You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
BA_MicroMDAEPiano/MicroMDAEPiano.ino

588 lines
18 KiB

/*
MicroMDAEPiano
MicroMDAEPiano is a port of the MDA-EPiano sound engine
(https://sourceforge.net/projects/mda-vst/) for the Teensy-3.5/3.6 with audio shield.
(c)2019 H. Wirtz <wirtz@parasitstudio.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config.h"
#include <Audio.h>
#include <Wire.h>
#include <SPI.h>
#include <MIDI.h>
#include <EEPROM.h>
#include <limits.h>
#include "mdaEPiano.h"
#ifdef USE_XFADE_DATA
#include "mdaEPianoDataXfade.h"
#else
#include "mdaEPianoData.h"
#endif
#if defined(USBCON)
#include <midi_UsbTransport.h>
#endif
#ifdef USE_ONBOARD_USB_HOST
#include <USBHost_t36.h>
#endif
#include <Bounce.h>
#include <Encoder.h>
#include "LiquidCrystalPlus_I2C.h"
#include <OpenAudio_ArduinoLibrary.h> //for AudioConvert_I16toF32, AudioConvert_F32toI16, and AudioEffectGain_F32
// [I2C] SCL: Pin 19, SDA: Pin 18 (https://www.pjrc.com/teensy/td_libs_Wire.html)
#define LCD_I2C_ADDRESS 0x27
#define LCD_CHARS 16
#define LCD_LINES 2
LiquidCrystalPlus_I2C lcd(LCD_I2C_ADDRESS, LCD_CHARS, LCD_LINES);
Encoder enc1(ENC1_PIN_A, ENC1_PIN_B);
Bounce but1 = Bounce(BUT1_PIN, 10); // 10 ms debounce
// GUItool: begin automatically generated code
AudioPlayQueue_F32 queue_r; //xy=494,404
AudioPlayQueue_F32 queue_l; //xy=494,404
AudioEffectCompressor_F32 comp_r;
AudioEffectCompressor_F32 comp_l;
AudioConvert_F32toI16 float2Int_r;
AudioConvert_F32toI16 float2Int_l;
AudioAnalyzePeak peak_r; //xy=695,491
AudioAnalyzePeak peak_l; //xy=695,491
AudioConnection_F32 patchCord0(queue_r, comp_r);
AudioConnection_F32 patchCord1(queue_l, comp_l);
AudioConnection_F32 patchCord2(comp_r, float2Int_r);
AudioConnection_F32 patchCord3(comp_l, float2Int_l);
#ifdef TEENSY_AUDIO_BOARD
AudioOutputI2S i2s1; //xy=1072,364
AudioConnection patchCord4(float2Int_r, peak_r);
AudioConnection patchCord5(float2Int_l, peak_l);
AudioConnection patchCord6(float2Int_r, 0, i2s1, 0);
AudioConnection patchCord7(float2Int_l, 0, i2s1, 1);
AudioControlSGTL5000 sgtl5000_1; //xy=700,536
#else
AudioOutputPT8211 pt8211_1; //xy=1079,320
AudioAmplifier volume_r; //xy=818,370
AudioAmplifier volume_l; //xy=818,411
AudioConnection patchCord4(float2Int_r, volume_r);
AudioConnection patchCord5(float2Int_l, volume_l);
AudioConnection patchCord6(volume_r, peak_r);
AudioConnection patchCord7(volume_l, peak_l);
AudioConnection patchCord8(volume_r, 0, pt8211_1, 1);
AudioConnection patchCord9(volume_l, 0, pt8211_1, 0);
#endif
// GUItool: end automatically generated code
mdaEPiano* ep;
uint8_t midi_channel = DEFAULT_MIDI_CHANNEL;
uint32_t xrun = 0;
uint32_t overload = 0;
uint32_t peak = 0;
uint16_t render_time_max = 0;
float vol = VOLUME;
float vol_right = 1.0;
float vol_left = 1.0;
elapsedMicros fill_audio_buffer;
const uint16_t audio_block_time_us = 1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES);
#ifdef SHOW_CPU_LOAD_MSEC
elapsedMillis cpu_mem_millis;
#endif
#ifdef MIDI_DEVICE
MIDI_CREATE_INSTANCE(HardwareSerial, MIDI_DEVICE, midi_serial);
#endif
#ifdef USE_ONBOARD_USB_HOST
USBHost usb_host;
MIDIDevice midi_usb(usb_host);
#endif
#if defined(USBCON)
static const unsigned sUsbTransportBufferSize = 16;
typedef midi::UsbTransport<sUsbTransportBufferSize> UsbTransport;
UsbTransport sUsbTransport;
MIDI_CREATE_INSTANCE(UsbTransport, sUsbTransport, midi_onboard_usb);
#endif
#ifdef TEST_NOTE
IntervalTimer sched_note_on;
IntervalTimer sched_note_off;
uint8_t _voice_counter = 0;
#endif
enum MDA_EP_PARAM { DECAY, RELEASE, HARDNESS, TREBLE, PAN_TREM, LFO_RATE, VELOCITY_SENSE, STEREO, MAX_POLY, TUNE, DETUNE, OVERDRIVE };
void setup()
{
//while (!Serial) ; // wait for Arduino Serial Monitor
Serial.begin(SERIAL_SPEED);
delay(220);
lcd.init();
lcd.blink_off();
lcd.cursor_off();
lcd.backlight();
lcd.noAutoscroll();
lcd.clear();
lcd.display();
lcd.show(0, 0, 20, " MicroMDAEPiano");
lcd.show(1, 0, 16, "(c)parasiTstudio");
enc1.write(INITIAL_ENC1_VALUE);
Serial.println(F("MicroMDAEPiano based on https://sourceforge.net/projects/mda-vst"));
Serial.println(F("(c)2018 H. Wirtz <wirtz@parasitstudio.de>"));
Serial.println(F("https://about.teahub.io/dcoredump/MicroMDAEpiano"));
Serial.print(F("Data in PROGMEM: "));
Serial.print(sizeof(epianoDataXfade), DEC);
Serial.println(F(" bytes"));
Serial.println();
Serial.println(F("<setup start>"));
ep = new mdaEPiano();
initial_values_from_eeprom();
// start up USB host
#ifdef USE_ONBOARD_USB_HOST
usb_host.begin();
Serial.println(F("USB-MIDI enabled."));
#endif
// check for onboard USB-MIDI
#if defined(USBCON)
midi_onboard_usb.begin();
Serial.println(F("Onboard USB-MIDI enabled."));
#endif
#ifdef MIDI_DEVICE
// Start serial MIDI
midi_serial.begin(DEFAULT_MIDI_CHANNEL);
Serial.println(F("Serial MIDI enabled"));
#endif
// start audio card
AudioMemory(AUDIO_MEM);
AudioMemory_F32(AUDIO_MEM_F32);
#ifdef TEENSY_AUDIO_BOARD
sgtl5000_1.enable();
//sgtl5000_1.dacVolumeRamp();
sgtl5000_1.dacVolumeRampLinear();
sgtl5000_1.unmuteHeadphone();
sgtl5000_1.unmuteLineout();
sgtl5000_1.autoVolumeDisable(); // turn off AGC
sgtl5000_1.volume(1.0, 1.0);
#endif
set_volume(vol, vol_left, vol_right);
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
// Initialize processor and memory measurements
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
#endif
Serial.print(F("AUDIO_BLOCK_SAMPLES="));
Serial.print(AUDIO_BLOCK_SAMPLES);
Serial.print(F(" (Time per block="));
Serial.print(1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES));
Serial.println(F("ms)"));
#ifdef TEST_NOTE
Serial.println(F("MIDI test enabled"));
sched_note_on.begin(note_on, 2000000);
sched_note_off.begin(note_off, 6333333);
#endif
ep->setParameter(HARDNESS, 0.7);
ep->setParameter(TREBLE, 0.85);
ep->setParameter(DETUNE, 0.1);
ep->setParameter(VELOCITY_SENSE, 0.2);
ep->setParameter(STEREO, 0.7);
ep->setParameter(MAX_POLY, 1.0);
ep->setParameter(OVERDRIVE, 0.3);
// DECAY,RELEASE,HARDNESS,TREBLE,PAN_TREM,LFO_RATE,VELOCITY_SENSE,STEREO,MAX_POLY,TUNE,DETUNE,OVERDRIVE
// setup compressor as limiter
setup_compressor(true, -15.0f, 5.0f, 0.005f, 0.200f);
// setup compressor like an automatic volume control
//setup_compressor(true,-50.0,5.0,1.0,2.0);
Serial.println(F("<setup end>"));
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
show_cpu_and_mem_usage();
cpu_mem_millis = 0;
#endif
}
void loop()
{
float* audio_buffer_r; // pointer to AUDIO_BLOCK_SAMPLES * sizeof(float)
float* audio_buffer_l; // pointer to AUDIO_BLOCK_SAMPLES * sizeof(float)
const uint16_t audio_block_time_ms = 1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES);
// Main sound calculation
if (queue_r.available() && queue_l.available() && fill_audio_buffer > audio_block_time_us - 10)
{
fill_audio_buffer = 0;
audio_buffer_r = queue_r.getBuffer();
audio_buffer_l = queue_l.getBuffer();
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
if (cpu_mem_millis > SHOW_CPU_LOAD_MSEC)
{
show_cpu_and_mem_usage();
cpu_mem_millis = 0;
}
#endif
audio_buffer_r = queue_r.getBuffer();
if (audio_buffer_r == NULL)
{
Serial.println(F("E: audio_buffer_r allocation problems!"));
}
audio_buffer_l = queue_l.getBuffer();
if (audio_buffer_l == NULL)
{
Serial.println(F("E: audio_buffer_l allocation problems!"));
}
elapsedMicros t1;
ep->process(audio_buffer_l, audio_buffer_r);
uint32_t t2 = t1;
if (t2 > audio_block_time_ms) // everything greater 2.9ms is a buffer underrun!
xrun++;
if (t2 > render_time_max)
render_time_max = t2;
if (peak_r.available())
{
if (peak_r.read() > 1.00)
peak++;
}
if (peak_l.available())
{
if (peak_l.read() > 1.00)
peak++;
}
#ifndef TEENSY_AUDIO_BOARD
for (uint8_t i = 0; i < AUDIO_BLOCK_SAMPLES; i++)
{
audio_buffer_r[i] *= vol;
audio_buffer_l[i] *= vol;
}
#endif
queue_r.playBuffer();
queue_l.playBuffer();
}
handle_input();
}
void setup_compressor(boolean use_HP_filter, float knee_dBFS, float comp_ratio, float attack_sec, float release_sec)
{
comp_r.enableHPFilter(use_HP_filter); comp_l.enableHPFilter(use_HP_filter);
comp_r.setThresh_dBFS(knee_dBFS); comp_l.setThresh_dBFS(knee_dBFS);
comp_r.setCompressionRatio(comp_ratio); comp_l.setCompressionRatio(comp_ratio);
float fs_Hz = AUDIO_SAMPLE_RATE;
comp_r.setAttack_sec(attack_sec, fs_Hz); comp_l.setAttack_sec(attack_sec, fs_Hz);
comp_r.setRelease_sec(release_sec, fs_Hz); comp_l.setRelease_sec(release_sec, fs_Hz);
}
void handle_input(void)
{
#ifdef USE_ONBOARD_USB_HOST
usb_host.Task();
while (midi_usb.read())
{
#ifdef DEBUG
Serial.println(F("[MIDI-USB]"));
#endif
/* if (midi_usb.getType() >= 0xf0) // SysEX
{
handle_sysex_parameter(midi_usb.getSysExArray(), midi_usb.getSysExArrayLength());
}
else */ if (queue_midi_event(midi_usb.getType(), midi_usb.getData1(), midi_usb.getData2()))
return;
}
#endif
#ifdef MIDI_DEVICE
while (midi_serial.read())
{
#ifdef DEBUG
Serial.print(F("[MIDI-Serial] "));
#endif
/* if (midi_serial.getType() >= 0xf0) // SYSEX
{
handle_sysex_parameter(midi_serial.getSysExArray(), midi_serial.getSysExArrayLength());
}
else */ if (queue_midi_event(midi_serial.getType(), midi_serial.getData1(), midi_serial.getData2()))
return;
}
#endif
int enc1_val = enc1.read();
if (but1.update())
;
// place handling of encoder and showing values on lcd here
}
#ifdef DEBUG
#ifdef SHOW_MIDI_EVENT
void print_midi_event(uint8_t type, uint8_t data1, uint8_t data2)
{
Serial.print(F("MIDI-Channel: "));
if (midi_channel == MIDI_CHANNEL_OMNI)
Serial.print(F("OMNI"));
else
Serial.print(midi_channel, DEC);
Serial.print(F(", MIDI event type: 0x"));
if (type < 16)
Serial.print(F("0"));
Serial.print(type, HEX);
Serial.print(F(", data1: "));
Serial.print(data1, DEC);
Serial.print(F(", data2: "));
Serial.println(data2, DEC);
}
#endif
#endif
bool queue_midi_event(uint8_t type, uint8_t data1, uint8_t data2)
{
bool ret = false;
#if defined(DEBUG) && defined(SHOW_MIDI_EVENT)
print_midi_event(type, data1, data2);
#endif
// check for MIDI channel
if (midi_channel != MIDI_CHANNEL_OMNI)
{
uint8_t c = type & 0x0f;
if (c != midi_channel)
{
#ifdef DEBUG
Serial.print(F("Ignoring MIDI data on channel "));
Serial.print(c);
Serial.print(F("(listening on "));
Serial.print(midi_channel);
Serial.println(F(")"));
#endif
return (false);
}
}
// now throw away the MIDI channel information
type &= 0xf0;
ret = ep->processMidiMessage(type, data1, data2);
return (ret);
}
void set_volume(float v, float vr, float vl)
{
vol = v;
vol_right = vr;
vol_left = vl;
EEPROM.update(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR, uint8_t(vol * UCHAR_MAX));
EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR, uint8_t(vol_right * UCHAR_MAX));
EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR, uint8_t(vol_left * UCHAR_MAX));
update_eeprom_checksum();
#ifdef DEBUG
uint8_t tmp;
Serial.print(F("Setting volume: VOL="));
Serial.print(v, DEC);
Serial.print(F("["));
tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR);
Serial.print(tmp, DEC);
Serial.print(F("/"));
Serial.print(float(tmp) / UCHAR_MAX, DEC);
Serial.print(F("] VOL_L="));
Serial.print(vl, DEC);
Serial.print(F("["));
tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR);
Serial.print(tmp, DEC);
Serial.print(F("/"));
Serial.print(float(tmp) / UCHAR_MAX, DEC);
Serial.print(F("] VOL_R="));
Serial.print(vr, DEC);
Serial.print(F("["));
tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR);
Serial.print(tmp, DEC);
Serial.print(F("/"));
Serial.print(float(tmp) / UCHAR_MAX, DEC);
Serial.println(F("]"));
#endif
#ifdef TEENSY_AUDIO_BOARD
sgtl5000_1.dacVolume(vol * vol_left, vol * vol_right);
#else
volume_r.gain(vr);
volume_l.gain(vl);
#endif
}
void initial_values_from_eeprom(void)
{
uint32_t crc_eeprom = read_eeprom_checksum();
uint32_t crc = eeprom_crc32(EEPROM_OFFSET, EEPROM_DATA_LENGTH);
#ifdef DEBUG
Serial.print(F("EEPROM checksum: 0x"));
Serial.print(crc_eeprom, HEX);
Serial.print(F(" / 0x"));
Serial.print(crc, HEX);
#endif
if (crc_eeprom != crc)
{
#ifdef DEBUG
Serial.print(F(" - mismatch -> initializing EEPROM!"));
#endif
EEPROM.update(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR, uint8_t(vol * UCHAR_MAX));
EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR, uint8_t(vol_right * UCHAR_MAX));
EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR, uint8_t(vol_left * UCHAR_MAX));
update_eeprom_checksum();
}
else
{
vol = float(EEPROM.read(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR)) / UCHAR_MAX;
vol_right = float(EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR)) / UCHAR_MAX;
vol_left = float(EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR)) / UCHAR_MAX;
}
#ifdef DEBUG
Serial.println();
#endif
}
uint32_t read_eeprom_checksum(void)
{
return (EEPROM.read(EEPROM_CRC32_ADDR) << 24 | EEPROM.read(EEPROM_CRC32_ADDR + 1) << 16 | EEPROM.read(EEPROM_CRC32_ADDR + 2) << 8 | EEPROM.read(EEPROM_CRC32_ADDR + 3));
}
void update_eeprom_checksum(void)
{
write_eeprom_checksum(eeprom_crc32(EEPROM_OFFSET, EEPROM_DATA_LENGTH)); // recalculate crc and write to eeprom
}
void write_eeprom_checksum(uint32_t crc)
{
EEPROM.update(EEPROM_CRC32_ADDR, (crc & 0xff000000) >> 24);
EEPROM.update(EEPROM_CRC32_ADDR + 1, (crc & 0x00ff0000) >> 16);
EEPROM.update(EEPROM_CRC32_ADDR + 2, (crc & 0x0000ff00) >> 8);
EEPROM.update(EEPROM_CRC32_ADDR + 3, crc & 0x000000ff);
}
uint32_t eeprom_crc32(uint16_t calc_start, uint16_t calc_bytes) // base code from https://www.arduino.cc/en/Tutorial/EEPROMCrc
{
const uint32_t crc_table[16] =
{
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
};
uint32_t crc = ~0L;
if (calc_start + calc_bytes > EEPROM.length())
calc_bytes = EEPROM.length() - calc_start;
for (uint16_t index = calc_start ; index < (calc_start + calc_bytes) ; ++index)
{
crc = crc_table[(crc ^ EEPROM[index]) & 0x0f] ^ (crc >> 4);
crc = crc_table[(crc ^ (EEPROM[index] >> 4)) & 0x0f] ^ (crc >> 4);
crc = ~crc;
}
return (crc);
}
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
void show_cpu_and_mem_usage(void)
{
Serial.print(F("CPU: "));
Serial.print(AudioProcessorUsage(), DEC);
Serial.print(F(" CPU MAX: "));
Serial.print(AudioProcessorUsageMax(), DEC);
Serial.print(F(" MEM: "));
Serial.print(AudioMemoryUsage(), DEC);
Serial.print(F(" MEM MAX: "));
Serial.print(AudioMemoryUsageMax(), DEC);
Serial.print(F(" RENDER_TIME_MAX: "));
Serial.print(render_time_max, DEC);
Serial.print(F(" XRUN: "));
Serial.print(xrun, DEC);
Serial.print(F(" OVERLOAD: "));
Serial.print(overload, DEC);
Serial.print(F(" PEAK: "));
Serial.print(peak, DEC);
Serial.println();
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
render_time_max = 0;
}
#endif
#ifdef TEST_NOTE
void note_on(void)
{
randomSeed(analogRead(A0));
queue_midi_event(0x90, TEST_NOTE, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 1
queue_midi_event(0x90, TEST_NOTE + 5, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 2
queue_midi_event(0x90, TEST_NOTE + 8, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 3
queue_midi_event(0x90, TEST_NOTE + 12, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 4
queue_midi_event(0x90, TEST_NOTE + 17, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 5
queue_midi_event(0x90, TEST_NOTE + 20, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 6
queue_midi_event(0x90, TEST_NOTE + 24, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 7
queue_midi_event(0x90, TEST_NOTE + 29, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 8
queue_midi_event(0x90, TEST_NOTE + 32, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 9
queue_midi_event(0x90, TEST_NOTE + 37, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 10
queue_midi_event(0x90, TEST_NOTE + 40, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 11
queue_midi_event(0x90, TEST_NOTE + 46, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 12
queue_midi_event(0x90, TEST_NOTE + 49, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 13
queue_midi_event(0x90, TEST_NOTE + 52, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 14
queue_midi_event(0x90, TEST_NOTE + 57, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 15
queue_midi_event(0x90, TEST_NOTE + 60, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 16
}
void note_off(void)
{
queue_midi_event(0x80, TEST_NOTE, 0); // 1
queue_midi_event(0x80, TEST_NOTE + 5, 0); // 2
queue_midi_event(0x80, TEST_NOTE + 8, 0); // 3
queue_midi_event(0x80, TEST_NOTE + 12, 0); // 4
queue_midi_event(0x80, TEST_NOTE + 17, 0); // 5
queue_midi_event(0x80, TEST_NOTE + 20, 0); // 6
queue_midi_event(0x80, TEST_NOTE + 24, 0); // 7
queue_midi_event(0x80, TEST_NOTE + 29, 0); // 8
queue_midi_event(0x80, TEST_NOTE + 32, 0); // 9
queue_midi_event(0x80, TEST_NOTE + 37, 0); // 10
queue_midi_event(0x80, TEST_NOTE + 40, 0); // 11
queue_midi_event(0x80, TEST_NOTE + 46, 0); // 12
queue_midi_event(0x80, TEST_NOTE + 49, 0); // 13
queue_midi_event(0x80, TEST_NOTE + 52, 0); // 14
queue_midi_event(0x80, TEST_NOTE + 57, 0); // 15
queue_midi_event(0x80, TEST_NOTE + 60, 0); // 16
}
#endif