (int i=0; i < audio_block_samples/2; i++) { //loop over half of the audio block (this routine gets called every half an audio block)
|
||
|
*d++ = (int32_t) 0;
|
||
|
*d++ = (int32_t) 0;
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
//if (offsetL < AUDIO_BLOCK_SAMPLES) { //original
|
||
|
if (offsetL < (uint16_t)audio_block_samples) {
|
||
|
AudioOutputI2S_F32::block_left_offset = offsetL;
|
||
|
} else {
|
||
|
AudioOutputI2S_F32::block_left_offset = 0;
|
||
|
AudioStream_F32::release(blockL);
|
||
|
AudioOutputI2S_F32::block_left_1st = AudioOutputI2S_F32::block_left_2nd;
|
||
|
AudioOutputI2S_F32::block_left_2nd = NULL;
|
||
|
}
|
||
|
//if (offsetR < AUDIO_BLOCK_SAMPLES) {
|
||
|
if (offsetR < (uint16_t)audio_block_samples) {
|
||
|
AudioOutputI2S_F32::block_right_offset = offsetR;
|
||
|
} else {
|
||
|
AudioOutputI2S_F32::block_right_offset = 0;
|
||
|
AudioStream_F32::release(blockR);
|
||
|
AudioOutputI2S_F32::block_right_1st = AudioOutputI2S_F32::block_right_2nd;
|
||
|
AudioOutputI2S_F32::block_right_2nd = NULL;
|
||
|
}
|
||
|
}
|
||
|
*/
|
||
|
#define F32_TO_I16_NORM_FACTOR (32767) //which is 2^15-1
|
||
|
void AudioOutputI2S_F32::scale_f32_to_i16(float32_t *p_f32, float32_t *p_i16, int len) {
|
||
|
for (int i=0; i<len; i++) { *p_i16++ = max(-F32_TO_I16_NORM_FACTOR,min(F32_TO_I16_NORM_FACTOR,(*p_f32++) * F32_TO_I16_NORM_FACTOR)); }
|
||
|
}
|
||
|
#define F32_TO_I24_NORM_FACTOR (8388607) //which is 2^23-1
|
||
|
void AudioOutputI2S_F32::scale_f32_to_i24( float32_t *p_f32, float32_t *p_i24, int len) {
|
||
|
for (int i=0; i<len; i++) { *p_i24++ = max(-F32_TO_I24_NORM_FACTOR,min(F32_TO_I24_NORM_FACTOR,(*p_f32++) * F32_TO_I24_NORM_FACTOR)); }
|
||
|
}
|
||
|
#define F32_TO_I32_NORM_FACTOR (2147483647) //which is 2^31-1
|
||
|
//define F32_TO_I32_NORM_FACTOR (8388607) //which is 2^23-1
|
||
|
void AudioOutputI2S_F32::scale_f32_to_i32( float32_t *p_f32, float32_t *p_i32, int len) {
|
||
|
for (int i=0; i<len; i++) { *p_i32++ = max(-F32_TO_I32_NORM_FACTOR,min(F32_TO_I32_NORM_FACTOR,(*p_f32++) * F32_TO_I32_NORM_FACTOR)); }
|
||
|
//for (int i=0; i<len; i++) { *p_i32++ = (*p_f32++) * F32_TO_I32_NORM_FACTOR + 512.f*8388607.f; }
|
||
|
}
|
||
|
|
||
|
//update has to be carefully coded so that, if audio_blocks are not available, the code exits
|
||
|
//gracefully and won't hang. That'll cause the whole system to hang, which would be very bad.
|
||
|
//static int count = 0;
|
||
|
void AudioOutputI2S_F32::update(void)
|
||
|
{
|
||
|
// null audio device: discard all incoming data
|
||
|
//if (!active) return;
|
||
|
//audio_block_t *block = receiveReadOnly();
|
||
|
//if (block) release(block);
|
||
|
|
||
|
audio_block_f32_t *block_f32;
|
||
|
audio_block_f32_t *block_f32_scaled = AudioStream_F32::allocate_f32();
|
||
|
audio_block_f32_t *block2_f32_scaled = AudioStream_F32::allocate_f32();
|
||
|
if ((!block_f32_scaled) || (!block2_f32_scaled)) {
|
||
|
//couldn't get some working memory. Return.
|
||
|
if (block_f32_scaled) AudioStream_F32::release(block_f32_scaled);
|
||
|
if (block2_f32_scaled) AudioStream_F32::release(block2_f32_scaled);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
//now that we have our working memory, proceed with getting the audio data and processing
|
||
|
block_f32 = receiveReadOnly_f32(0); // input 0 = left channel
|
||
|
if (block_f32) {
|
||
|
if (block_f32->length != audio_block_samples) {
|
||
|
Serial.print("AudioOutputI2S_F32: *** WARNING ***: audio_block says len = ");
|
||
|
Serial.print(block_f32->length);
|
||
|
Serial.print(", but I2S settings want it to be = ");
|
||
|
Serial.println(audio_block_samples);
|
||
|
}
|
||
|
//Serial.print("AudioOutputI2S_F32: audio_block_samples = ");
|
||
|
//Serial.println(audio_block_samples);
|
||
|
|
||
|
//scale F32 to Int32
|
||
|
//block_f32_scaled = AudioStream_F32::allocate_f32();
|
||
|
//scale_f32_to_i32(block_f32->data, block_f32_scaled->data, audio_block_samples);
|
||
|
scale_f32_to_i16(block_f32->data, block_f32_scaled->data, audio_block_samples);
|
||
|
|
||
|
//count++;
|
||
|
//if (count > 100) {
|
||
|
// Serial.print("AudioOutputI2S_F32::update() orig, scaled = ");
|
||
|
// Serial.print(block_f32->data[30]);
|
||
|
// Serial.print(", ");
|
||
|
// Serial.println(block_f32_scaled->data[30]);
|
||
|
// count=0;
|
||
|
//}
|
||
|
|
||
|
//now process the data blocks
|
||
|
__disable_irq();
|
||
|
if (block_left_1st == NULL) {
|
||
|
block_left_1st = block_f32_scaled;
|
||
|
block_left_offset = 0;
|
||
|
__enable_irq();
|
||
|
} else if (block_left_2nd == NULL) {
|
||
|
block_left_2nd = block_f32_scaled;
|
||
|
__enable_irq();
|
||
|
} else {
|
||
|
audio_block_f32_t *tmp = block_left_1st;
|
||
|
block_left_1st = block_left_2nd;
|
||
|
block_left_2nd = block_f32_scaled;
|
||
|
block_left_offset = 0;
|
||
|
__enable_irq();
|
||
|
AudioStream_F32::release(tmp);
|
||
|
}
|
||
|
AudioStream_F32::transmit(block_f32,0); AudioStream_F32::release(block_f32); //echo the incoming audio out the outputs
|
||
|
} else {
|
||
|
//this branch should never get called, but if it does, let's release the buffer that was never used
|
||
|
AudioStream_F32::release(block_f32_scaled);
|
||
|
}
|
||
|
|
||
|
block_f32_scaled = block2_f32_scaled; //this is simply renaming the pre-allocated buffer
|
||
|
block_f32 = receiveReadOnly_f32(1); // input 1 = right channel
|
||
|
if (block_f32) {
|
||
|
//scale F32 to Int32
|
||
|
//block_f32_scaled = AudioStream_F32::allocate_f32();
|
||
|
//scale_f32_to_i32(block_f32->data, block_f32_scaled->data, audio_block_samples);
|
||
|
scale_f32_to_i16(block_f32->data, block_f32_scaled->data, audio_block_samples);
|
||
|
|
||
|
__disable_irq();
|
||
|
if (block_right_1st == NULL) {
|
||
|
block_right_1st = block_f32_scaled;
|
||
|
block_right_offset = 0;
|
||
|
__enable_irq();
|
||
|
} else if (block_right_2nd == NULL) {
|
||
|
block_right_2nd = block_f32_scaled;
|
||
|
__enable_irq();
|
||
|
} else {
|
||
|
audio_block_f32_t *tmp = block_right_1st;
|
||
|
block_right_1st = block_right_2nd;
|
||
|
block_right_2nd = block_f32_scaled;
|
||
|
block_right_offset = 0;
|
||
|
__enable_irq();
|
||
|
AudioStream_F32::release(tmp);
|
||
|
}
|
||
|
AudioStream_F32::transmit(block_f32,1); AudioStream_F32::release(block_f32); //echo the incoming audio out the outputs
|
||
|
} else {
|
||
|
//this branch should never get called, but if it does, let's release the buffer that was never used
|
||
|
AudioStream_F32::release(block_f32_scaled);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if defined(KINETISK) || defined(KINETISL)
|
||
|
// MCLK needs to be 48e6 / 1088 * 256 = 11.29411765 MHz -> 44.117647 kHz sample rate
|
||
|
//
|
||
|
#if F_CPU == 96000000 || F_CPU == 48000000 || F_CPU == 24000000
|
||
|
// PLL is at 96 MHz in these modes
|
||
|
#define MCLK_MULT 2
|
||
|
#define MCLK_DIV 17
|
||
|
#elif F_CPU == 72000000
|
||
|
#define MCLK_MULT 8
|
||
|
#define MCLK_DIV 51
|
||
|
#elif F_CPU == 120000000
|
||
|
#define MCLK_MULT 8
|
||
|
#define MCLK_DIV 85
|
||
|
#elif F_CPU == 144000000
|
||
|
#define MCLK_MULT 4
|
||
|
#define MCLK_DIV 51
|
||
|
#elif F_CPU == 168000000
|
||
|
#define MCLK_MULT 8
|
||
|
#define MCLK_DIV 119
|
||
|
#elif F_CPU == 180000000
|
||
|
#define MCLK_MULT 16
|
||
|
#define MCLK_DIV 255
|
||
|
#define MCLK_SRC 0
|
||
|
#elif F_CPU == 192000000
|
||
|
#define MCLK_MULT 1
|
||
|
#define MCLK_DIV 17
|
||
|
#elif F_CPU == 216000000
|
||
|
#define MCLK_MULT 12
|
||
|
#define MCLK_DIV 17
|
||
|
#define MCLK_SRC 1
|
||
|
#elif F_CPU == 240000000
|
||
|
#define MCLK_MULT 2
|
||
|
#define MCLK_DIV 85
|
||
|
#define MCLK_SRC 0
|
||
|
#elif F_CPU == 16000000
|
||
|
#define MCLK_MULT 12
|
||
|
#define MCLK_DIV 17
|
||
|
#else
|
||
|
#error "This CPU Clock Speed is not supported by the Audio library";
|
||
|
#endif
|
||
|
|
||
|
#ifndef MCLK_SRC
|
||
|
#if F_CPU >= 20000000
|
||
|
#define MCLK_SRC 3 // the PLL
|
||
|
#else
|
||
|
#define MCLK_SRC 0 // system clock
|
||
|
#endif
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
void AudioOutputI2S_F32::config_i2s(void) { config_i2s(false, AudioOutputI2S_F32::sample_rate_Hz); }
|
||
|
void AudioOutputI2S_F32::config_i2s(bool transferUsing32bit) { config_i2s(transferUsing32bit, AudioOutputI2S_F32::sample_rate_Hz); }
|
||
|
void AudioOutputI2S_F32::config_i2s(float fs_Hz) { config_i2s(false, fs_Hz); }
|
||
|
|
||
|
void AudioOutputI2S_F32::config_i2s(bool transferUsing32bit, float fs_Hz)
|
||
|
{
|
||
|
#if defined(KINETISK) || defined(KINETISL)
|
||
|
SIM_SCGC6 |= SIM_SCGC6_I2S;
|
||
|
SIM_SCGC7 |= SIM_SCGC7_DMA;
|
||
|
SIM_SCGC6 |= SIM_SCGC6_DMAMUX;
|
||
|
|
||
|
// if either transmitter or receiver is enabled, do nothing
|
||
|
if (I2S0_TCSR & I2S_TCSR_TE) return;
|
||
|
if (I2S0_RCSR & I2S_RCSR_RE) return;
|
||
|
|
||
|
// enable MCLK output
|
||
|
I2S0_MCR = I2S_MCR_MICS(MCLK_SRC) | I2S_MCR_MOE;
|
||
|
while (I2S0_MCR & I2S_MCR_DUF) ;
|
||
|
I2S0_MDR = I2S_MDR_FRACT((MCLK_MULT-1)) | I2S_MDR_DIVIDE((MCLK_DIV-1));
|
||
|
|
||
|
// configure transmitter
|
||
|
I2S0_TMR = 0;
|
||
|
I2S0_TCR1 = I2S_TCR1_TFW(1); // watermark at half fifo size
|
||
|
I2S0_TCR2 = I2S_TCR2_SYNC(0) | I2S_TCR2_BCP | I2S_TCR2_MSEL(1)
|
||
|
| I2S_TCR2_BCD | I2S_TCR2_DIV(1);
|
||
|
I2S0_TCR3 = I2S_TCR3_TCE;
|
||
|
I2S0_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(31) | I2S_TCR4_MF
|
||
|
| I2S_TCR4_FSE | I2S_TCR4_FSP | I2S_TCR4_FSD;
|
||
|
I2S0_TCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31);
|
||
|
|
||
|
// configure receiver (sync'd to transmitter clocks)
|
||
|
I2S0_RMR = 0;
|
||
|
I2S0_RCR1 = I2S_RCR1_RFW(1);
|
||
|
I2S0_RCR2 = I2S_RCR2_SYNC(1) | I2S_TCR2_BCP | I2S_RCR2_MSEL(1)
|
||
|
| I2S_RCR2_BCD | I2S_RCR2_DIV(1);
|
||
|
I2S0_RCR3 = I2S_RCR3_RCE;
|
||
|
I2S0_RCR4 = I2S_RCR4_FRSZ(1) | I2S_RCR4_SYWD(31) | I2S_RCR4_MF
|
||
|
| I2S_RCR4_FSE | I2S_RCR4_FSP | I2S_RCR4_FSD;
|
||
|
I2S0_RCR5 = I2S_RCR5_WNW(31) | I2S_RCR5_W0W(31) | I2S_RCR5_FBT(31);
|
||
|
|
||
|
// configure pin mux for 3 clock signals
|
||
|
CORE_PIN23_CONFIG = PORT_PCR_MUX(6); // pin 23, PTC2, I2S0_TX_FS (LRCLK)
|
||
|
CORE_PIN9_CONFIG = PORT_PCR_MUX(6); // pin 9, PTC3, I2S0_TX_BCLK
|
||
|
CORE_PIN11_CONFIG = PORT_PCR_MUX(6); // pin 11, PTC6, I2S0_MCLK
|
||
|
|
||
|
// change the I2S frequencies to make the requested sample rate
|
||
|
setI2SFreq_T3(fs_Hz); //for T3.x only!
|
||
|
|
||
|
#elif defined(__IMXRT1062__)
|
||
|
CCM_CCGR5 |= CCM_CCGR5_SAI1(CCM_CCGR_ON);
|
||
|
|
||
|
// if either transmitter or receiver is enabled, do nothing
|
||
|
if (I2S1_TCSR & I2S_TCSR_TE) return;
|
||
|
if (I2S1_RCSR & I2S_RCSR_RE) return;
|
||
|
//PLL:
|
||
|
//int fs = AUDIO_SAMPLE_RATE_EXACT; //original from Teensy Audio Library
|
||
|
int fs = fs_Hz;
|
||
|
|
||
|
// PLL between 27*24 = 648MHz und 54*24=1296MHz
|
||
|
int n1 = 4; //SAI prescaler 4 => (n1*n2) = multiple of 4
|
||
|
int n2 = 1 + (24000000 * 27) / (fs * 256 * n1);
|
||
|
|
||
|
double C = ((double)fs * 256 * n1 * n2) / 24000000;
|
||
|
int c0 = C;
|
||
|
int c2 = 10000;
|
||
|
int c1 = C * c2 - (c0 * c2);
|
||
|
set_audioClock(c0, c1, c2);
|
||
|
|
||
|
// clear SAI1_CLK register locations
|
||
|
CCM_CSCMR1 = (CCM_CSCMR1 & ~(CCM_CSCMR1_SAI1_CLK_SEL_MASK))
|
||
|
| CCM_CSCMR1_SAI1_CLK_SEL(2); // &0x03 // (0,1,2): PLL3PFD0, PLL5, PLL4
|
||
|
CCM_CS1CDR = (CCM_CS1CDR & ~(CCM_CS1CDR_SAI1_CLK_PRED_MASK | CCM_CS1CDR_SAI1_CLK_PODF_MASK))
|
||
|
| CCM_CS1CDR_SAI1_CLK_PRED(n1-1) // &0x07
|
||
|
| CCM_CS1CDR_SAI1_CLK_PODF(n2-1); // &0x3f
|
||
|
|
||
|
// Select MCLK
|
||
|
IOMUXC_GPR_GPR1 = (IOMUXC_GPR_GPR1
|
||
|
& ~(IOMUXC_GPR_GPR1_SAI1_MCLK1_SEL_MASK))
|
||
|
| (IOMUXC_GPR_GPR1_SAI1_MCLK_DIR | IOMUXC_GPR_GPR1_SAI1_MCLK1_SEL(0));
|
||
|
|
||
|
CORE_PIN23_CONFIG = 3; //1:MCLK
|
||
|
CORE_PIN21_CONFIG = 3; //1:RX_BCLK
|
||
|
CORE_PIN20_CONFIG = 3; //1:RX_SYNC
|
||
|
|
||
|
int rsync = 0;
|
||
|
int tsync = 1;
|
||
|
|
||
|
I2S1_TMR = 0;
|
||
|
//I2S1_TCSR = (1<<25); //Reset
|
||
|
I2S1_TCR1 = I2S_TCR1_RFW(1);
|
||
|
I2S1_TCR2 = I2S_TCR2_SYNC(tsync) | I2S_TCR2_BCP // sync=0; tx is async;
|
||
|
| (I2S_TCR2_BCD | I2S_TCR2_DIV((1)) | I2S_TCR2_MSEL(1));
|
||
|
I2S1_TCR3 = I2S_TCR3_TCE;
|
||
|
I2S1_TCR4 = I2S_TCR4_FRSZ((2-1)) | I2S_TCR4_SYWD((32-1)) | I2S_TCR4_MF
|
||
|
| I2S_TCR4_FSD | I2S_TCR4_FSE | I2S_TCR4_FSP;
|
||
|
I2S1_TCR5 = I2S_TCR5_WNW((32-1)) | I2S_TCR5_W0W((32-1)) | I2S_TCR5_FBT((32-1));
|
||
|
|
||
|
I2S1_RMR = 0;
|
||
|
//I2S1_RCSR = (1<<25); //Reset
|
||
|
I2S1_RCR1 = I2S_RCR1_RFW(1);
|
||
|
I2S1_RCR2 = I2S_RCR2_SYNC(rsync) | I2S_RCR2_BCP // sync=0; rx is async;
|
||
|
| (I2S_RCR2_BCD | I2S_RCR2_DIV((1)) | I2S_RCR2_MSEL(1));
|
||
|
I2S1_RCR3 = I2S_RCR3_RCE;
|
||
|
I2S1_RCR4 = I2S_RCR4_FRSZ((2-1)) | I2S_RCR4_SYWD((32-1)) | I2S_RCR4_MF
|
||
|
| I2S_RCR4_FSE | I2S_RCR4_FSP | I2S_RCR4_FSD;
|
||
|
I2S1_RCR5 = I2S_RCR5_WNW((32-1)) | I2S_RCR5_W0W((32-1)) | I2S_RCR5_FBT((32-1));
|
||
|
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/******************************************************************/
|
||
|
|
||
|
// From Chip: The I2SSlave functionality has NOT been extended to allow for different block sizes or sample rates (2020-10-31)
|
||
|
|
||
|
void AudioOutputI2Sslave_F32::begin(void)
|
||
|
{
|
||
|
|
||
|
dma.begin(true); // Allocate the DMA channel first
|
||
|
|
||
|
//pinMode(2, OUTPUT);
|
||
|
block_left_1st = NULL;
|
||
|
block_right_1st = NULL;
|
||
|
|
||
|
AudioOutputI2Sslave_F32::config_i2s();
|
||
|
|
||
|
#if defined(KINETISK)
|
||
|
CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0
|
||
|
dma.TCD->SADDR = i2s_tx_buffer;
|
||
|
dma.TCD->SOFF = 2;
|
||
|
dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
|
||
|
dma.TCD->NBYTES_MLNO = 2;
|
||
|
dma.TCD->SLAST = -sizeof(i2s_tx_buffer);
|
||
|
dma.TCD->DADDR = (void *)((uint32_t)&I2S0_TDR0 + 2);
|
||
|
dma.TCD->DOFF = 0;
|
||
|
dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
|
||
|
dma.TCD->DLASTSGA = 0;
|
||
|
dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
|
||
|
dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
|
||
|
dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX);
|
||
|
dma.enable();
|
||
|
|
||
|
I2S0_TCSR = I2S_TCSR_SR;
|
||
|
I2S0_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE;
|
||
|
|
||
|
#elif defined(__IMXRT1062__)
|
||
|
CORE_PIN7_CONFIG = 3; //1:TX_DATA0
|
||
|
dma.TCD->SADDR = i2s_tx_buffer;
|
||
|
dma.TCD->SOFF = 2;
|
||
|
dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
|
||
|
dma.TCD->NBYTES_MLNO = 2;
|
||
|
dma.TCD->SLAST = -sizeof(i2s_tx_buffer);
|
||
|
//dma.TCD->DADDR = (void *)((uint32_t)&I2S1_TDR1 + 2);
|
||
|
dma.TCD->DOFF = 0;
|
||
|
dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
|
||
|
dma.TCD->DLASTSGA = 0;
|
||
|
dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
|
||
|
//dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SAI2_TX);
|
||
|
dma.TCD->DADDR = (void *)((uint32_t)&I2S1_TDR0 + 2);
|
||
|
dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
|
||
|
dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SAI1_TX);
|
||
|
dma.enable();
|
||
|
|
||
|
I2S1_RCSR |= I2S_RCSR_RE | I2S_RCSR_BCE;
|
||
|
I2S1_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
update_responsibility = update_setup();
|
||
|
//dma.enable();
|
||
|
dma.attachInterrupt(AudioOutputI2S_F32::isr);
|
||
|
}
|
||
|
|
||
|
|
||
|
void AudioOutputI2Sslave_F32::config_i2s(void)
|
||
|
{
|
||
|
#if defined(KINETISK)
|
||
|
SIM_SCGC6 |= SIM_SCGC6_I2S;
|
||
|
SIM_SCGC7 |= SIM_SCGC7_DMA;
|
||
|
SIM_SCGC6 |= SIM_SCGC6_DMAMUX;
|
||
|
|
||
|
// if either transmitter or receiver is enabled, do nothing
|
||
|
if (I2S0_TCSR & I2S_TCSR_TE) return;
|
||
|
if (I2S0_RCSR & I2S_RCSR_RE) return;
|
||
|
|
||
|
// Select input clock 0
|
||
|
// Configure to input the bit-clock from pin, bypasses the MCLK divider
|
||
|
I2S0_MCR = I2S_MCR_MICS(0);
|
||
|
I2S0_MDR = 0;
|
||
|
|
||
|
// configure transmitter
|
||
|
I2S0_TMR = 0;
|
||
|
I2S0_TCR1 = I2S_TCR1_TFW(1); // watermark at half fifo size
|
||
|
I2S0_TCR2 = I2S_TCR2_SYNC(0) | I2S_TCR2_BCP;
|
||
|
|
||
|
I2S0_TCR3 = I2S_TCR3_TCE;
|
||
|
I2S0_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(31) | I2S_TCR4_MF
|
||
|
| I2S_TCR4_FSE | I2S_TCR4_FSP;
|
||
|
|
||
|
I2S0_TCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31);
|
||
|
|
||
|
// configure receiver (sync'd to transmitter clocks)
|
||
|
I2S0_RMR = 0;
|
||
|
I2S0_RCR1 = I2S_RCR1_RFW(1);
|
||
|
I2S0_RCR2 = I2S_RCR2_SYNC(1) | I2S_TCR2_BCP;
|
||
|
|
||
|
I2S0_RCR3 = I2S_RCR3_RCE;
|
||
|
I2S0_RCR4 = I2S_RCR4_FRSZ(1) | I2S_RCR4_SYWD(31) | I2S_RCR4_MF
|
||
|
| I2S_RCR4_FSE | I2S_RCR4_FSP | I2S_RCR4_FSD;
|
||
|
|
||
|
I2S0_RCR5 = I2S_RCR5_WNW(31) | I2S_RCR5_W0W(31) | I2S_RCR5_FBT(31);
|
||
|
|
||
|
// configure pin mux for 3 clock signals
|
||
|
CORE_PIN23_CONFIG = PORT_PCR_MUX(6); // pin 23, PTC2, I2S0_TX_FS (LRCLK)
|
||
|
CORE_PIN9_CONFIG = PORT_PCR_MUX(6); // pin 9, PTC3, I2S0_TX_BCLK
|
||
|
CORE_PIN11_CONFIG = PORT_PCR_MUX(6); // pin 11, PTC6, I2S0_MCLK
|
||
|
|
||
|
#elif defined(__IMXRT1062__)
|
||
|
|
||
|
CCM_CCGR5 |= CCM_CCGR5_SAI1(CCM_CCGR_ON);
|
||
|
|
||
|
// if either transmitter or receiver is enabled, do nothing
|
||
|
if (I2S1_TCSR & I2S_TCSR_TE) return;
|
||
|
if (I2S1_RCSR & I2S_RCSR_RE) return;
|
||
|
|
||
|
// not using MCLK in slave mode - hope that's ok?
|
||
|
//CORE_PIN23_CONFIG = 3; // AD_B1_09 ALT3=SAI1_MCLK
|
||
|
CORE_PIN21_CONFIG = 3; // AD_B1_11 ALT3=SAI1_RX_BCLK
|
||
|
CORE_PIN20_CONFIG = 3; // AD_B1_10 ALT3=SAI1_RX_SYNC
|
||
|
IOMUXC_SAI1_RX_BCLK_SELECT_INPUT = 1; // 1=GPIO_AD_B1_11_ALT3, page 868
|
||
|
IOMUXC_SAI1_RX_SYNC_SELECT_INPUT = 1; // 1=GPIO_AD_B1_10_ALT3, page 872
|
||
|
|
||
|
// configure transmitter
|
||
|
I2S1_TMR = 0;
|
||
|
I2S1_TCR1 = I2S_TCR1_RFW(1); // watermark at half fifo size
|
||
|
I2S1_TCR2 = I2S_TCR2_SYNC(1) | I2S_TCR2_BCP;
|
||
|
I2S1_TCR3 = I2S_TCR3_TCE;
|
||
|
I2S1_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(31) | I2S_TCR4_MF
|
||
|
| I2S_TCR4_FSE | I2S_TCR4_FSP | I2S_RCR4_FSD;
|
||
|
I2S1_TCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31);
|
||
|
|
||
|
// configure receiver
|
||
|
I2S1_RMR = 0;
|
||
|
I2S1_RCR1 = I2S_RCR1_RFW(1);
|
||
|
I2S1_RCR2 = I2S_RCR2_SYNC(0) | I2S_TCR2_BCP;
|
||
|
I2S1_RCR3 = I2S_RCR3_RCE;
|
||
|
I2S1_RCR4 = I2S_RCR4_FRSZ(1) | I2S_RCR4_SYWD(31) | I2S_RCR4_MF
|
||
|
| I2S_RCR4_FSE | I2S_RCR4_FSP;
|
||
|
I2S1_RCR5 = I2S_RCR5_WNW(31) | I2S_RCR5_W0W(31) | I2S_RCR5_FBT(31);
|
||
|
|
||
|
#endif
|
||
|
}
|