// test of DaisySP synth object for the Teensy audio library // modal synth - not very polyphonic because it uses about 30% CPU for one resonator // its a good starting point for polyphonic instruments in any case // some of this code was cribbed from the Faust for Teensy Additivesynth example // RH March 28 2021 #include #include //#define DEBUG // comment out to remove debug code #ifdef DEBUG Metro five_sec=Metro(5000); // Set up a 5 second Metro for performance stats #endif // constants for integer to float and float to integer conversion #define MULT_16 2147483647 #define DIV_16 4.6566129e-10 #include "daisysp.h" using namespace daisysp; // including the source files is a pain but that way you compile in only the modules you need // DaisySP statically allocates memory and some modules e.g. reverb use a lot of ram #include "physicalmodeling/resonator.cpp" #include "physicalmodeling/modalvoice.cpp" #include "effects/reverbsc.cpp" // uses a LOT of ram float samplerate=AUDIO_SAMPLE_RATE_EXACT; // create daisySP processing objects #define VOICES 3 // 87% CPU with 3 voices 811mhz overclock daisysp::ModalVoice voice[VOICES]; ReverbSc verb; // this is the function called by the AudioSynthDaisySP object when it needs a block of samples void AudioSynthDaisySP::update(void) { float out,sig,wetvl, wetvr; audio_block_t *block; block = allocate(); // grab an audio block if (!block) { return; } for (int s=0; s < AUDIO_BLOCK_SAMPLES; s++) { //**** insert daisySP generators here sig=0; // process and sum the string voices for (int i=0; i< VOICES;++i) { sig+=voice[i].Process(); } sig=sig/VOICES; // scale the sum // sig=sig*5; // crank the level a bit verb.Process(sig, sig, &wetvl, &wetvr); out=sig + wetvl*0.2; // add in some reverb // convert generated float value -1.0 to +1.0 to int16 used by Teensy Audio int32_t val = out*MULT_16; block->data[s] = val >> 16; } transmit(block); release(block); } // teensy audio objects and patch creation AudioOutputI2S out; //AudioOutputUSB outUSB; AudioControlSGTL5000 audioShield; AudioSynthDaisySP synth; // create the daisysp synth audio object AudioConnection patchCord20(synth,0,out,0); AudioConnection patchCord21(synth,0,out,1); //AudioConnection patchCord22(synth,0,outUSB,0); //AudioConnection patchCord23(synth,0,outUSB,1); // frequencies for all 127 MIDI Note numbers. // C C# D D# E F F# G G# A A# B const float NoteNumToFreq[] = { 8.18, 8.66, 9.18, 9.72, 10.30, 10.91, 11.56, 12.25, 12.98, 13.75, 14.57, 15.43, 16.35, 17.32, 18.35, 19.45, 20.60, 21.83, 23.12, 24.50, 25.96, 27.50, 29.14, 30.87, 32.70, 34.65, 36.71, 38.89, 41.20, 43.65, 46.25, 49.00, 51.91, 55.00, 58.27, 61.74, 65.41, 69.30, 73.42, 77.78, 82.41, 87.31, 92.50, 98.00, 103.82, 110.00, 116.54, 123.47, 130.81, 138.59, 146.83, 155.56, 164.81, 174.61, 184.99, 195.99, 207.65, 220.00, 233.08, 246.94, 261.63, 277.18, 293.66, 311.13, 329.63, 349.23, 369.99, 391.99, 415.31, 440.00, 466.16, 493.88, 523.25, 554.37, 587.33, 622.25, 659.26, 698.46, 739.99, 783.99, 830.61, 880.00, 932.32, 987.77, 1046.50, 1108.73, 1174.66, 1244.51, 1318.51, 1396.91, 1479.98, 1567.98, 1661.22, 1760.00, 1864.66, 1975.53, 2093.00, 2217.46, 2349.32, 2489.02, 2637.02, 2793.83, 2959.96, 3135.96, 3322.44, 3520.00, 3729.31, 3951.07, 4186.01, 4434.92, 4698.64, 4978.03, 5274.04, 5587.65, 5919.91, 6271.93, 6644.88, 7040.00, 7458.62, 7902.13, 8372.02, 8869.84, 9397.27, 9956.06, 10548.08, 11175.30, 11839.82, 12543.85 }; // for polyphony - an array of all current notes. // Value -1 means the note is off (not sounding). int StoredNotes[VOICES]; void setup() { Serial.begin(38400); #ifdef DEBUG while (!Serial) { // wait for Arduino Serial Monitor to be ready } Serial.println("starting setup"); #endif for (int i=0; i< VOICES;++i) { StoredNotes[i]=-1; // initialize the note allocation array voice[i].Init(samplerate); // initialize the voice object } // initialize the reverb object and set its initial parameters verb.Init(samplerate); verb.SetFeedback(0.87); verb.SetLpFreq(10000.0f); // Enable the AudioShield AudioMemory(10); // only uses 2 blocks Serial.println("enabling audio shield"); audioShield.enable(); audioShield.volume(0.4); // Handles for the USB MIDI callbacks usbMIDI.setHandleNoteOn(myNoteOn); usbMIDI.setHandleNoteOff(myNoteOff); usbMIDI.setHandleControlChange(myControlChange); usbMIDI.setHandleAfterTouchPoly(myAfterTouch); #ifdef DEBUG Serial.println("finished setup"); #endif } // Only looking for incoming MIDI events in the loop() // myNoteOn(), myNoteOff() and myControlChange() will be processed on incoming MIDI messages. void loop() { usbMIDI.read(); #ifdef DEBUG // DEBUG - Microcontroller Load Check if (five_sec.check() == 1) { Serial.print("Proc = "); Serial.print(AudioProcessorUsage()); Serial.print(" ("); Serial.print(AudioProcessorUsageMax()); Serial.print("), Mem = "); Serial.print(AudioMemoryUsage()); Serial.print(" ("); Serial.print(AudioMemoryUsageMax()); Serial.println(")"); } #endif } // Callback for incoming NoteOn messages // Handling the voice allocation here. void myNoteOn(byte channel, byte note, byte velocity) { int i=0; while( i < VOICES){ if (StoredNotes[i] == -1) { // if voice is idle StoredNotes[i] = int(note); // allocate this voice voice[i].SetFreq(NoteNumToFreq[note]); voice[i].Trig(); break; } ++i; } } // Callback for incoming NoteOff messages // Releasing voices to be re-allocated here. void myNoteOff(byte channel, byte note, byte velocity) { for (int i=0; i < VOICES; ++i){ int k = int(note); if (StoredNotes[i] == k) { // if this voice matches the note we are silencing StoredNotes[i] = -1; // deallocate the voice } } } // Callback for incoming CC messages // I'm using an external MIDI controller (Arturia Beatstep) to set voice parameters // you can also do this with pots and AnalogRead() void myControlChange(byte channel, byte control, byte value) { float val = float(value) / 127; // convert to 0-1 for (int i=0; i < VOICES; ++i){ switch (control) { case 101: voice[i].SetBrightness(val); break; case 102: voice[i].SetDamping(val); break; case 103: voice[i].SetStructure(val); break; default: break; } } } // Callback for incoming Aftertouch messages void myAfterTouch(byte channel, byte note, byte value) { float val = float(value) / 127; // convert to 0-1 }