pull/5/head V1.0.2
tangjie133 3 years ago
parent c82ffb2b34
commit ee688f17ce
  1. 542
      DFRobot_AS3935_I2C.cpp
  2. 300
      DFRobot_AS3935_I2C.h
  3. 525
      LICENSE
  4. 224
      README_CN.md
  5. 241
      RaspberryPi/Python/DFRobot_AS3935_Lib.py
  6. 158
      RaspberryPi/Python/README.md
  7. 108
      RaspberryPi/Python/example/DFRobot_AS3935_detailed.py
  8. 94
      RaspberryPi/Python/example/DFRobot_AS3935_ordinary.py
  9. 48
      examples/DFRobotAS3935LightningSensorDetailed/DFRobotAS3935LightningSensorDetailed.ino
  10. 47
      examples/DFRobotAS3935LightningSensorOrdinary/DFRobotAS3935LightningSensorOrdinary.ino
  11. 9
      library.properties
  12. 319
      python/raspberrypi/DFRobot_AS3935_Lib.py
  13. 179
      python/raspberrypi/README.md
  14. 173
      python/raspberrypi/README_CN.md
  15. 107
      python/raspberrypi/example/DFRobot_AS3935_detailed/DFRobot_AS3935_detailed.py
  16. 94
      python/raspberrypi/example/DFRobot_AS3935_ordinary/DFRobot_AS3935_ordinary.py
  17. 381
      readme.md
  18. BIN
      resources/images/SEN0290.png

@ -1,432 +1,388 @@
/*!
* @file DFRobot_AS3935_I2C.h
* @brief This is a library for AS3935_I2C from DFRobot
* @copyright Copyright (c) 2010 DFRobot Co.Ltd (http://www.dfrobot.com)
* @license The MIT License (MIT)
* @author [TangJie](jie.tang@dfrobot.com)
* @version V1.0.2
* @date 2019-09-28
* @url https://github.com/DFRobor/DFRobot_AS3935
*/
#include "DFRobot_AS3935_I2C.h"
DFRobot_AS3935_I2C::DFRobot_AS3935_I2C(uint8_t irqx, uint8_t devAddx)
{
devAdd = devAddx;
irq = irqx;
// initalize the IRQ pins
pinMode(irq, INPUT);
devAdd = devAddx;
irq = irqx;
// initalize the IRQ pins
pinMode(irq, INPUT);
}
DFRobot_AS3935_I2C::DFRobot_AS3935_I2C(uint8_t irqx)
{
irq = irqx;
// initalize the IRQ pins
// pinMode(irq, OUTPUT);
// digitalWrite(irq,1);
pinMode(irq, INPUT);
irq = irqx;
pinMode(irq, INPUT);
}
void DFRobot_AS3935_I2C::setI2CAddress(uint8_t devAddx)
{
if (devAddx == AS3935_ADD1)
{
if (devAddx == AS3935_ADD1){
devAdd = devAddx;
}else if (devAddx == AS3935_ADD2){
devAdd = devAddx;
}
else if (devAddx == AS3935_ADD2)
{
devAdd = devAddx;
}
else
{
devAdd = AS3935_ADD3;
}
}else{
devAdd = AS3935_ADD3;
}
}
uint8_t DFRobot_AS3935_I2C::singRegRead(uint8_t regAdd)
{
// I2C address Register address num bytes
//I2c.read((uint8_t)devAdd, (uint8_t)regAdd, (uint8_t)0x01); // Use I2C library to read register
//uint8_t regData = I2c.receive(); // receive the I2C data
uint8_t buf[1];
readReg(regAdd, buf, 1);
return buf[0];
uint8_t buf[1];
readReg(regAdd, buf, 1);
return buf[0];
}
void DFRobot_AS3935_I2C::singRegWrite(uint8_t regAdd, uint8_t dataMask, uint8_t regData)
{
// start by reading original register data (only modifying what we need to)
uint8_t origRegData = singRegRead(regAdd);
// start by reading original register data (only modifying what we need to)
uint8_t origRegData = singRegRead(regAdd);
// calculate new register data... 'delete' old targeted data, replace with new data
// note: 'DataMask' must be bits targeted for replacement
// add'l note: this function does NOT shift values into the proper place... they need to be there already
uint8_t newRegData = ((origRegData & ~dataMask) | (regData & dataMask));
uint8_t buf[1];
buf[0] = newRegData;
// calculate new register data... 'delete' old targeted data, replace with new data
// note: 'DataMask' must be bits targeted for replacement
// add'l note: this function does NOT shift values into the proper place... they need to be there already
uint8_t newRegData = ((origRegData & ~dataMask) | (regData & dataMask));
uint8_t buf[1];
buf[0] = newRegData;
// finally, write the data to the register
//I2c.write(devAdd, regAdd, newRegData);
writeReg(regAdd, buf, 1);
//Serial.print("wrt: ");
//Serial.print(newRegData,HEX);
//Serial.print(" Act: ");
//Serial.println(singRegRead(regAdd),HEX);
// finally, write the data to the register
//I2c.write(devAdd, regAdd, newRegData);
writeReg(regAdd, buf, 1);
}
int DFRobot_AS3935_I2C::defInit()
{
return reset(); // reset registers to default
return reset(); // reset registers to default
}
int DFRobot_AS3935_I2C::reset()
{
// run PRESET_DEFAULT Direct Command to set all registers in default state
//int error = I2c.write(devAdd, (uint8_t)0x3C, (uint8_t)0x96);
uint8_t buf[1];
buf[0] = 0x96;
writeReg(0x3c, buf, 1);
return 0;
// run PRESET_DEFAULT Direct Command to set all registers in default state
//int error = I2c.write(devAdd, (uint8_t)0x3C, (uint8_t)0x96);
uint8_t buf[1];
buf[0] = 0x96;
writeReg(0x3c, buf, 1);
return 0;
}
void DFRobot_AS3935_I2C::calRCO()
{
// run ALIB_RCO Direct Command to cal internal RCO
//I2c.write(devAdd, (uint8_t)0x3D, (uint8_t)0x96);
uint8_t buf[1];
buf[0] = 0x96;
writeReg(0x3D, buf, 1);
delay(2); // wait 2ms to complete
// run ALIB_RCO Direct Command to cal internal RCO
//I2c.write(devAdd, (uint8_t)0x3D, (uint8_t)0x96);
uint8_t buf[1];
buf[0] = 0x96;
writeReg(0x3D, buf, 1);
delay(2); // wait 2ms to complete
}
void DFRobot_AS3935_I2C::powerUp(void)
{
// power-up sequence based on datasheet, pg 23/27
// register 0x00, PWD bit: 0 (clears PWD)
singRegWrite(0x00, 0x01, 0x00);
calRCO(); // run RCO cal cmd
singRegWrite(0x08, 0x20, 0x20); // set DISP_SRCO to 1
delay(2);
singRegWrite(0x08, 0x20, 0x00); // set DISP_SRCO to 0
// power-up sequence based on datasheet, pg 23/27
// register 0x00, PWD bit: 0 (clears PWD)
singRegWrite(0x00, 0x01, 0x00);
calRCO(); // run RCO cal cmd
singRegWrite(0x08, 0x20, 0x20); // set DISP_SRCO to 1
delay(2);
singRegWrite(0x08, 0x20, 0x00); // set DISP_SRCO to 0
}
void DFRobot_AS3935_I2C::powerDown(void)
{
// register 0x00, PWD bit: 0 (sets PWD)
singRegWrite(0x00, 0x01, 0x01);
Serial.println("AS3935 powered down");
// register 0x00, PWD bit: 0 (sets PWD)
singRegWrite(0x00, 0x01, 0x01);
Serial.println("AS3935 powered down");
}
void DFRobot_AS3935_I2C::disturberEn(void)
{
// register 0x03, PWD bit: 5 (sets MASK_DIST)
singRegWrite(0x03, 0x20, 0x00);
Serial.println("disturber detection enabled");
// register 0x03, PWD bit: 5 (sets MASK_DIST)
singRegWrite(0x03, 0x20, 0x00);
Serial.println("disturber detection enabled");
}
void DFRobot_AS3935_I2C::disturberDis(void)
{
// register 0x03, PWD bit: 5 (sets MASK_DIST)
singRegWrite(0x03, 0x20, 0x20);
// register 0x03, PWD bit: 5 (sets MASK_DIST)
singRegWrite(0x03, 0x20, 0x20);
}
void DFRobot_AS3935_I2C::setIRQOutputSource(uint8_t irqSelect)
{
// set interrupt source - what to display on IRQ pin
// reg 0x08, bits 5 (TRCO), 6 (SRCO), 7 (LCO)
// only one should be set at once, I think
// 0 = NONE, 1 = TRCO, 2 = SRCO, 3 = LCO
if(1 == irqSelect)
{
singRegWrite(0x08, 0xE0, 0x20); // set only TRCO bit
}
else if(2 == irqSelect)
{
singRegWrite(0x08, 0xE0, 0x40); // set only SRCO bit
}
else if(3 == irqSelect)
{
singRegWrite(0x08, 0xE0, 0x80); // set only LCO bit
}
else // assume 0
{
singRegWrite(0x08, 0xE0, 0x00); // clear IRQ pin display bits
}
// set interrupt source - what to display on IRQ pin
// reg 0x08, bits 5 (TRCO), 6 (SRCO), 7 (LCO)
// only one should be set at once, I think
// 0 = NONE, 1 = TRCO, 2 = SRCO, 3 = LCO
if(1 == irqSelect){
singRegWrite(0x08, 0xE0, 0x20); // set only TRCO bit
}else if(2 == irqSelect){
singRegWrite(0x08, 0xE0, 0x40); // set only SRCO bit
}else if(3 == irqSelect){
singRegWrite(0x08, 0xE0, 0x80); // set only LCO bit
}else{
singRegWrite(0x08, 0xE0, 0x00); // clear IRQ pin display bits
}
}
void DFRobot_AS3935_I2C::setTuningCaps(uint8_t capVal)
{
// Assume only numbers divisible by 8 (because that's all the chip supports)
if(120 < capVal) // cap_value out of range, assume highest capacitance
{
singRegWrite(0x08, 0x0F, 0x0F); // set capacitance bits to maximum
}
else
{
singRegWrite(0x08, 0x0F, (capVal >> 3)); // set capacitance bits
}
//Serial.print("capacitance set to 8x");
//Serial.println((singRegRead(0x08) & 0x0F));
// Assume only numbers divisible by 8 (because that's all the chip supports)
if(120 < capVal){ // cap_value out of range, assume highest capacitance
singRegWrite(0x08, 0x0F, 0x0F); // set capacitance bits to maximum
}else{
singRegWrite(0x08, 0x0F, (capVal >> 3)); // set capacitance bits
}
}
uint8_t DFRobot_AS3935_I2C::getInterruptSrc(void)
{
// definition of interrupt data on table 18 of datasheet
// for this function:
// 0 = unknown src, 1 = lightning detected, 2 = disturber, 3 = Noise level too high
delay(10); // wait 3ms before reading (min 2ms per pg 22 of datasheet)
uint8_t intSrc = (singRegRead(0x03) & 0x0F); // read register, get rid of non-interrupt data
if(0x08 == intSrc)
{
return 1; // lightning caused interrupt
}
else if(0x04 == intSrc)
{
return 2; // disturber detected
}
else if(0x01 == intSrc)
{
return 3; // Noise level too high
}
else{return 0;} // interrupt result not expected
// definition of interrupt data on table 18 of datasheet
// for this function:
// 0 = unknown src, 1 = lightning detected, 2 = disturber, 3 = Noise level too high
delay(10); // wait 3ms before reading (min 2ms per pg 22 of datasheet)
uint8_t intSrc = (singRegRead(0x03) & 0x0F); // read register, get rid of non-interrupt data
if(0x08 == intSrc){
return 1; // lightning caused interrupt
}else if(0x04 == intSrc){
return 2; // disturber detected
}else if(0x01 == intSrc){
return 3; // Noise level too high
}else{
return 0;
} // interrupt result not expected
}
uint8_t DFRobot_AS3935_I2C::getLightningDistKm(void)
{
uint8_t strikeDist = (singRegRead(0x07) & 0x3F); // read register, get rid of non-distance data
return strikeDist;
uint8_t strikeDist = (singRegRead(0x07) & 0x3F); // read register, get rid of non-distance data
return strikeDist;
}
uint32_t DFRobot_AS3935_I2C::getStrikeEnergyRaw(void)
{
uint32_t nrgyRaw = ((singRegRead(0x06) & 0x1F) << 8); // MMSB, shift 8 bits left, make room for MSB
nrgyRaw |= singRegRead(0x05); // read MSB
nrgyRaw <<= 8; // shift 8 bits left, make room for LSB
nrgyRaw |= singRegRead(0x04); // read LSB, add to others
return nrgyRaw/16777;
uint32_t nrgyRaw = ((singRegRead(0x06) & 0x1F) << 8); // MMSB, shift 8 bits left, make room for MSB
nrgyRaw |= singRegRead(0x05); // read MSB
nrgyRaw <<= 8; // shift 8 bits left, make room for LSB
nrgyRaw |= singRegRead(0x04); // read LSB, add to others
return nrgyRaw/16777;
}
uint8_t DFRobot_AS3935_I2C::setMinStrikes(uint8_t minStrk)
{
// This function sets min strikes to the closest available number, rounding to the floor,
// where necessary, then returns the physical value that was set. Options are 1, 5, 9 or 16 strikes.
// see pg 22 of the datasheet for more info (#strikes in 17 min)
if(5 > minStrk)
{
singRegWrite(0x02, 0x30, 0x00);
return 1;
}else if(9 > minStrk)
{
singRegWrite(0x02, 0x30, 0x10);
return 5;
}else if(16 > minStrk)
{
singRegWrite(0x02, 0x30, 0x20);
return 9;
}else{
singRegWrite(0x02, 0x30, 0x30);
return 16;
}
// This function sets min strikes to the closest available number, rounding to the floor,
// where necessary, then returns the physical value that was set. Options are 1, 5, 9 or 16 strikes.
// see pg 22 of the datasheet for more info (#strikes in 17 min)
if(5 > minStrk){
singRegWrite(0x02, 0x30, 0x00);
return 1;
}else if(9 > minStrk){
singRegWrite(0x02, 0x30, 0x10);
return 5;
}else if(16 > minStrk){
singRegWrite(0x02, 0x30, 0x20);
return 9;
}else{
singRegWrite(0x02, 0x30, 0x30);
return 16;
}
}
void DFRobot_AS3935_I2C::setIndoors(void)
{
// AFE settings addres 0x00, bits 5:1 (10010, based on datasheet, pg 19, table 15)
// this is the default setting at power-up (AS3935 datasheet, table 9)
singRegWrite(0x00, 0x3E, 0x24);
Serial.println("set up for indoor operation");
// AFE settings addres 0x00, bits 5:1 (10010, based on datasheet, pg 19, table 15)
// this is the default setting at power-up (AS3935 datasheet, table 9)
singRegWrite(0x00, 0x3E, 0x24);
Serial.println("set up for indoor operation");
}
void DFRobot_AS3935_I2C::setOutdoors(void)
{
// AFE settings addres 0x00, bits 5:1 (01110, based on datasheet, pg 19, table 15)
singRegWrite(0x00, 0x3E, 0x1C);
Serial.println("set up for outdoor operation");
// AFE settings addres 0x00, bits 5:1 (01110, based on datasheet, pg 19, table 15)
singRegWrite(0x00, 0x3E, 0x1C);
Serial.println("set up for outdoor operation");
}
void DFRobot_AS3935_I2C::clearStatistics(void)
{
// clear is accomplished by toggling CL_STAT bit 'high-low-high' (then set low to move on)
singRegWrite(0x02, 0x40, 0x40); // high
singRegWrite(0x02, 0x40, 0x00); // low
singRegWrite(0x02, 0x40, 0x40); // high
// clear is accomplished by toggling CL_STAT bit 'high-low-high' (then set low to move on)
singRegWrite(0x02, 0x40, 0x40); // high
singRegWrite(0x02, 0x40, 0x00); // low
singRegWrite(0x02, 0x40, 0x40); // high
}
uint8_t DFRobot_AS3935_I2C::getNoiseFloorLvl(void)
{
// NF settings addres 0x01, bits 6:4
// default setting of 010 at startup (datasheet, table 9)
uint8_t regRaw = singRegRead(0x01); // read register 0x01
return ((regRaw & 0x70) >> 4); // should return value from 0-7, see table 16 for info
// NF settings addres 0x01, bits 6:4
// default setting of 010 at startup (datasheet, table 9)
uint8_t regRaw = singRegRead(0x01); // read register 0x01
return ((regRaw & 0x70) >> 4); // should return value from 0-7, see table 16 for info
}
void DFRobot_AS3935_I2C::setNoiseFloorLvl(uint8_t nfSel)
{
// NF settings addres 0x01, bits 6:4
// default setting of 010 at startup (datasheet, table 9)
if(7 >= nfSel) // nfSel within expected range
{
singRegWrite(0x01, 0x70, ((nfSel & 0x07) << 4));
}
else
{ // out of range, set to default (power-up value 010)
singRegWrite(0x01, 0x70, 0x20);
}
// NF settings addres 0x01, bits 6:4
// default setting of 010 at startup (datasheet, table 9)
if(7 >= nfSel){ // nfSel within expected range
singRegWrite(0x01, 0x70, ((nfSel & 0x07) << 4));
}else{ // out of range, set to default (power-up value 010)
singRegWrite(0x01, 0x70, 0x20);
}
}
uint8_t DFRobot_AS3935_I2C::getWatchdogThreshold(void)
{
// This function is used to read WDTH. It is used to increase robustness to disturbers,
// though will make detection less efficient (see page 19, Fig 20 of datasheet)
// WDTH register: add 0x01, bits 3:0
// default value of 0001
// values should only be between 0x00 and 0x0F (0 and 7)
uint8_t regRaw = singRegRead(0x01);
return (regRaw & 0x0F);
// This function is used to read WDTH. It is used to increase robustness to disturbers,
// though will make detection less efficient (see page 19, Fig 20 of datasheet)
// WDTH register: add 0x01, bits 3:0
// default value of 0001
// values should only be between 0x00 and 0x0F (0 and 7)
uint8_t regRaw = singRegRead(0x01);
return (regRaw & 0x0F);
}
void DFRobot_AS3935_I2C::setWatchdogThreshold(uint8_t wdth)
{
// This function is used to modify WDTH. It is used to increase robustness to disturbers,
// though will make detection less efficient (see page 19, Fig 20 of datasheet)
// WDTH register: add 0x01, bits 3:0
// default value of 0010
// values should only be between 0x00 and 0x0F (0 and 7)
singRegWrite(0x01, 0x0F, (wdth & 0x0F));
// This function is used to modify WDTH. It is used to increase robustness to disturbers,
// though will make detection less efficient (see page 19, Fig 20 of datasheet)
// WDTH register: add 0x01, bits 3:0
// default value of 0010
// values should only be between 0x00 and 0x0F (0 and 7)
singRegWrite(0x01, 0x0F, (wdth & 0x0F));
}
uint8_t DFRobot_AS3935_I2C::getSpikeRejection(void)
{
// This function is used to read SREJ (spike rejection). Similar to the Watchdog threshold,
// it is used to make the system more robust to disturbers, though will make general detection
// less efficient (see page 20-21, especially Fig 21 of datasheet)
// SREJ register: add 0x02, bits 3:0
// default value of 0010
// values should only be between 0x00 and 0x0F (0 and 7)
uint8_t regRaw = singRegRead(0x02);
return (regRaw & 0x0F);
// This function is used to read SREJ (spike rejection). Similar to the Watchdog threshold,
// it is used to make the system more robust to disturbers, though will make general detection
// less efficient (see page 20-21, especially Fig 21 of datasheet)
// SREJ register: add 0x02, bits 3:0
// default value of 0010
// values should only be between 0x00 and 0x0F (0 and 7)
uint8_t regRaw = singRegRead(0x02);
return (regRaw & 0x0F);
}
void DFRobot_AS3935_I2C::setSpikeRejection(uint8_t srej)
{
// This function is used to modify SREJ (spike rejection). Similar to the Watchdog threshold,
// it is used to make the system more robust to disturbers, though will make general detection
// less efficient (see page 20-21, especially Fig 21 of datasheet)
// WDTH register: add 0x02, bits 3:0
// default value of 0010
// values should only be between 0x00 and 0x0F (0 and 7)
singRegWrite(0x02, 0x0F, (srej & 0x0F));
// This function is used to modify SREJ (spike rejection). Similar to the Watchdog threshold,
// it is used to make the system more robust to disturbers, though will make general detection
// less efficient (see page 20-21, especially Fig 21 of datasheet)
// WDTH register: add 0x02, bits 3:0
// default value of 0010
// values should only be between 0x00 and 0x0F (0 and 7)
singRegWrite(0x02, 0x0F, (srej & 0x0F));
}
void DFRobot_AS3935_I2C::setLcoFdiv(uint8_t fdiv)
{
// This function sets LCO_FDIV register. This is useful in the tuning of the antenna
// LCO_FDIV register: add 0x03, bits 7:6
// default value: 00
// set 0, 1, 2 or 3 for ratios of 16, 32, 64 and 128, respectively.
// See pg 23, Table 20 for more info.
singRegWrite(0x03, 0xC0, ((fdiv & 0x03) << 6));
// This function sets LCO_FDIV register. This is useful in the tuning of the antenna
// LCO_FDIV register: add 0x03, bits 7:6
// default value: 00
// set 0, 1, 2 or 3 for ratios of 16, 32, 64 and 128, respectively.
// See pg 23, Table 20 for more info.
singRegWrite(0x03, 0xC0, ((fdiv & 0x03) << 6));
}
void DFRobot_AS3935_I2C::printAllRegs(void)
{
Serial.print("Reg 0x00: ");
Serial.println(singRegRead(0x00));
Serial.print("Reg 0x01: ");
Serial.println(singRegRead(0x01));
Serial.print("Reg 0x02: ");
Serial.println(singRegRead(0x02));
Serial.print("Reg 0x03: ");
Serial.println(singRegRead(0x03));
Serial.print("Reg 0x04: ");
Serial.println(singRegRead(0x04));
Serial.print("Reg 0x05: ");
Serial.println(singRegRead(0x05));
Serial.print("Reg 0x06: ");
Serial.println(singRegRead(0x06));
Serial.print("Reg 0x07: ");
Serial.println(singRegRead(0x07));
Serial.print("Reg 0x08: ");
Serial.println(singRegRead(0x08));
uint32_t nrgyVal = getStrikeEnergyRaw();
Serial.println(nrgyVal);
Serial.print("Reg 0x00: ");
Serial.println(singRegRead(0x00));
Serial.print("Reg 0x01: ");
Serial.println(singRegRead(0x01));
Serial.print("Reg 0x02: ");
Serial.println(singRegRead(0x02));
Serial.print("Reg 0x03: ");
Serial.println(singRegRead(0x03));
Serial.print("Reg 0x04: ");
Serial.println(singRegRead(0x04));
Serial.print("Reg 0x05: ");
Serial.println(singRegRead(0x05));
Serial.print("Reg 0x06: ");
Serial.println(singRegRead(0x06));
Serial.print("Reg 0x07: ");
Serial.println(singRegRead(0x07));
Serial.print("Reg 0x08: ");
Serial.println(singRegRead(0x08));
uint32_t nrgyVal = getStrikeEnergyRaw();
Serial.println(nrgyVal);
}
void DFRobot_AS3935_I2C::manualCal(uint8_t capacitance, uint8_t location, uint8_t disturber)
{
// start by powering up
powerUp();
// indoors/outdoors next...
if(1 == location) // set outdoors if 1
{
setOutdoors();
}
else // set indoors if anything but 1
{
setIndoors();
}
// disturber cal
if(0 == disturber) // disabled if 0
{
disturberDis();
}
else // enabled if anything but 0
{
disturberEn();
}
setIRQOutputSource(0);
delay(500);
// capacitance first... directly write value here
setTuningCaps(capacitance);
Serial.println("AS3935 manual cal complete");
// start by powering up
powerUp();
// indoors/outdoors next...
if(1 == location){ // set outdoors if 1
setOutdoors();
}else{ // set indoors if anything but 1
setIndoors();
}
// disturber cal
if(0 == disturber){ // disabled if 0
disturberDis();
}else{ // enabled if anything but 0
disturberEn();
}
setIRQOutputSource(0);
delay(500);
// capacitance first... directly write value here
setTuningCaps(capacitance);
Serial.println("AS3935 manual cal complete");
}
// a nice function would be to read the last 'x' strike data values....
uint8_t DFRobot_AS3935_I2C::begin(void)
{
uint8_t buf[2];
Wire.begin();
Wire.setClock(400000);
DBG("i2c init");
if(readReg(0, buf, 2) == 2){
DBG("return");
return 0;
}
return 1;
uint8_t buf[2];
Wire.begin();
Wire.setClock(400000);
DBG("i2c init");
if(readReg(0, buf, 2) == 2){
DBG("return");
return 0;
}
return 1;
}
void DFRobot_AS3935_I2C::writeReg(uint8_t reg, void *pBuf, size_t size)
{
if(pBuf == NULL){
DBG("pBuf ERROR!! :null pointer");
}
uint8_t *_pBuf = (uint8_t*)pBuf;
Wire.beginTransmission(devAdd);
Wire.write(reg);
for(size_t i = 0; i < size; i++){
Wire.write(_pBuf[i]);
}
Wire.endTransmission();
DBG("i2c write");
if(pBuf == NULL){
DBG("pBuf ERROR!! :null pointer");
}
uint8_t *_pBuf = (uint8_t*)pBuf;
Wire.beginTransmission(devAdd);
Wire.write(reg);
for(size_t i = 0; i < size; i++){
Wire.write(_pBuf[i]);
}
Wire.endTransmission();
DBG("i2c write");
}
size_t DFRobot_AS3935_I2C::readReg(uint8_t reg, void *pBuf, size_t size)
{
if(pBuf == NULL){
DBG("pBuf ERROR!!:null pointer");
return 0;
}
uint8_t *_pBuf = (uint8_t*)pBuf;
Wire.beginTransmission(devAdd);
Wire.write(reg);
Wire.endTransmission(false);
Wire.requestFrom(devAdd, size);
for(size_t i = 0; i < size; i++){
_pBuf[i] = Wire.read();
DBG(_pBuf[i], HEX);
}
return size;
if(pBuf == NULL){
DBG("pBuf ERROR!!:null pointer");
return 0;
}
uint8_t *_pBuf = (uint8_t*)pBuf;
Wire.beginTransmission(devAdd);
Wire.write(reg);
Wire.endTransmission(false);
Wire.requestFrom(devAdd, size);
for(size_t i = 0; i < size; i++){
_pBuf[i] = Wire.read();
DBG(_pBuf[i], HEX);
}
return size;
}

@ -1,3 +1,15 @@
/*!
* @file DFRobot_AS3935_I2C.h
* @brief This is a library for AS3935_I2C from DFRobot
* @copyright Copyright (c) 2010 DFRobot Co.Ltd (http://www.dfrobot.com)
* @license The MIT License (MIT)
* @author [TangJie](jie.tang@dfrobot.com)
* @version V1.0.2
* @date 2019-09-28
* @url https://github.com/DFRobor/DFRobot_AS3935
*/
#ifndef DFRobot_AS3935_I2C_h
#define DFRobot_AS3935_I2C_h
@ -7,9 +19,9 @@
#include "Wire.h"
// I2C address
#define AS3935_ADD1 0x01 // A0=high, A1=low
#define AS3935_ADD3 0x03 // A0=high, A1=high
#define AS3935_ADD2 0x02 // A0=low, A1=high
#define AS3935_ADD1 0x01 ///< A0=high, A1=low
#define AS3935_ADD3 0x03 ///< A0=high, A1=high
#define AS3935_ADD2 0x02 ///< A0=low, A1=high
//#define ENABLE_DBG
#ifdef ENABLE_DBG
@ -20,74 +32,226 @@
#define DBG(...)
#endif
class DFRobot_AS3935_I2C
{
public:
DFRobot_AS3935_I2C(uint8_t irqx, uint8_t devAddx);
DFRobot_AS3935_I2C(uint8_t irqx);
uint8_t begin(void);
/*! Set i2c address */
void setI2CAddress(uint8_t devAddx);
/*! Manual calibration */
void manualCal(uint8_t capacitance, uint8_t location, uint8_t disturber);
/*! reset registers to default */
int defInit(void);
void disturberEn(void);
void disturberDis(void);
void setIRQOutputSource(uint8_t irqSelect);
void setTuningCaps(uint8_t capVal);
/*! 0 = unknown src, 1 = lightning detected, 2 = disturber, 3 = Noise level too high */
uint8_t getInterruptSrc(void);
/*! Get rid of non-distance data */
uint8_t getLightningDistKm(void);
/*! Get lightning energy intensity */
uint32_t getStrikeEnergyRaw(void);
uint8_t setMinStrikes(uint8_t minStrk);
void clearStatistics(void);
void setIndoors(void);
void setOutdoors(void);
uint8_t getNoiseFloorLvl(void);
void setNoiseFloorLvl(uint8_t nfSel);
uint8_t getWatchdogThreshold(void);
void setWatchdogThreshold(uint8_t wdth);
uint8_t getSpikeRejection(void);
void setSpikeRejection(uint8_t srej);
void setLcoFdiv(uint8_t fdiv);
/*! View register data */
void printAllRegs(void);
void powerUp(void);
private:
uint8_t irq, devAdd;
uint8_t singRegRead(uint8_t regAdd);//原始I2C数据读取
void singRegWrite(uint8_t regAdd, uint8_t dataMask, uint8_t regData);//原始数据发送
int reset(void);
void powerDown(void);
void calRCO(void);
/**
* @brief Write register value through IIC bus
*
* @param reg Register address 8bits
* @param pBuf Storage cache to write data in
* @param size The length of data to be written
*/
void writeReg(uint8_t reg, void *pBuf, size_t size);
//void writeRegNoStop(uint8_t reg, void *pBuf, size_t size)
/**
* @brief Read register value through IIC bus
*
* @param reg Register address 8bits
* @param pBuf Read data storage cache
* @param size Read the length of data
* @return Return the read length
*/
size_t readReg(uint8_t reg, void *pBuf, size_t size);
class DFRobot_AS3935_I2C{
public:
/**
* @fn DFRobot_AS3935_I2C
* @brief AS3935 object
* @param irqx irq pin
* @param devAddx i2c address
* @return None
*/
DFRobot_AS3935_I2C(uint8_t irqx, uint8_t devAddx);
/**
* @fn DFRobot_AS3935_I2C
* @brief AS3935 object
* @param irqx irq pin
* @return None
*/
DFRobot_AS3935_I2C(uint8_t irqx);
};
/**
* @fn begin
* @brief I2C init
* @return uint8_t type, indicates the initialization status
* @retval 0 succeed
* @retval 1 failure
*/
uint8_t begin(void);
/**
* @fn setI2CAddress
* @brief set i2c address
* @param devAddx i2c address
* @return None
*/
void setI2CAddress(uint8_t devAddx);
/**
* @fn manualCal
* @brief manual calibration
* @param capacitance capacitance
* @param location location
* @param disturber disturber
* @return None
*/
void manualCal(uint8_t capacitance, uint8_t location, uint8_t disturber);
/**
* @fn defInit
* @brief reset registers to default
* @return int type,represents rest state
* @retval 0 success
*/
int defInit(void);
/**
* @fn disturberEn
* @brief Disturber detection enabled
* @return None
*/
void disturberEn(void);
/**
* @fn disturberDis
* @brief Disturber detection disenabled
* @return None
*/
void disturberDis(void);
/**
* @fn setIRQOutputSource
* @brief Set interrupt source
* @param irqSelect 0 = NONE, 1 = TRCO, 2 = SRCO, 3 = LCO
* @return None
*/
void setIRQOutputSource(uint8_t irqSelect);
/**
* @fn setTuningCaps
* @brief set capacitance
* @param capVal size
* @return None
*/
void setTuningCaps(uint8_t capVal);
/**
* @fn getInterruptSrc
* @brief get interrupt source
* @return uint8_t typereturns the interrupt source type
* @retval 0 interrupt result not expected
* @retval 1 lightning caused interrupt
* @retval 2 disturber detected
* @retval 3 Noise level too high
*/
uint8_t getInterruptSrc(void);
/**
* @fn getLightningDistKm
* @brief get lightning distance
* @return unit kilometer
*/
uint8_t getLightningDistKm(void);
/**
* @fn getStrikeEnergyRaw
* @brief get lightning energy intensity
* @return lightning energy intensity(0-1000)
*/
uint32_t getStrikeEnergyRaw(void);
/**
* @fn setIndoors
* @brief Set to the indoor model
* @return None
*/
void setIndoors(void);
/**
* @fn setOutdoors
* @brief Set to the outdoor model
* @return None
*/
void setOutdoors(void);
/**
* @fn setOutdoors
* @brief Get the noise level
* @return Return noise level
*/
uint8_t getNoiseFloorLvl(void);
/**
* @fn setNoiseFloorLvl
* @brief Set the noise level
* @param 0~7,More than 7 will use the default value:2
* @return None
*/
void setNoiseFloorLvl(uint8_t nfSel);
/**
* @fn getWatchdogThreshold
* @brief read WDTH
* @return Return interference level
*/
uint8_t getWatchdogThreshold(void);
/**
* @fn setWatchdogThreshold
* @brief Set an anti-interference rating
* @param 0~7,More than 7 will use the default value:2
* @return None
*/
void setWatchdogThreshold(uint8_t wdth);
/**
* @fn getSpikeRejection
* @brief read SREJ (spike rejection)
* @return Return SREJ value
*/
uint8_t getSpikeRejection(void);
/**
* @fn setSpikeRejection
* @brief Modify SREJ (spike rejection)
* @param 0~7,More than 7 will use the default value:2
* @return None
*/
void setSpikeRejection(uint8_t srej);
/**
* @fn setLcoFdiv
* @brief Sets LCO_FDIV register
* @param fdiv Set 0, 1, 2 or 3 for ratios of 16, 32, 64 and 128, respectively
* @return None
*/
void setLcoFdiv(uint8_t fdiv);
/**
* @fn printAllRegs
* @brief view register data
* @return None
*/
void printAllRegs(void);
/**
* @fn powerUp
* @brief Configure sensor
* @return None
*/
void powerUp(void);
private:
uint8_t irq, devAdd;
uint8_t singRegRead(uint8_t regAdd);
void singRegWrite(uint8_t regAdd, uint8_t dataMask, uint8_t regData);
int reset(void);
void powerDown(void);
void calRCO(void);
void clearStatistics(void);
uint8_t setMinStrikes(uint8_t minStrk);
/**
* @fn writeReg
* @brief Write register value through IIC bus
* @param reg Register address 8bits
* @param pBuf Storage cache to write data in
* @param size The length of data to be written
*/
void writeReg(uint8_t reg, void *pBuf, size_t size);
//void writeRegNoStop(uint8_t reg, void *pBuf, size_t size)
/**
* @fn readReg
* @brief Read register value through IIC bus
* @param reg Register address 8bits
* @param pBuf Read data storage cache
* @param size Read the length of data
* @return Return the read length
*/
size_t readReg(uint8_t reg, void *pBuf, size_t size);
};
#endif

@ -1,504 +1,21 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).
To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
USA
Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James Random
Hacker.
<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice
That's all there is to it!
MIT License
Copyright (c) 2020 DFRobot
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

@ -0,0 +1,224 @@
# DFRobot_AS3935
* [English Version](./README.md)
AS3935雷电传感器可以检测雷电,显示雷电的距离和强度,不受电弧和噪声的干扰
可设置为室内或室外模式
![Product Image](./resources/images/SEN0290.png)
## 产品链接(https://www.dfrobot.com.cn/goods-1889.html)
SKU:SEN0290
## 目录
* [概述](#概述)
* [库安装](#库安装)
* [方法](#方法)
* [兼容性](#兼容性)
* [历史](#历史)
* [创作者](#创作者)
## 概述
从AS3935模块中输入命令和读取数据
1. 闪电传感器对半径40公里以内的雷暴活动发出警报
2. 从头顶到风暴顶部的距离估计为40公里,每15步
3.检测云对地和云内(云对云)闪烁
4. 嵌入人工干扰抑制算法
5. 可编程检测水平使阈值设置为最佳控制
6. 三个i2c接口,自由切换避免站点冲突
## 库安装
使用此库前,请首先下载库文件,将其粘贴到\Arduino\libraries目录中,然后打开examples文件夹并在该文件夹中运行演示。
## 方法
```C++
/**
* @fn begin
* @brief I2C初始化
* @return uint8_t 类型, 表示初始化状态
* @retval 0 成功
* @retval 1 失败
*/
uint8_t begin(void);
/**
* @brief 设置 i2c 地址
* @param devAddx i2c 地址
*/
void setI2CAddress(uint8_t devAddx);
/**
* @fn manualCal
* @brief 配置传感器
* @param capacitance 天线调谐电容(必须是8,8 - 120pf的整数倍)
* @param location 室内或室外模式选择
* @param disturber 启用/禁用干扰发射机检测
* @return None
*/
void manualCal(uint8_t capacitance, uint8_t location, uint8_t disturber);
/**
* @fn defInit
* @brief 将寄存器重置为默认值
* @return int 类型,表示rest状态
* @return 0 成功
*/
int defInit(void);
/**
* @fn disturberEn
* @brief 中断检测使能
* @return None
*/
void disturberEn(void);
/**
* @fn disturberDis
* @brief 中断检测失能
* @return None
*/
void disturberDis(void);
/**
* @fn setIRQOutputSource
* @brief 设置中断源
* @param irqSelect 0 = NONE, 1 = TRCO, 2 = SRCO, 3 = LCO
* @return None
*/
void setIRQOutputSource(uint8_t irqSelect);
/**
* @fn setTuningCaps
* @brief 设置容量
* @param capVal 容量大小
* @return None
*/
void setTuningCaps(uint8_t capVal);
/**
* @fn getInterruptSrc
* @brief 获取中断源
* @return uint8_t类型,返回中断源类型
* @retval 0 没有中断
* @retval 1 闪电引起的中断
* @retval 2 干扰中断
* @retval 3 噪声量太高
*/
uint8_t getInterruptSrc(void);
/**
* @fn getLightningDistKm
* @brief 获取闪电距离
* @return 闪电距离(单位公里)
*/
uint8_t getLightningDistKm(void);
/**
* @fn getStrikeEnergyRaw
* @brief 获取闪电能力强度
* @return 闪电能力强度(0-1000)
*/
uint32_t getStrikeEnergyRaw(void);
/**
* @fn setIndoors
* @brief 设置为室内模式
* @return None
*/
void setIndoors(void);
/**
* @fn setOutdoors
* @brief 设置为室外模式
* @return None
*/
void setOutdoors(void);
/**
* @fn getNoiseFloorLvl
* @brief 获取噪音等级
* @return 返回噪声等级
*/
uint8_t getNoiseFloorLvl(void);
/**
* @fn setNoiseFloorLvl
* @brief 设置噪音等级
* @param nfSel 0~7,大于7将使用默认值:2
* @return None
*/
void setNoiseFloorLvl(uint8_t nfSel);
/**
* @fn getWatchdogThreshold
* @brief 获取干扰等级
* @return 返回干扰等级
*/
uint8_t getWatchdogThreshold(void);
/**
* @fn setWatchdogThreshold
* @brief 设置干扰等级
* @param wdth 0~7,大于7将使用默认值:2
* @return None
*/
void setWatchdogThreshold(uint8_t wdth);
/**
* @fn getSpikeRejection
* @brief 获取 SREJ (毛刺抑制)
* @return 返回SREJ值
*/
uint8_t getSpikeRejection(void);
/**
* @fn setSpikeRejection
* @brief 修改 SREJ (毛刺抑制)
* @param 0~7,大于7将使用默认值:2
*/
void setSpikeRejection(uint8_t srej);
/**
* @fn setLcoFdiv
* @brief 设置 LCO_FDIV 寄存器
* @param fdiv 设置0, 1, 2或3的比率分别为16,32,64和128
* @return None
*/
void setLcoFdiv(uint8_t fdiv);
/**
* @fn printAllRegs
* @brief 查看注册数据
* @return None
*/
void printAllRegs(void);
/**
* @fn powerUp
* @brief 配置传感器电源
* @return None
*/
void powerUp(void);
```
## 兼容性
主板 | 通过 | 未通过 | 未测试 | 备注
------------------ | :----------: | :----------: | :---------: | -----
Arduino uno | √ | | |
esp8266 | √ | | |
## 历史
- 2021/09/30 - 1.0.2 版本
- 2021/08/24 - 1.0.1 版本
- 2019/09/28 - 1.0.0 版本
## 创作者
Written by TangJie(jie.Tang@dfrobot.com), 2019. (Welcome to our [website](https://www.dfrobot.com/))

@ -1,241 +0,0 @@
import time
import smbus
class DFRobot_AS3935:
def __init__(self, address, bus = 1):
self.address = address
self.i2cbus = smbus.SMBus(bus)
def writeByte(self, register, value):
try:
self.i2cbus.write_byte_data(self.address, register, value)
return 1
except:
return 0
def readData(self, register):
self.register = self.i2cbus.read_i2c_block_data(self.address, register)
def manualCal(self, capacitance, location, disturber):
self.powerUp()
if location == 1:
self.setIndoors()
else:
self.setOutdoors()
if disturber == 0:
self.disturberDis()
else:
self.disturberEn()
self.setIrqOutputSource(0)
time.sleep(0.5)
self.setTuningCaps(capacitance)
def setTuningCaps(self, capVal):
#Assume only numbers divisible by 8 (because that's all the chip supports)
if capVal > 120: #cap_value out of range, assume highest capacitance
self.singRegWrite(0x08, 0x0F, 0x0F) #set capacitance bits to maximum
else:
self.singRegWrite(0x08, 0x0F, capVal >> 3) #set capacitance bits
self.singRegRead(0x08)
#print('capacitance set to 8x%d'%(self.register[0] & 0x0F))
def powerUp(self):
#register 0x00, PWD bit: 0 (clears PWD)
self.singRegWrite(0x00, 0x01, 0x00)
self.calRCO() #run RCO cal cmd
self.singRegWrite(0x08, 0x20, 0x20) #set DISP_SRCO to 1
time.sleep(0.002)
self.singRegWrite(0x08, 0x20, 0x00) #set DISP_SRCO to 0
def powerDown(self):
#register 0x00, PWD bit: 0 (sets PWD)
self.singRegWrite(0x00, 0x01, 0x01)
def calRCO(self):
self.writeByte(0x3D, 0x96)
time.sleep(0.002)
def setIndoors(self):
self.singRegWrite(0x00, 0x3E, 0x24)
print("set to indoors model")
def setOutdoors(self):
self.singRegWrite(0x00, 0x3E, 0x1C)
print("set to outdoors model")
def disturberDis(self):
#register 0x03, PWD bit: 5 (sets MASK_DIST)
self.singRegWrite(0x03, 0x20, 0x20)
print("disenable disturber detection")
def disturberEn(self):
#register 0x03, PWD bit: 5 (sets MASK_DIST)
self.singRegWrite(0x03, 0x20, 0x00)
print("enable disturber detection")
def singRegWrite(self, regAdd, dataMask, regData):
#start by reading original register data (only modifying what we need to)
self.singRegRead(regAdd)
#calculate new register data... 'delete' old targeted data, replace with new data
#note: 'dataMask' must be bits targeted for replacement
#add'l note: this function does NOT shift values into the proper place... they need to be there already
newRegData = (self.register[0] & ~dataMask)|(regData & dataMask)
#finally, write the data to the register
self.writeByte(regAdd, newRegData)
#print('wrt: %02x'%newRegData)
self.singRegRead(regAdd)
#print('Act: %02x'%self.register[0])
def singRegRead(self,regAdd):
self.readData(regAdd)
def getInterruptSrc(self):
#definition of interrupt data on table 18 of datasheet
#for this function:
#0 = unknown src, 1 = lightning detected, 2 = disturber, 3 = Noise level too high
time.sleep(0.03) #wait 3ms before reading (min 2ms per pg 22 of datasheet)
self.singRegRead(0x03) #read register, get rid of non-interrupt data
intSrc = self.register[0]&0x0F
if intSrc == 0x08:
return 1 #lightning caused interrupt
elif intSrc == 0x04:
return 2 #disturber detected
elif intSrc == 0x01:
return 3 #Noise level too high
else:
return 0 #interrupt result not expected
def reset(self):
err = self.writeByte(0x3C, 0x96)
time.sleep(0.002) #wait 2ms to complete
return err
def setLcoFdiv(self,fdiv):
self.singRegWrite(0x03, 0xC0, (fdiv & 0x03) << 6)
def setIrqOutputSource(self, irqSelect):
#set interrupt source - what to display on IRQ pin
#reg 0x08, bits 5 (TRCO), 6 (SRCO), 7 (LCO)
#only one should be set at once, I think
#0 = NONE, 1 = TRCO, 2 = SRCO, 3 = LCO
if irqSelect == 1:
self.singRegWrite(0x08, 0xE0, 0x20) #set only TRCO bit
elif irqSelect == 2:
self.singRegWrite(0x08, 0xE0, 0x40) #set only SRCO bit
elif irqSelect == 3:
self.singRegWrite(0x08, 0xE0, 0x80) #set only SRCO bit
else:
self.singRegWrite(0x08, 0xE0, 0x00) #clear IRQ pin display bits
def getLightningDistKm(self):
self.singRegRead(0x07) #read register, get rid of non-distance data
return self.register[0]&0x3F
def getStrikeEnergyRaw(self):
self.singRegRead(0x06) #MMSB, shift 8 bits left, make room for MSB
nrgyRaw = (self.register[0]&0x1F) << 8
self.singRegRead(0x05) #read MSB
nrgyRaw |= self.register[0]
nrgyRaw <<= 8 #shift 8 bits left, make room for LSB
self.singRegRead(0x04) #read LSB, add to others
nrgyRaw |= self.register[0]
return nrgyRaw/16777
def setMinStrikes(self, minStrk):
#This function sets min strikes to the closest available number, rounding to the floor,
#where necessary, then returns the physical value that was set. Options are 1, 5, 9 or 16 strikes.
if minStrk < 5:
self.singRegWrite(0x02, 0x30, 0x00)
return 1
elif minStrk < 9:
self.singRegWrite(0x02, 0x30, 0x10)
return 5
elif minStrk < 16:
self.singRegWrite(0x02, 0x30, 0x20)
return 9
else:
self.singRegWrite(0x02, 0x30, 0x30)
return 16
def clearStatistics(self):
#clear is accomplished by toggling CL_STAT bit 'high-low-high' (then set low to move on)
self.singRegWrite(0x02, 0x40, 0x40) #high
self.singRegWrite(0x02, 0x40, 0x00) #low
self.singRegWrite(0x02, 0x40, 0x40) #high
def getNoiseFloorLv1(self):
#NF settings addres 0x01, bits 6:4
#default setting of 010 at startup (datasheet, table 9)
self.singRegRead(0x01) #read register 0x01
return (self.register[0] & 0x70) >> 4 #should return value from 0-7, see table 16 for info
def setNoiseFloorLv1(self, nfSel):
#NF settings addres 0x01, bits 6:4
#default setting of 010 at startup (datasheet, table 9)
if nfSel <= 7: #nfSel within expected range
self.singRegWrite(0x01, 0x70, (nfSel & 0x07) << 4)
else: #out of range, set to default (power-up value 010)
self.singRegWrite(0x01, 0x70, 0x20)
def getWatchdogThreshold(self):
#This function is used to read WDTH. It is used to increase robustness to disturbers,
#though will make detection less efficient (see page 19, Fig 20 of datasheet)
#WDTH register: add 0x01, bits 3:0
#default value of 0010
#values should only be between 0x00 and 0x0F (0 and 7)
self.singRegRead(0x01)
return self.register[0] & 0x0F
def setWatchdogThreshold(self, wdth):
#This function is used to modify WDTH. It is used to increase robustness to disturbers,
#though will make detection less efficient (see page 19, Fig 20 of datasheet)
#WDTH register: add 0x01, bits 3:0
#default value of 0010
#values should only be between 0x00 and 0x0F (0 and 7)
self.singRegWrite(0x01, 0x0F, wdth & 0x0F)
def getSpikeRejection(self):
#This function is used to read SREJ (spike rejection). Similar to the Watchdog threshold,
#it is used to make the system more robust to disturbers, though will make general detection
#less efficient (see page 20-21, especially Fig 21 of datasheet)
#SREJ register: add 0x02, bits 3:0
#default value of 0010
#values should only be between 0x00 and 0x0F (0 and 7)
self.singRegRead(0x02)
return self.register[0] & 0x0F
def setSpikeRejection(self, srej):
#This function is used to modify SREJ (spike rejection). Similar to the Watchdog threshold,
#it is used to make the system more robust to disturbers, though will make general detection
#less efficient (see page 20-21, especially Fig 21 of datasheet)
#WDTH register: add 0x02, bits 3:0
#default value of 0010
#values should only be between 0x00 and 0x0F (0 and 7)
self.singRegWrite(0x02, 0x0F, srej & 0x0F)
def printAllRegs(self):
self.singRegRead(0x00)
print("Reg 0x00: %02x"%self.register[0])
self.singRegRead(0x01)
print("Reg 0x01: %02x"%self.register[0])
self.singRegRead(0x02)
print("Reg 0x02: %02x"%self.register[0])
self.singRegRead(0x03)
print("Reg 0x03: %02x"%self.register[0])
self.singRegRead(0x04)
print("Reg 0x04: %02x"%self.register[0])
self.singRegRead(0x05)
print("Reg 0x05: %02x"%self.register[0])
self.singRegRead(0x06)
print("Reg 0x06: %02x"%self.register[0])
self.singRegRead(0x07)
print("Reg 0x07: %02x"%self.register[0])
self.singRegRead(0x08)
print("Reg 0x08: %02x"%self.register[0])

@ -1,158 +0,0 @@
## DFRobot_AS3935_Lib.py Library for Raspberry pi
---------------------------------------------------------
This is the sample code for Gravity:Lightning Sensor, SKU: SEN0292.
## Table of Contents
* [Installation](#installation)
* [Methods](#methods)
<snippet>
<content>
## Installation
The Lightning Sensor should work with AS3935
(https://github.com/DFRobot/DFRobot_AS3935/tree/master/RaspberryPi/Python)
Run the program:
```cpp
$> python DFRobot_AS3935.py
```
## Methods
```C++
/*
* @brief Init The Lightning Sensor
*
* @param address I2C address(1~3)
* bus I2C bus
*/
DFRobot_AS3935(address, bus);
/*
* @brief Sensor reset
*/
def reset(self);
/*
* @brief Configure sensor
*
* @param capacitance Antenna tuning capcitance (must be integer multiple of 8, 8 - 120 pf)
* location Indoor/outdoor mode selection
* disturber Enable/disable disturber detection
*/
def manualCal(self, capacitance, location, disturber);
/*
* @brief Get mid-range type
*
* @return 0 Unknown src
* 1 Lightning detected
* 2 Disturber
* 3 Noise level too high
*/
def getInterruptSrc(self);
/*
* @brief get lightning distance
*
* @return unit kilometer
*/
def getLightningDistKm(self);
/*
* @brief get lightning energy intensity
*
* @return lightning energy intensity(0-1000)
*/
def getStrikeEnergyRaw(self);
/*
* @brief Sets LCO_FDIV register
*
* @param fdiv Set 0, 1, 2 or 3 for ratios of 16, 32, 64 and 128, respectively
*/
def setLcoFdiv(self,fdiv);
/*
* @brief Set interrupt source
*
* @param irqSelect 0 = NONE, 1 = TRCO, 2 = SRCO, 3 = LCO
*/
def setIrqOutputSource(self, irqSelect);
/*
* @brief Set to the outdoor model
*/
def setOutdoors(self);
/*
* @brief Set to the indoor model
*/
def setIndoors(self);
/*
* @brief Disturber detection enabled
*/
def disturberEn(self);
/*
* @brief Disturber detection disenabled
*/
def disturberDis(self);
/*
* @brief Set the noise level
*
* @param 0~7,More than 7 will use the default value:2
*/
def setNoiseFloorLv1(self, nfSel);
/*
* @brief Get the noise level
*
* @return 0~7
*/
def getNoiseFloorLv1(self);
/*
* @brief Set an anti-interference rating
*
* @param 0~7,More than 7 will use the default value:2
*/
def setWatchdogThreshold(self, wdth);
/*
* @brief read WDTH
*
* @return 0~7
*/
def getWatchdogThreshold(self);
/*
* @brief Modify SREJ (spike rejection)
*
* @param 0~7,More than 7 will use the default value:2
*/
def setSpikeRejection(self, srej);
/*
* @brief read SREJ (spike rejection)
*
* @return 0~7
*/
def getSpikeRejection(self);
```
## Credits
Written by DFRobot_JH, 2018. (Welcome to our [website](https://www.dfrobot.com/))

@ -1,108 +0,0 @@
# file DFRobot_AS3935_detailed.py
#
# SEN0290 Lightning Sensor
# This sensor can detect lightning and display the distance and intensity of the lightning within 40 km
# It can be set as indoor or outdoor mode.
# The module has three I2C, these addresses are:
# AS3935_ADD1 0x01 A0 = 1 A1 = 0
# AS3935_ADD2 0x02 A0 = 0 A1 = 1
# AS3935_ADD3 0x03 A0 = 1 A1 = 1
#
#
# Copyright [DFRobot](http://www.dfrobot.com), 2018
# Copyright GNU Lesser General Public License
#
# version V1.0
# date 2018-11-28
import sys
sys.path.append('../')
import time
from DFRobot_AS3935_Lib import DFRobot_AS3935
import RPi.GPIO as GPIO
from datetime import datetime
#I2C address
AS3935_I2C_ADDR1 = 0X01
AS3935_I2C_ADDR2 = 0X02
AS3935_I2C_ADDR3 = 0X03
#Antenna tuning capcitance (must be integer multiple of 8, 8 - 120 pf)
AS3935_CAPACITANCE = 96
IRQ_PIN = 7
GPIO.setmode(GPIO.BOARD)
sensor = DFRobot_AS3935(AS3935_I2C_ADDR3, bus = 1)
if (sensor.reset()):
print("init sensor sucess.")
else:
print("init sensor fail")
while True:
pass
#Configure sensor
sensor.powerUp()
#set indoors or outdoors models
sensor.setIndoors()
#sensor.setOutdoors()
#disturber detection
sensor.disturberEn()
#sensor.disturberDis()
sensor.setIrqOutputSource(0)
time.sleep(0.5)
#set capacitance
sensor.setTuningCaps(AS3935_CAPACITANCE)
# Connect the IRQ and GND pin to the oscilloscope.
# uncomment the following sentences to fine tune the antenna for better performance.
# This will dispaly the antenna's resonance frequency/16 on IRQ pin (The resonance frequency will be divided by 16 on this pin)
# Tuning AS3935_CAPACITANCE to make the frequency within 500/16 kHz plus 3.5% to 500/16 kHz minus 3.5%
#
# sensor.setLcoFdiv(0)
# sensor.setIrqOutputSource(3)
#Set the noise level,use a default value greater than 7
sensor.setNoiseFloorLv1(2)
#noiseLv = sensor.getNoiseFloorLv1()
#used to modify WDTH,alues should only be between 0x00 and 0x0F (0 and 7)
sensor.setWatchdogThreshold(2)
#wtdgThreshold = sensor.getWatchdogThreshold()
#used to modify SREJ (spike rejection),values should only be between 0x00 and 0x0F (0 and 7)
sensor.setSpikeRejection(2)
#spikeRejection = sensor.getSpikeRejection()
#view all register data
#sensor.printAllRegs()
def callback_handle(channel):
global sensor
time.sleep(0.005)
intSrc = sensor.getInterruptSrc()
if intSrc == 1:
lightningDistKm = sensor.getLightningDistKm()
print('Lightning occurs!')
print('Distance: %dkm'%lightningDistKm)
lightningEnergyVal = sensor.getStrikeEnergyRaw()
print('Intensity: %d '%lightningEnergyVal)
elif intSrc == 2:
print('Disturber discovered!')
elif intSrc == 3:
print('Noise level too high!')
else:
pass
#Set to input mode
GPIO.setup(IRQ_PIN, GPIO.IN)
#Set the interrupt pin, the interrupt function, rising along the trigger
GPIO.add_event_detect(IRQ_PIN, GPIO.RISING, callback = callback_handle)
print("start lightning detect.")
while True:
time.sleep(1.0)

@ -1,94 +0,0 @@
# file DFRobot_AS3935_ordinary.py
#
# SEN0290 Lightning Sensor
# This sensor can detect lightning and display the distance and intensity of the lightning within 40 km
# It can be set as indoor or outdoor mode.
# The module has three I2C, these addresses are:
# AS3935_ADD1 0x01 A0 = 1 A1 = 0
# AS3935_ADD2 0x02 A0 = 0 A1 = 1
# AS3935_ADD3 0x03 A0 = 1 A1 = 1
#
#
# Copyright [DFRobot](http://www.dfrobot.com), 2018
# Copyright GNU Lesser General Public License
#
# version V1.0
# date 2018-11-28
import sys
sys.path.append('../')
import time
from DFRobot_AS3935_Lib import DFRobot_AS3935
import RPi.GPIO as GPIO
from datetime import datetime
#I2C address
AS3935_I2C_ADDR1 = 0X01
AS3935_I2C_ADDR2 = 0X02
AS3935_I2C_ADDR3 = 0X03
#Antenna tuning capcitance (must be integer multiple of 8, 8 - 120 pf)
AS3935_CAPACITANCE = 96
IRQ_PIN = 7
#Indoor/outdoor mode selection
AS3935_INDOORS = 0
AS3935_OUTDOORS = 1
AS3935_MODE = AS3935_INDOORS
#Enable/disable disturber detection
AS3935_DIST_DIS = 0
AS3935_DIST_EN = 1
AS3935_DIST = AS3935_DIST_EN
GPIO.setmode(GPIO.BOARD)
sensor = DFRobot_AS3935(AS3935_I2C_ADDR3, bus = 1)
if (sensor.reset()):
print("init sensor sucess.")
else:
print("init sensor fail")
while True:
pass
#Configure sensor
sensor.manualCal(AS3935_CAPACITANCE, AS3935_MODE, AS3935_DIST)
# Connect the IRQ and GND pin to the oscilloscope.
# uncomment the following sentences to fine tune the antenna for better performance.
# This will dispaly the antenna's resonance frequency/16 on IRQ pin (The resonance frequency will be divided by 16 on this pin)
# Tuning AS3935_CAPACITANCE to make the frequency within 500/16 kHz plus 3.5% to 500/16 kHz minus 3.5%
#
# sensor.setLcoFdiv(0)
# sensor.setIrqOutputSource(3)
#view all register data
#sensor.printAllRegs()
def callback_handle(channel):
global sensor
time.sleep(0.005)
intSrc = sensor.getInterruptSrc()
if intSrc == 1:
lightningDistKm = sensor.getLightningDistKm()
print('Lightning occurs!')
print('Distance: %dkm'%lightningDistKm)
lightningEnergyVal = sensor.getStrikeEnergyRaw()
print('Intensity: %d '%lightningEnergyVal)
elif intSrc == 2:
print('Disturber discovered!')
elif intSrc == 3:
print('Noise level too high!')
else:
pass
#Set to input mode
GPIO.setup(IRQ_PIN, GPIO.IN)
#Set the interrupt pin, the interrupt function, rising along the trigger
GPIO.add_event_detect(IRQ_PIN, GPIO.RISING, callback = callback_handle)
print("start lightning detect.")
while True:
time.sleep(1.0)

@ -1,21 +1,20 @@
/*!
file DFRobot_AS3935_lightning_sensor.ino
* @file DFRobot_AS3935_lightning_sensor_detailed.ino
* @brief SEN0290 Lightning Sensor
* @n This sensor can detect lightning and display the distance and intensity of the lightning within 40 km
* @n It can be set as indoor or outdoor mode.
* @n The module has three I2C, these addresses are:
* @n AS3935_ADD1 0x01 A0 = 1 A1 = 0
* @n AS3935_ADD2 0x02 A0 = 0 A1 = 1
* @n AS3935_ADD3 0x03 A0 = 1 A1 = 1
* @copyright Copyright (c) 2010 DFRobot Co.Ltd (http://www.dfrobot.com)
* @license The MIT License (MIT)
* @author [TangJie](jie.tang@dfrobot.com)
* @version V1.0.2
* @date 2019-09-28
* @url https://github.com/DFRobor/DFRobot_AS3935
*/
SEN0290 Lightning Sensor
This sensor can detect lightning and display the distance and intensity of the lightning within 40 km
It can be set as indoor or outdoor mode.
The module has three I2C, these addresses are:
AS3935_ADD1 0x01 A0 = 1 A1 = 0
AS3935_ADD2 0x02 A0 = 0 A1 = 1
AS3935_ADD3 0x03 A0 = 1 A1 = 1
Copyright [DFRobot](http://www.dfrobot.com), 2018
Copyright GNU Lesser General Public License
version V1.1
date 2021-08-24
*/
#include "DFRobot_AS3935_I2C.h"
@ -28,8 +27,6 @@ volatile int8_t AS3935IsrTrig = 0;
#define IRQ_PIN 2
#endif
// Antenna tuning capcitance (must be integer multiple of 8, 8 - 120 pf)
#define AS3935_CAPACITANCE 96
@ -48,8 +45,7 @@ void setup()
lightning0.setI2CAddress(AS3935_ADD3);
while (lightning0.begin() != 0)
{
while (lightning0.begin() != 0){
Serial.print(".");
}
lightning0.defInit();
@ -109,8 +105,7 @@ void loop()
// Get interrupt source
uint8_t intSrc = lightning0.getInterruptSrc();
if (intSrc == 1)
{
if (intSrc == 1){
// Get rid of non-distance data
uint8_t lightningDistKm = lightning0.getLightningDistKm();
Serial.println("Lightning occurs!");
@ -123,16 +118,11 @@ void loop()
Serial.print("Intensity: ");
Serial.print(lightningEnergyVal);
Serial.println("");
}
else if (intSrc == 2)
{
}else if (intSrc == 2){
Serial.println("Disturber discovered!");
}
else if (intSrc == 3)
{
}else if (intSrc == 3){
Serial.println("Noise level too high!");
}
//View register data
//lightning0.printAllRegs();
}

@ -1,20 +1,19 @@
/*!
file DFRobot_AS3935_lightning_sensor.ino
SEN0290 Lightning Sensor
This sensor can detect lightning and display the distance and intensity of the lightning within 40 km
It can be set as indoor or outdoor mode.
The module has three I2C, these addresses are:
AS3935_ADD1 0x01 A0 = 1 A1 = 0
AS3935_ADD2 0x02 A0 = 0 A1 = 1
AS3935_ADD3 0x03 A0 = 1 A1 = 1
Copyright [DFRobot](http://www.dfrobot.com), 2018
Copyright GNU Lesser General Public License
version V1.1
date 2021-08-24
*/
* @file DFRobot_AS3935_lightning_sensor_ordinary.ino
* @brief SEN0290 Lightning Sensor
* @n This sensor can detect lightning and display the distance and intensity of the lightning within 40 km
* @n It can be set as indoor or outdoor mode.
* @n The module has three I2C, these addresses are:
* @n AS3935_ADD1 0x01 A0 = 1 A1 = 0
* @n AS3935_ADD2 0x02 A0 = 0 A1 = 1
* @n AS3935_ADD3 0x03 A0 = 1 A1 = 1
* @copyright Copyright (c) 2010 DFRobot Co.Ltd (http://www.dfrobot.com)
* @license The MIT License (MIT)
* @author [TangJie](jie.tang@dfrobot.com)
* @version V1.0.2
* @date 2019-09-28
* @url https://github.com/DFRobor/DFRobot_AS3935
*/
#include "DFRobot_AS3935_I2C.h"
@ -52,8 +51,7 @@ void setup()
Serial.begin(115200);
Serial.println("DFRobot AS3935 lightning sensor begin!");
while (lightning0.begin() != 0)
{
while (lightning0.begin() != 0){
Serial.print(".");
}
lightning0.defInit();
@ -88,8 +86,7 @@ void loop()
// Get interrupt source
uint8_t intSrc = lightning0.getInterruptSrc();
if (intSrc == 1)
{
if (intSrc == 1){
// Get rid of non-distance data
uint8_t lightningDistKm = lightning0.getLightningDistKm();
Serial.println("Lightning occurs!");
@ -102,18 +99,12 @@ void loop()
Serial.print("Intensity: ");
Serial.print(lightningEnergyVal);
Serial.println("");
}
else if (intSrc == 2)
{
}else if (intSrc == 2){
Serial.println("Disturber discovered!");
}
else if (intSrc == 3)
{
}else if (intSrc == 3){
Serial.println("Noise level too high!");
}
}
//IRQ handler for AS3935 interrupts
void AS3935_ISR()
{

@ -0,0 +1,9 @@
name=DFRobot_AS3935
version=1.0.2
author=DFRobot
maintainer=TangJie <jie.tang@dfrobot.com>
sentence=DFRobot Lightning Sensor library.(SKU:SEN0290)
paragraph=DFRobot_AS3935 is the lightning sensor library of DFRobot.
category=Sensors
url=https://github.com/DFRobot/DFRobot_AS3935
architectures=*

@ -0,0 +1,319 @@
'''!
@file DFRobot_AS3935_Lib.py
@brief Define the DFRobot_AS3935 class infrastructure, the implementation of the base method
@copyright Copyright (c) 2010 DFRobot Co.Ltd (http://www.dfrobot.com)
@license The MIT License (MIT)
@author TangJie(jie.tamg@dfrobot.com)
@version V1.0.2
@date 2021-9-28
@url https://github.com/DFRobot/DFRobot_AS3935
'''
import time
import smbus
class DFRobot_AS3935:
def __init__(self, address, bus = 1):
self.address = address
self.i2cbus = smbus.SMBus(bus)
def write_byte(self, register, value):
try:
self.i2cbus.write_byte_data(self.address, register, value)
return 1
except:
return 0
def read_data(self, register):
self.register = self.i2cbus.read_i2c_block_data(self.address, register)
'''!
@brief Configure sensor
@param capacitance Antenna tuning capcitance (must be integer multiple of 8, 8 - 120 pf)
@param location Indoor/outdoor mode selection
@param disturber Enable/disable disturber detection
'''
def manual_cal(self, capacitance, location, disturber):
self.powerUp()
if location == 1:
self.setIndoors()
else:
self.setOutdoors()
if disturber == 0:
self.disturberDis()
else:
self.disturberEn()
self.setIrqOutputSource(0)
time.sleep(0.5)
self.setTuningCaps(capacitance)
def set_tuning_caps(self, capVal):
#Assume only numbers divisible by 8 (because that's all the chip supports)
if capVal > 120: #cap_value out of range, assume highest capacitance
self.singRegWrite(0x08, 0x0F, 0x0F) #set capacitance bits to maximum
else:
self.singRegWrite(0x08, 0x0F, capVal >> 3) #set capacitance bits
self.singRegRead(0x08)
#print('capacitance set to 8x%d'%(self.register[0] & 0x0F))
def power_up(self):
#register 0x00, PWD bit: 0 (clears PWD)
self.singRegWrite(0x00, 0x01, 0x00)
self.calRCO() #run RCO cal cmd
self.singRegWrite(0x08, 0x20, 0x20) #set DISP_SRCO to 1
time.sleep(0.002)
self.singRegWrite(0x08, 0x20, 0x00) #set DISP_SRCO to 0
def power_down(self):
#register 0x00, PWD bit: 0 (sets PWD)
self.singRegWrite(0x00, 0x01, 0x01)
def cal_RCO(self):
self.writeByte(0x3D, 0x96)
time.sleep(0.002)
'''!
@brief Disturber detection enabled
'''
def set_indoors(self):
self.singRegWrite(0x00, 0x3E, 0x24)
print("set to indoors model")
'''!
@brief Set to the outdoor model
'''
def set_outdoors(self):
self.singRegWrite(0x00, 0x3E, 0x1C)
print("set to outdoors model")
'''!
@brief Disturber detection disenabled
'''
def disturber_dis(self):
#register 0x03, PWD bit: 5 (sets MASK_DIST)
self.singRegWrite(0x03, 0x20, 0x20)
print("disenable disturber detection")
'''!
@brief Disturber detection enabled
'''
def disturber_en(self):
#register 0x03, PWD bit: 5 (sets MASK_DIST)
self.singRegWrite(0x03, 0x20, 0x00)
print("enable disturber detection")
def sing_reg_write(self, regAdd, dataMask, regData):
#start by reading original register data (only modifying what we need to)
self.singRegRead(regAdd)
#calculate new register data... 'delete' old targeted data, replace with new data
#note: 'dataMask' must be bits targeted for replacement
#add'l note: this function does NOT shift values into the proper place... they need to be there already
newRegData = (self.register[0] & ~dataMask)|(regData & dataMask)
#finally, write the data to the register
self.writeByte(regAdd, newRegData)
#print('wrt: %02x'%newRegData)
self.singRegRead(regAdd)
#print('Act: %02x'%self.register[0])
def sing_reg_read(self,regAdd):
self.readData(regAdd)
'''!
@brief Get mid-range type
@return Return to interrupted state
@retval 0 Unknown src
@retval 1 Lightning detected
@retval 2 Disturber
@retval 3 Noise level too high
'''
def get_interrupt_src(self):
#definition of interrupt data on table 18 of datasheet
#for this function:
#0 = unknown src, 1 = lightning detected, 2 = disturber, 3 = Noise level too high
time.sleep(0.03) #wait 3ms before reading (min 2ms per pg 22 of datasheet)
self.singRegRead(0x03) #read register, get rid of non-interrupt data
intSrc = self.register[0]&0x0F
if intSrc == 0x08:
return 1 #lightning caused interrupt
elif intSrc == 0x04:
return 2 #disturber detected
elif intSrc == 0x01:
return 3 #Noise level too high
else:
return 0 #interrupt result not expected
'''!
@brief Sensor reset
'''
def reset(self):
err = self.writeByte(0x3C, 0x96)
time.sleep(0.002) #wait 2ms to complete
return err
'''!
@brief Sets LCO_FDIV register
@param fdiv Set 0, 1, 2 or 3 for ratios of 16, 32, 64 and 128, respectively
'''
def set_lco_fdiv(self,fdiv):
self.singRegWrite(0x03, 0xC0, (fdiv & 0x03) << 6)
'''!
@brief Set interrupt source
@param irqSelect 0 = NONE, 1 = TRCO, 2 = SRCO, 3 = LCO
'''
def set_irq_output_source(self, irqSelect):
#set interrupt source - what to display on IRQ pin
#reg 0x08, bits 5 (TRCO), 6 (SRCO), 7 (LCO)
#only one should be set at once, I think
#0 = NONE, 1 = TRCO, 2 = SRCO, 3 = LCO
if irqSelect == 1:
self.singRegWrite(0x08, 0xE0, 0x20) #set only TRCO bit
elif irqSelect == 2:
self.singRegWrite(0x08, 0xE0, 0x40) #set only SRCO bit
elif irqSelect == 3:
self.singRegWrite(0x08, 0xE0, 0x80) #set only SRCO bit
else:
self.singRegWrite(0x08, 0xE0, 0x00) #clear IRQ pin display bits
'''
@brief get lightning distance
@return unit kilometer
'''
def get_lightning_distKm(self):
self.singRegRead(0x07) #read register, get rid of non-distance data
return self.register[0]&0x3F
'''
@brief get lightning energy intensity
@return lightning energy intensity(0-1000)
'''
def get_strike_energy_raw(self):
self.singRegRead(0x06) #MMSB, shift 8 bits left, make room for MSB
nrgyRaw = (self.register[0]&0x1F) << 8
self.singRegRead(0x05) #read MSB
nrgyRaw |= self.register[0]
nrgyRaw <<= 8 #shift 8 bits left, make room for LSB
self.singRegRead(0x04) #read LSB, add to others
nrgyRaw |= self.register[0]
return nrgyRaw/16777
def set_min_strikes(self, minStrk):
#This function sets min strikes to the closest available number, rounding to the floor,
#where necessary, then returns the physical value that was set. Options are 1, 5, 9 or 16 strikes.
if minStrk < 5:
self.singRegWrite(0x02, 0x30, 0x00)
return 1
elif minStrk < 9:
self.singRegWrite(0x02, 0x30, 0x10)
return 5
elif minStrk < 16:
self.singRegWrite(0x02, 0x30, 0x20)
return 9
else:
self.singRegWrite(0x02, 0x30, 0x30)
return 16
def clear_statistics(self):
#clear is accomplished by toggling CL_STAT bit 'high-low-high' (then set low to move on)
self.singRegWrite(0x02, 0x40, 0x40) #high
self.singRegWrite(0x02, 0x40, 0x00) #low
self.singRegWrite(0x02, 0x40, 0x40) #high
'''
@brief Get the noise level
@return 0~7
'''
def get_noise_floor_lv1(self):
#NF settings addres 0x01, bits 6:4
#default setting of 010 at startup (datasheet, table 9)
self.singRegRead(0x01) #read register 0x01
return (self.register[0] & 0x70) >> 4 #should return value from 0-7, see table 16 for info
'''
@brief Set the noise level
@param 0~7,More than 7 will use the default value:2
'''
def set_noise_floor_lv1(self, nfSel):
#NF settings addres 0x01, bits 6:4
#default setting of 010 at startup (datasheet, table 9)
if nfSel <= 7: #nfSel within expected range
self.singRegWrite(0x01, 0x70, (nfSel & 0x07) << 4)
else: #out of range, set to default (power-up value 010)
self.singRegWrite(0x01, 0x70, 0x20)
'''
@brief read WDTH
@return Return interference level
'''
def get_watchdog_threshold(self):
#This function is used to read WDTH. It is used to increase robustness to disturbers,
#though will make detection less efficient (see page 19, Fig 20 of datasheet)
#WDTH register: add 0x01, bits 3:0
#default value of 0010
#values should only be between 0x00 and 0x0F (0 and 7)
self.singRegRead(0x01)
return self.register[0] & 0x0F
'''
@brief Set an anti-interference rating
@param 0~7,More than 7 will use the default value:2
'''
def set_watchdog_threshold(self, wdth):
#This function is used to modify WDTH. It is used to increase robustness to disturbers,
#though will make detection less efficient (see page 19, Fig 20 of datasheet)
#WDTH register: add 0x01, bits 3:0
#default value of 0010
#values should only be between 0x00 and 0x0F (0 and 7)
self.singRegWrite(0x01, 0x0F, wdth & 0x0F)
'''
@brief read SREJ (spike rejection)
@return Return SREJ value
'''
def get_spike_rejection(self):
#This function is used to read SREJ (spike rejection). Similar to the Watchdog threshold,
#it is used to make the system more robust to disturbers, though will make general detection
#less efficient (see page 20-21, especially Fig 21 of datasheet)
#SREJ register: add 0x02, bits 3:0
#default value of 0010
#values should only be between 0x00 and 0x0F (0 and 7)
self.singRegRead(0x02)
return self.register[0] & 0x0F
'''
@brief Modify SREJ (spike rejection)
@param 0~7,More than 7 will use the default value:2
'''
def set_spike_rejection(self, srej):
#This function is used to modify SREJ (spike rejection). Similar to the Watchdog threshold,
#it is used to make the system more robust to disturbers, though will make general detection
#less efficient (see page 20-21, especially Fig 21 of datasheet)
#WDTH register: add 0x02, bits 3:0
#default value of 0010
#values should only be between 0x00 and 0x0F (0 and 7)
self.singRegWrite(0x02, 0x0F, srej & 0x0F)
def print_all_regs(self):
self.singRegRead(0x00)
print("Reg 0x00: %02x"%self.register[0])
self.singRegRead(0x01)
print("Reg 0x01: %02x"%self.register[0])
self.singRegRead(0x02)
print("Reg 0x02: %02x"%self.register[0])
self.singRegRead(0x03)
print("Reg 0x03: %02x"%self.register[0])
self.singRegRead(0x04)
print("Reg 0x04: %02x"%self.register[0])
self.singRegRead(0x05)
print("Reg 0x05: %02x"%self.register[0])
self.singRegRead(0x06)
print("Reg 0x06: %02x"%self.register[0])
self.singRegRead(0x07)
print("Reg 0x07: %02x"%self.register[0])
self.singRegRead(0x08)
print("Reg 0x08: %02x"%self.register[0])

@ -0,0 +1,179 @@
# DFRobot_AS3935
* [中文版](./README_CN.md)
AS3935 Lightning Sensor can detect lightning and display the distance and intensity of the lightning without the disturbance of electric arc and noise.
It can be set as indoor or outdoor mode.
![Product Image](./resources/images/SEN0290.png)
## 产品链接(https://www.dfrobot.com/product-1828.html)
SKU:SEN0290
## Table of Contents
* [Summary](#summary)
* [Installation](#Installation)
* [Methods](#Methods)
* [Compatibility](#compatibility)
* [History](#history)
* [Credits](#credits)
## Summary
Input commands and read data from AS3935 modules
1. Lightning sensor warns of lightning storm activity within a radius of 40km
2. Distance estimation to the head of the storm from overhead to 40km in 15 steps
3. Detects both cloud-to-ground and intra-cloud(cloud-to-cloud) flashes
4. Embedded man-made disturber rejection algorithm
5. Programmable detection levels enable threshold setting for optimal controls
6. Three i2c interfaces, switch freely to avoid site conflicts
## Installation
To use the library, first download it to Raspberry Pi, then open the routines folder.To execute a routine demox.py, type Python demox.py on the command line.For example, to execute the control_LEd.py routine, you need to enter:
```python
python DFRobot_AS3935_detailed.py
```
## Methods
```python
'''
@brief Sensor reset
'''
def reset(self);
'''
@brief Configure sensor
@param capacitance Antenna tuning capcitance (must be integer multiple of 8, 8 - 120 pf)
@param location Indoor/outdoor mode selection
@param disturber Enable/disable disturber detection
'''
def manual_cal(self, capacitance, location, disturber);
'''
@brief Get mid-range type
@return Return to interrupted state
@retval 0 Unknown src
@retval 1 Lightning detected
@retval 2 Disturber
@retval 3 Noise level too high
'''
def get_interrupt_src(self);
'''
@brief get lightning distance
@return unit kilometer
'''
def get_lightning_distKm(self);
'''
@brief get lightning energy intensity
@return lightning energy intensity(0-1000)
'''
def get_strike_energy_raw(self);
'''
@brief Sets LCO_FDIV register
@param fdiv Set 0, 1, 2 or 3 for ratios of 16, 32, 64 and 128, respectively
'''
def set_lco_fdiv(self,fdiv);
'''
@brief Set interrupt source
@param irqSelect 0 = NONE, 1 = TRCO, 2 = SRCO, 3 = LCO
'''
def set_irq_output_source(self, irqSelect);
'''
@brief Set to the outdoor model
'''
def set_outdoors(self);
'''
@brief Set to the indoor model
'''
def set_indoors(self);
'''
@brief Disturber detection enabled
'''
def disturber_en(self);
'''
@brief Disturber detection disenabled
'''
def disturber_dis(self);
'''
@brief Set the noise level
@param 0~7,More than 7 will use the default value:2
'''
def set_noise_floor_lv1(self, nfSel);
'''
@brief Get the noise level
@return 0~7
'''
def get_noise_floor_lv1(self);
'''
@brief Set an anti-interference rating
@param 0~7,More than 7 will use the default value:2
'''
def set_watchdog_threshold(self, wdth);
'''
@brief read WDTH
@return 0~7
'''
def get_watchdog_threshold(self);
'''
@brief Modify SREJ (spike rejection)
@param 0~7,More than 7 will use the default value:2
'''
def set_spike_rejection(self, srej);
'''
@brief read SREJ (spike rejection)
@return 0~7
'''
def get_spike_rejection(self);
```
## Compatibility
* RaspberryPi Version
| Board | Work Well | Work Wrong | Untested | Remarks |
| ------------ | :-------: | :--------: | :------: | ------- |
| RaspberryPi2 | | | √ | |
| RaspberryPi3 | | | √ | |
| RaspberryPi4 | √ | | | |
* Python Version
| Python | Work Well | Work Wrong | Untested | Remarks |
| ------- | :-------: | :--------: | :------: | ------- |
| Python2 | √ | | | |
| Python3 | √ | | | |
## History
- 2021/09/30 - Version 1.0.2 released.
- 2021/08/24 - Version 1.0.1 released.
- 2019/09/28 - Version 1.0.0 released.
## Credits
Written by TangJie(jie.Tang@dfrobot.com), 2019. (Welcome to our [website](https://www.dfrobot.com/))

@ -0,0 +1,173 @@
# DFRobot_AS3935
* [English Version](./README.md)
AS3935雷电传感器可以检测雷电,显示雷电的距离和强度,不受电弧和噪声的干扰
可设置为室内或室外模式
![Product Image](./resources/images/SEN0290.png)
## 产品链接(https://www.dfrobot.com.cn/goods-1889.html)
SKU:SEN0290
## 目录
* [概述](#概述)
* [库安装](#库安装)
* [方法](#方法)
* [兼容性](#兼容性)
* [历史](#历史)
* [创作者](#创作者)
## 概述
从AS3935模块中输入命令和读取数据
1. 闪电传感器对半径40公里以内的雷暴活动发出警报
2. 从头顶到风暴顶部的距离估计为40公里,每15步
3. 检测云对地和云内(云对云)闪烁
4. 嵌入人工干扰抑制算法
5. 可编程检测水平使阈值设置为最佳控制
6. 三个i2c接口,自由切换避免站点冲突
## 库安装
要使用这个库,首先将库下载到Raspberry Pi,然后打开例程文件夹。要执行一个例程demox.py,请在命令行中输入python demox.py。例如,要执行control_led.py例程,你需要输入:
```python
python DFRobot_AS3935_detailed.py
```
## 方法
```python
'''
@brief 传感器重启
'''
def reset(self);
'''
@brief 配置传感器
@param capacitance 天线调谐电容(必须是8,8 - 120pf的整数倍)
@param location 室内或室外模式选择
@param disturber 启用/禁用干扰发射机检测
'''
def manual_cal(self, capacitance, location, disturber);
'''
@brief Get mid-range type
@return 返回中断状态
@retval 0 Unknown src
@retval 1 Lightning detected
@retval 2 Disturber
@retval 3 Noise level too high
'''
def get_interrupt_src(self);
'''
@brief 获取闪电距离
@return 闪电距离(单位公里)
'''
def get_lightning_distKm(self);
'''
@brief 获取闪电能力强度
@return 闪电能力强度(0-1000)
'''
def get_strike_energy_raw(self);
'''
@brief 设置 LCO_FDIV 寄存器
@param fdiv 设置0, 1, 2或3的比率分别为16,32,64和128
'''
def set_lco_fdiv(self,fdiv);
'''
@brief 设置中断源
@param irqSelect 0 = NONE, 1 = TRCO, 2 = SRCO, 3 = LCO
'''
def set_irq_output_source(self, irqSelect);
'''
@brief 设置为室外模式
'''
def set_outdoors(self);
'''
@brief 设置为室内模式
'''
def set_indoors(self);
'''
@brief 中断检测使能
'''
def disturber_en(self);
'''
@brief 中断检测失能
'''
def disturber_dis(self);
'''
@brief 设置噪音等级
@param 0~7,大于7将使用默认值:2
'''
def set_noise_floor_lv1(self, nfSel);
'''
@brief 获取噪音等级
@return 0~7
'''
def get_noise_floor_lv1(self);
'''
@brief 设置抗干扰等级
@param 0~7,大于7将使用默认值:2
'''
def set_watchdog_threshold(self, wdth);
'''
@brief 获取抗干扰等级
@return 0~7
'''
def get_watchdog_threshold(self);
'''
@brief 修改 SREJ (毛刺抑制)
@param 0~7,大于7将使用默认值:2
'''
def set_spike_rejection(self, srej);
'''
@brief r获取ead SREJ (毛刺抑制)
@return 0~7
'''
def get_spike_rejection(self);
```
## 兼容性
* 树莓派版本
| Board | 通过 | 未通过 | 未测试 | 备注 |
| ------------ | :-------: | :--------: | :------: | ------- |
| RaspberryPi2 | | | √ | |
| RaspberryPi3 | | | √ | |
| RaspberryPi4 | √ | | | |
* Python 版本
| Python | 通过 | 未通过 | 未测试 | 备注 |
| ------- | :-------: | :--------: | :------: | ------- |
| Python2 | √ | | | |
| Python3 | √ | | | |
## 历史
- 2021/09/30 - 1.0.2 版本
- 2021/08/24 - 1.0.1 版本
- 2019/09/28 - 1.0.0 版本
## 创作者
Written by TangJie(jie.Tang@dfrobot.com), 2019. (Welcome to our [website](https://www.dfrobot.com/))

@ -0,0 +1,107 @@
'''
# @file DFRobot_AS3935_detailed.py
# @brief SEN0290 Lightning Sensor
# @n This sensor can detect lightning and display the distance and intensity of the lightning within 40 km
# @n It can be set as indoor or outdoor mode.
# @n The module has three I2C, these addresses are:
# @n AS3935_ADD1 0x01 A0 = 1 A1 = 0
# @n AS3935_ADD2 0x02 A0 = 0 A1 = 1
# @n AS3935_ADD3 0x03 A0 = 1 A1 = 1
# @copyright Copyright (c) 2010 DFRobot Co.Ltd (http://www.dfrobot.com)
# @licence The MIT License (MIT)
# @author [TangJie](jie.tang@dfrobot.com)
# @version V1.0.2
# @date 2019-09-28
# @url https://github.com/DFRobor/DFRobot_AS3935
'''
import sys
sys.path.append('../')
import time
from DFRobot_AS3935_Lib import DFRobot_AS3935
import RPi.GPIO as GPIO
from datetime import datetime
#I2C address
AS3935_I2C_ADDR1 = 0X01
AS3935_I2C_ADDR2 = 0X02
AS3935_I2C_ADDR3 = 0X03
#Antenna tuning capcitance (must be integer multiple of 8, 8 - 120 pf)
AS3935_CAPACITANCE = 96
IRQ_PIN = 7
GPIO.setmode(GPIO.BOARD)
sensor = DFRobot_AS3935(AS3935_I2C_ADDR3, bus = 1)
if (sensor.reset()):
print("init sensor sucess.")
else:
print("init sensor fail")
while True:
pass
#Configure sensor
sensor.power_up()
#set indoors or outdoors models
sensor.set_indoors()
#sensor.set_outdoors()
#disturber detection
sensor.disturber_en()
#sensor.disturber_dis()
sensor.set_irq_output_source(0)
time.sleep(0.5)
#set capacitance
sensor.set_tuning_caps(AS3935_CAPACITANCE)
# Connect the IRQ and GND pin to the oscilloscope.
# uncomment the following sentences to fine tune the antenna for better performance.
# This will dispaly the antenna's resonance frequency/16 on IRQ pin (The resonance frequency will be divided by 16 on this pin)
# Tuning AS3935_CAPACITANCE to make the frequency within 500/16 kHz plus 3.5% to 500/16 kHz minus 3.5%
#
# sensor.setLco_fdiv(0)
# sensor.setIrq_output_source(3)
#Set the noise level,use a default value greater than 7
sensor.set_noise_floor_lv1(2)
#noiseLv = sensor.get_noise_floor_lv1()
#used to modify WDTH,alues should only be between 0x00 and 0x0F (0 and 7)
sensor.set_watchdog_threshold(2)
#wtdgThreshold = sensor.get_watchdog_threshold()
#used to modify SREJ (spike rejection),values should only be between 0x00 and 0x0F (0 and 7)
sensor.set_spike_rejection(2)
#spikeRejection = sensor.get_spike_rejection()
#view all register data
#sensor.print_all_regs()
def callback_handle(channel):
global sensor
time.sleep(0.005)
intSrc = sensor.get_interrupt_src()
if intSrc == 1:
lightning_distKm = sensor.get_lightning_distKm()
print('Lightning occurs!')
print('Distance: %dkm'%lightning_distKm)
lightning_energy_val = sensor.get_strike_energy_raw()
print('Intensity: %d '%lightning_energy_val)
elif intSrc == 2:
print('Disturber discovered!')
elif intSrc == 3:
print('Noise level too high!')
else:
pass
#Set to input mode
GPIO.setup(IRQ_PIN, GPIO.IN)
#Set the interrupt pin, the interrupt function, rising along the trigger
GPIO.add_event_detect(IRQ_PIN, GPIO.RISING, callback = callback_handle)
print("start lightning detect.")
while True:
time.sleep(1.0)

@ -0,0 +1,94 @@
'''
# @file DFRobot_AS3935_ordinary.py
# @brief SEN0290 Lightning Sensor
# @n This sensor can detect lightning and display the distance and intensity of the lightning within 40 km
# @n It can be set as indoor or outdoor mode.
# @n The module has three I2C, these addresses are:
# @n AS3935_ADD1 0x01 A0 = 1 A1 = 0
# @n AS3935_ADD2 0x02 A0 = 0 A1 = 1
# @n AS3935_ADD3 0x03 A0 = 1 A1 = 1
# @copyright Copyright (c) 2010 DFRobot Co.Ltd (http://www.dfrobot.com)
# @licence The MIT License (MIT)
# @author [TangJie](jie.tang@dfrobot.com)
# @version V1.0.2
# @date 2019-09-28
# @url https://github.com/DFRobor/DFRobot_AS3935
'''
import sys
sys.path.append('../')
import time
from DFRobot_AS3935_Lib import DFRobot_AS3935
import RPi.GPIO as GPIO
from datetime import datetime
#I2C address
AS3935_I2C_ADDR1 = 0X01
AS3935_I2C_ADDR2 = 0X02
AS3935_I2C_ADDR3 = 0X03
#Antenna tuning capcitance (must be integer multiple of 8, 8 - 120 pf)
AS3935_CAPACITANCE = 96
IRQ_PIN = 7
#Indoor/outdoor mode selection
AS3935_INDOORS = 0
AS3935_OUTDOORS = 1
AS3935_MODE = AS3935_INDOORS
#Enable/disable disturber detection
AS3935_DIST_DIS = 0
AS3935_DIST_EN = 1
AS3935_DIST = AS3935_DIST_EN
GPIO.setmode(GPIO.BOARD)
sensor = DFRobot_AS3935(AS3935_I2C_ADDR3, bus = 1)
if (sensor.reset()):
print("init sensor sucess.")
else:
print("init sensor fail")
while True:
pass
#Configure sensor
sensor.manual_cal(AS3935_CAPACITANCE, AS3935_MODE, AS3935_DIST)
# Connect the IRQ and GND pin to the oscilloscope.
# uncomment the following sentences to fine tune the antenna for better performance.
# This will dispaly the antenna's resonance frequency/16 on IRQ pin (The resonance frequency will be divided by 16 on this pin)
# Tuning AS3935_CAPACITANCE to make the frequency within 500/16 kHz plus 3.5% to 500/16 kHz minus 3.5%
#
# sensor.setLco_fdiv(0)
# sensor.set_irq_output_source(3)
#view all register data
#sensor.print_all_regs()
def callback_handle(channel):
global sensor
time.sleep(0.005)
intSrc = sensor.get_interrupt_src()
if intSrc == 1:
lightning_distKm = sensor.get_lightning_distKm()
print('Lightning occurs!')
print('Distance: %dkm'%lightning_distKm)
lightning_energy_val = sensor.get_strike_energy_raw()
print('Intensity: %d '%lightning_energy_val)
elif intSrc == 2:
print('Disturber discovered!')
elif intSrc == 3:
print('Noise level too high!')
else:
pass
#Set to input mode
GPIO.setup(IRQ_PIN, GPIO.IN)
#Set the interrupt pin, the interrupt function, rising along the trigger
GPIO.add_event_detect(IRQ_PIN, GPIO.RISING, callback = callback_handle)
print("start lightning detect.")
while True:
time.sleep(1.0)

@ -1,202 +1,229 @@
# AS3935
# DFRobot_AS3935
AS3935 Lightning Sensor can detect lightning and display the distance and intensity of the lightning without the disturbance of electric arc and noise.<br>
It can be set as indoor or outdoor mode.<br>
* [中文版](./README_CN.md)
## DFRobot_AS3934 Library for Arduino
---------------------------------------------------------
Provide a library faciltates operations in the as3935 modules.
AS3935 Lightning Sensor can detect lightning and display the distance and intensity of the lightning without the disturbance of electric arc and noise.
It can be set as indoor or outdoor mode.
## Table of Contents
![Product Image](./resources/images/SEN0290.png)
## product link (https://www.dfrobot.com/product-1828.html)
SKU:SEN0290
* [Summary](#summary)
* [Feature](#feature)
* [Installation](#installation)
* [Methods](#methods)
## Table of Contents
* [Compatibility](#compatibility)
* [Credits](#credits)
<snippet>
<content>
* [Summary](#summary)
* [Installation](#Installation)
* [Methods](#Methods)
* [Compatibility](#compatibility)
* [History](#history)
* [Credits](#credits)
## Summary
Input commands and read data from AS3935 modules
## Feature
1. Lightning sensor warns of lightning storm activity within a radius of 40km <br>
2. Distance estimation to the head of the storm from overhead to 40km in 15 steps <br>
3. Detects both cloud-to-ground and intra-cloud(cloud-to-cloud) flashes <br>
4. Embedded man-made disturber rejection algorithm <br>
5. Programmable detection levels enable threshold setting for optimal controls <br>
6. Three i2c interfaces, switch freely to avoid site conflicts <br>
1. Lightning sensor warns of lightning storm activity within a radius of 40km
2. Distance estimation to the head of the storm from overhead to 40km in 15 steps
3. Detects both cloud-to-ground and intra-cloud(cloud-to-cloud) flashes
4. Embedded man-made disturber rejection algorithm
5. Programmable detection levels enable threshold setting for optimal controls
6. Three i2c interfaces, switch freely to avoid site conflicts
## Installation
Download the library ZIP file and unzip it to the Arduino folder of the library.<br>
To use this library, first download the library file, paste it into the \Arduino\libraries directory, then open the examples folder and run the demo in the folder.
## Methods
```C++
#include "DFRobot_AS3935_I2C.h"
/*
* @brief AS3935 object
*
* @param irqx irq pin
* devAddx i2c address
*/
DFRobot_AS3935_I2C(uint8_t irqx, uint8_t devAddx);
/*
* @brief AS3935 object
*
* @param irqx irq pin
*/
DFRobot_AS3935_I2C(uint8_t irqx);
/*
* @brief reset registers to default
*
* @return 0 success
*/
int defInit(void);
/*
* @brief set i2c address
*
* @param devAddx i2c address
*/
void setI2CAddress(uint8_t devAddx);
/*
* @brief manual calibration
*
* @param capacitance capacitance
* location location
* disturber disturber
*/
void manualCal(uint8_t capacitance, uint8_t location, uint8_t disturber);
/*
* @brief view register data
*/
void printAllRegs(void);
/*
* @brief get interrupt source
*
* @return 0 interrupt result not expected
* 1 lightning caused interrupt
* 2 disturber detected
* 3 Noise level too high
*/
uint8_t getInterruptSrc(void);
/*
* @brief get lightning distance
*
* @return unit kilometer
*/
uint8_t getLightningDistKm(void);
/*
* @brief get lightning energy intensity
*
* @return lightning energy intensity(0-1000)
*/
uint32_t getStrikeEnergyRaw(void);
/*
* @brief Set to the outdoor model
*/
void setOutdoors(void);
/*
* @brief Set to the indoor model
*/
void setIndoors(void);
/*
* @brief Disturber detection enabled
*/
void disturberEn(void);
/*
* @brief Disturber detection disenabled
*/
void disturberDis(void);
/*
* @brief Sets LCO_FDIV register
*
* @param fdiv Set 0, 1, 2 or 3 for ratios of 16, 32, 64 and 128, respectively
*/
void setLcoFdiv(uint8_t fdiv);
/*
* @brief Set interrupt source
*
* @param irqSelect 0 = NONE, 1 = TRCO, 2 = SRCO, 3 = LCO
*/
void setIRQOutputSource(uint8_t irqSelect);
/*
* @brief Set the noise level
*
* @param 0~7,More than 7 will use the default value:2
*/
void setNoiseFloorLvl(uint8_t nfSel);
/*
* @brief Get the noise level
*
* @return 0~7
*/
uint8_t getNoiseFloorLvl(void);
/*
* @brief Set an anti-interference rating
*
* @param 0~7,More than 7 will use the default value:2
*/
void setWatchdogThreshold(uint8_t wdth);
/*
* @brief read WDTH
*
* @return 0~7
*/
uint8_t getWatchdogThreshold(void);
/*
* @brief Modify SREJ (spike rejection)
*
* @param 0~7,More than 7 will use the default value:2
*/
void setSpikeRejection(uint8_t srej);
/*
* @brief read SREJ (spike rejection)
*
* @return 0~7
*/
uint8_t getSpikeRejection(void);
/**
* @fn begin
* @brief I2C init
* @return uint8_t type, indicates the initialization status
* @retval 0 succeed
* @retval 1 failure
*/
uint8_t begin(void);
/**
* @fn setI2CAddress
* @brief set i2c address
* @param devAddx i2c address
* @return None
*/
void setI2CAddress(uint8_t devAddx);
/**
* @fn manualCal
* @brief manual calibration
* @param capacitance capacitance
* @param location location
* @param disturber disturber
* @return None
*/
void manualCal(uint8_t capacitance, uint8_t location, uint8_t disturber);
/**
* @fn defInit
* @brief reset registers to default
* @return int type,represents rest state
* @retval 0 success
*/
int defInit(void);
/**
* @fn disturberEn
* @brief Disturber detection enabled
* @return None
*/
void disturberEn(void);
/**
* @fn disturberDis
* @brief Disturber detection disenabled
* @return None
*/
void disturberDis(void);
/**
* @fn setIRQOutputSource
* @brief Set interrupt source
* @param irqSelect 0 = NONE, 1 = TRCO, 2 = SRCO, 3 = LCO
* @return None
*/
void setIRQOutputSource(uint8_t irqSelect);
/**
* @fn setTuningCaps
* @brief set capacitance
* @param capVal size
* @return None
*/
void setTuningCaps(uint8_t capVal);
/**
* @fn getInterruptSrc
* @brief get interrupt source
* @return uint8_t type,returns the interrupt source type
* @retval 0 interrupt result not expected
* @retval 1 lightning caused interrupt
* @retval 2 disturber detected
* @retval 3 Noise level too high
*/
uint8_t getInterruptSrc(void);
/**
* @fn getLightningDistKm
* @brief get lightning distance
* @return unit kilometer
*/
uint8_t getLightningDistKm(void);
/**
* @fn getStrikeEnergyRaw
* @brief get lightning energy intensity
* @return lightning energy intensity(0-1000)
*/
uint32_t getStrikeEnergyRaw(void);
/**
* @fn setIndoors
* @brief Set to the indoor model
* @return None
*/
void setIndoors(void);
/**
* @fn setOutdoors
* @brief Set to the outdoor model
* @return None
*/
void setOutdoors(void);
/**
* @fn setOutdoors
* @brief Get the noise level
* @return Return noise level
*/
uint8_t getNoiseFloorLvl(void);
/**
* @fn setNoiseFloorLvl
* @brief Set the noise level
* @param 0~7,More than 7 will use the default value:2
* @return None
*/
void setNoiseFloorLvl(uint8_t nfSel);
/**
* @fn getWatchdogThreshold
* @brief read WDTH
* @return Return interference level
*/
uint8_t getWatchdogThreshold(void);
/**
* @fn setWatchdogThreshold
* @brief Set an anti-interference rating
* @param 0~7,More than 7 will use the default value:2
* @return None
*/
void setWatchdogThreshold(uint8_t wdth);
/**
* @fn getSpikeRejection
* @brief read SREJ (spike rejection)
* @return Return SREJ value
*/
uint8_t getSpikeRejection(void);
/**
* @fn setSpikeRejection
* @brief Modify SREJ (spike rejection)
* @param 0~7,More than 7 will use the default value:2
* @return None
*/
void setSpikeRejection(uint8_t srej);
/**
* @fn setLcoFdiv
* @brief Sets LCO_FDIV register
* @param fdiv Set 0, 1, 2 or 3 for ratios of 16, 32, 64 and 128, respectively
* @return None
*/
void setLcoFdiv(uint8_t fdiv);
/**
* @fn printAllRegs
* @brief view register data
* @return None
*/
void printAllRegs(void);
/**
* @fn powerUp
* @brief Configure sensor
* @return None
*/
void powerUp(void);
```
## Compatibility
MCU | Work Well | Work Wrong | Untested | Remarks
------------------ | :----------: | :----------: | :---------: | -----
Arduino uno | √ | | |
esp8266 | √ | | |
MCU | Work Well | Work Wrong | Untested | Remarks |
------------------ | :----------: | :----------: | :---------: | :-----: |
Arduino uno | √ | | | |
esp8266 | √ | | | |
## History
- 2021/09/30 - Version 1.0.2 released.
- 2021/08/24 - Version 1.0.1 released.
- 2019/09/28 - Version 1.0.0 released.
## Credits
Written by DFRobot_JH, 2018. (Welcome to our [website](https://www.dfrobot.com/))
Written by TangJie(jie.Tang@dfrobot.com), 2019. (Welcome to our [website](https://www.dfrobot.com/))

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 KiB

Loading…
Cancel
Save