You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
BA_MicroMDAEPiano/MicroMDAPiano.ino

751 lines
21 KiB

#include <Audio.h>
#include <Wire.h>
#include <SPI.h>
#include <SD.h>
#include <MIDI.h>
#include <EEPROM.h>
#include <limits.h>
#include "mdaEPiano.h"
#include "mdaEPianoData.h"
#include "config.h"
#ifdef USE_ONBOARD_USB_HOST
#include <USBHost_t36.h>
#endif
#ifndef MASTER_KEY_MIDI // selecting sounds by encoder, button and display
#include <Bounce.h>
#include <Encoder.h>
#include <LiquidCrystalPlus_I2C.h>
#endif
#ifndef MASTER_KEY_MIDI
// [I2C] SCL: Pin 19, SDA: Pin 18 (https://www.pjrc.com/teensy/td_libs_Wire.html)
#define LCD_I2C_ADDRESS 0x27
#define LCD_CHARS 16
#define LCD_LINES 2
LiquidCrystalPlus_I2C lcd(LCD_I2C_ADDRESS, LCD_CHARS, LCD_LINES);
Encoder enc1(ENC1_PIN_A, ENC1_PIN_B);
Bounce but1 = Bounce(BUT1_PIN, 10); // 10 ms debounce
#endif
// GUItool: begin automatically generated code
AudioPlayQueue queue_r; //xy=494,404
AudioPlayQueue queue_l; //xy=494,404
AudioAnalyzePeak peak_r; //xy=695,491
AudioAnalyzePeak peak_l; //xy=695,491
#ifdef TEENSY_AUDIO_BOARD
AudioOutputI2S i2s1; //xy=1072,364
AudioConnection patchCord1(queue_r, peak_r);
AudioConnection patchCord2(queue_l, peak_l);
AudioConnection patchCord3(queue_r, 0, i2s1, 0);
AudioConnection patchCord4(queue_l, 0, i2s1, 1);
AudioControlSGTL5000 sgtl5000_1; //xy=700,536
#else
AudioOutputPT8211 pt8211_1; //xy=1079,320
AudioAmplifier volume_r; //xy=818,370
AudioAmplifier volume_l; //xy=818,411
AudioConnection patchCord1(queue_r, volume_r);
AudioConnection patchCord2(queue_l, volume_l);
AudioConnection patchCord3(volume_r, peak_r);
AudioConnection patchCord4(volume_l, peak_l);
AudioConnection patchCord5(volume_r, 0, pt8211_1, 0);
AudioConnection patchCord6(volume_l, 0, pt8211_1, 1);
#endif
// GUItool: end automatically generated code
mdaEPiano* ep;
bool sd_card_available = false;
uint8_t midi_channel = DEFAULT_MIDI_CHANNEL;
uint32_t xrun = 0;
uint32_t overload = 0;
uint32_t peak = 0;
uint16_t render_time_max = 0;
uint8_t bank = 0;
uint8_t voice = 0;
float vol = VOLUME;
float vol_right = 1.0;
float vol_left = 1.0;
#ifdef MASTER_KEY_MIDI
bool master_key_enabled = false;
#endif
#ifdef SHOW_CPU_LOAD_MSEC
elapsedMillis cpu_mem_millis;
#endif
#ifdef MIDI_DEVICE
MIDI_CREATE_INSTANCE(HardwareSerial, MIDI_DEVICE, midi_serial);
#endif
#ifdef USE_ONBOARD_USB_HOST
USBHost usb_host;
MIDIDevice midi_usb(usb_host);
#endif
#ifdef TEST_NOTE
IntervalTimer sched_note_on;
IntervalTimer sched_note_off;
uint8_t _voice_counter = 0;
#endif
void setup()
{
//while (!Serial) ; // wait for Arduino Serial Monitor
Serial.begin(SERIAL_SPEED);
delay(220);
#ifndef MASTER_KEY_MIDI
lcd.init();
lcd.blink_off();
lcd.cursor_off();
lcd.backlight();
lcd.noAutoscroll();
lcd.clear();
lcd.display();
lcd.show(0, 0, 20, "MicroDexed");
enc1.write(INITIAL_ENC1_VALUE);
#endif
Serial.println(F("MicroMDAEPiano based on https://sourceforge.net/projects/mda-vst"));
Serial.println(F("(c)2018 H. Wirtz <wirtz@parasitstudio.de>"));
Serial.println(F("https://about.teahub.io/dcoredump/MicroMDAEpiano"));
Serial.print(F("Data in PROGMEM: "));
Serial.print(sizeof(epianoData), DEC);
Serial.println(F(" bytes"));
Serial.println();
Serial.println(F("<setup start>"));
ep = new mdaEPiano();
initial_values_from_eeprom();
// start up USB host
#ifdef USE_ONBOARD_USB_HOST
usb_host.begin();
#endif
#ifdef MIDI_DEVICE
// Start serial MIDI
midi_serial.begin(DEFAULT_MIDI_CHANNEL);
#endif
// start audio card
AudioMemory(AUDIO_MEM);
#ifdef TEENSY_AUDIO_BOARD
sgtl5000_1.enable();
//sgtl5000_1.dacVolumeRamp();
sgtl5000_1.dacVolumeRampLinear();
sgtl5000_1.unmuteHeadphone();
sgtl5000_1.unmuteLineout();
sgtl5000_1.autoVolumeDisable(); // turn off AGC
sgtl5000_1.volume(1.0, 1.0);
#endif
set_volume(vol, vol_left, vol_right);
// start SD card
SPI.setMOSI(SDCARD_MOSI_PIN);
SPI.setSCK(SDCARD_SCK_PIN);
if (!SD.begin(SDCARD_CS_PIN))
{
Serial.println(F("SD card not accessable"));
}
else
{
Serial.println(F("SD card found."));
sd_card_available = true;
}
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
// Initialize processor and memory measurements
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
#endif
Serial.print(F("AUDIO_BLOCK_SAMPLES="));
Serial.print(AUDIO_BLOCK_SAMPLES);
Serial.print(F(" (Time per block="));
Serial.print(1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES));
Serial.println(F("ms)"));
#ifdef TEST_NOTE
Serial.println(F("MIDI test enabled"));
sched_note_on.begin(note_on, 2000000);
sched_note_off.begin(note_off, 6333333);
#endif
Serial.println(F("<setup end>"));
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
show_cpu_and_mem_usage();
cpu_mem_millis = 0;
#endif
}
void loop()
{
int16_t* audio_buffer_r; // pointer to AUDIO_BLOCK_SAMPLES * int16_t
int16_t* audio_buffer_l; // pointer to AUDIO_BLOCK_SAMPLES * int16_t
const uint16_t audio_block_time_ms = 1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES);
// Main sound calculation
if (queue_r.available() && queue_l.available())
{
audio_buffer_r = queue_r.getBuffer();
audio_buffer_l = queue_l.getBuffer();
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
if (cpu_mem_millis > SHOW_CPU_LOAD_MSEC)
{
show_cpu_and_mem_usage();
cpu_mem_millis = 0;
}
#endif
handle_input();
audio_buffer_r = queue_r.getBuffer();
if (audio_buffer_r == NULL)
{
Serial.println(F("E: audio_buffer_r allocation problems!"));
}
audio_buffer_l = queue_l.getBuffer();
if (audio_buffer_l == NULL)
{
Serial.println(F("E: audio_buffer_l allocation problems!"));
}
elapsedMicros t1;
ep->process(audio_buffer_l, audio_buffer_r, AUDIO_BLOCK_SAMPLES);
uint32_t t2 = t1;
if (t2 > audio_block_time_ms) // everything greater 2.9ms is a buffer underrun!
xrun++;
if (t2 > render_time_max)
render_time_max = t2;
if (peak_r.available())
{
if (peak_r.read() > 0.99)
peak++;
}
if (peak_l.available())
{
if (peak_l.read() > 0.99)
peak++;
}
#ifndef TEENSY_AUDIO_BOARD
for (uint8_t i = 0; i < AUDIO_BLOCK_SAMPLES; i++)
{
audio_buffer_r[i] *= vol_r;
audio_buffer_l[i] *= vol_l;
}
#endif
queue_r.playBuffer();
queue_l.playBuffer();
}
}
void handle_input(void)
{
#ifdef USE_ONBOARD_USB_HOST
usb_host.Task();
while (midi_usb.read())
{
#ifdef DEBUG
Serial.println(F("[MIDI-USB]"));
#endif
/* if (midi_usb.getType() >= 0xf0) // SysEX
{
handle_sysex_parameter(midi_usb.getSysExArray(), midi_usb.getSysExArrayLength());
}
else */ if (queue_midi_event(midi_usb.getType(), midi_usb.getData1(), midi_usb.getData2()))
return;
}
#endif
#ifdef MIDI_DEVICE
while (midi_serial.read())
{
#ifdef DEBUG
Serial.print(F("[MIDI-Serial] "));
#endif
/* if (midi_serial.getType() >= 0xf0) // SYSEX
{
handle_sysex_parameter(midi_serial.getSysExArray(), midi_serial.getSysExArrayLength());
}
else */ if (queue_midi_event(midi_serial.getType(), midi_serial.getData1(), midi_serial.getData2()))
return;
}
#endif
#ifndef MASTER_KEY_MIDI
int enc1_val = enc1.read();
if (but1.update())
;
// place handling of encoder and showing values on lcd here
#endif
}
#ifdef DEBUG
#ifdef SHOW_MIDI_EVENT
void print_midi_event(uint8_t type, uint8_t data1, uint8_t data2)
{
Serial.print(F("MIDI-Channel: "));
if (midi_channel == MIDI_CHANNEL_OMNI)
Serial.print(F("OMNI"));
else
Serial.print(midi_channel, DEC);
Serial.print(F(", MIDI event type: 0x"));
if (type < 16)
Serial.print(F("0"));
Serial.print(type, HEX);
Serial.print(F(", data1: "));
Serial.print(data1, DEC);
Serial.print(F(", data2: "));
Serial.println(data2, DEC);
#ifndef MASTER_KEY_MIDI
lcd.show(1, 0, 3, data1);
lcd.show(1, 4, 3, data2);
#endif
}
#endif
#endif
#ifdef MASTER_KEY_MIDI
bool handle_master_key(uint8_t data)
{
int8_t num = num_key_base_c(data);
#ifdef DEBUG
Serial.print(F("Master-Key: "));
Serial.println(num, DEC);
#endif
if (num > 0)
{
// a white key!
if (num <= 32)
{
if (load_sysex(bank, num))
{
#ifdef DEBUG
Serial.print(F("Loading voice number "));
Serial.println(num, DEC);
#endif
EEPROM.update(EEPROM_OFFSET + EEPROM_VOICE_ADDR, num);
update_eeprom_checksum();
}
#ifdef DEBUG
else
{
Serial.print(F("E: cannot load voice number "));
Serial.println(num, DEC);
}
#endif
}
return (true);
}
else
{
// a black key!
num = abs(num);
if (num <= 10)
{
set_volume(float(num * 0.1), vol_left, vol_right);
}
else if (num > 10 && num <= 20)
{
bank = num - 10;
EEPROM.update(EEPROM_OFFSET + EEPROM_BANK_ADDR, bank);
update_eeprom_checksum();
#ifdef DEBUG
Serial.print(F("Bank switch to: "));
Serial.println(bank, DEC);
#endif
return (true);
}
}
return (false);
}
#endif
bool load_sysex(uint8_t bank, uint8_t num)
{
return (true);
}
bool queue_midi_event(uint8_t type, uint8_t data1, uint8_t data2)
{
bool ret = false;
#if defined(DEBUG) && defined(SHOW_MIDI_EVENT)
print_midi_event(type, data1, data2);
#endif
// check for MIDI channel
if (midi_channel != MIDI_CHANNEL_OMNI)
{
uint8_t c = type & 0x0f;
if (c != midi_channel)
{
#ifdef DEBUG
Serial.print(F("Ignoring MIDI data on channel "));
Serial.print(c);
Serial.print(F("(listening on "));
Serial.print(midi_channel);
Serial.println(F(")"));
#endif
return (false);
}
}
// now throw away the MIDI channel information
type &= 0xf0;
#ifdef MASTER_KEY_MIDI
if (type == 0x80 && data1 == MASTER_KEY_MIDI) // Master key released
{
master_key_enabled = false;
#ifdef DEBUG
Serial.println(F("Master key disabled"));
#endif
}
else if (type == 0x90 && data1 == MASTER_KEY_MIDI) // Master key pressed
{
master_key_enabled = true;
#ifdef DEBUG
Serial.println(F("Master key enabled"));
#endif
}
else
{
if (master_key_enabled)
{
if (type == 0x80) // handle when note is released
{
//dexed->notesOff();
handle_master_key(data1);
}
}
else
#endif
ret = ep->processMidiMessage(type, data1, data2);
#ifdef MASTER_KEY_MIDI
}
#endif
return (ret);
}
#ifdef MASTER_KEY_MIDI
int8_t num_key_base_c(uint8_t midi_note)
{
int8_t num = 0;
switch (midi_note % 12)
{
// positive numbers are white keys, negative black ones
case 0:
num = 1;
break;
case 1:
num = -1;
break;
case 2:
num = 2;
break;
case 3:
num = -2;
break;
case 4:
num = 3;
break;
case 5:
num = 4;
break;
case 6:
num = -3;
break;
case 7:
num = 5;
break;
case 8:
num = -4;
break;
case 9:
num = 6;
break;
case 10:
num = -5;
break;
case 11:
num = 7;
break;
}
if (num > 0)
return (num + (((midi_note - MASTER_NUM1) / 12) * 7));
else
return (num + ((((midi_note - MASTER_NUM1) / 12) * 5) * -1));
}
#endif
void set_volume(float v, float vr, float vl)
{
vol = v;
vol_right = vr;
vol_left = vl;
EEPROM.update(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR, uint8_t(vol * UCHAR_MAX));
EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR, uint8_t(vol_right * UCHAR_MAX));
EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR, uint8_t(vol_left * UCHAR_MAX));
update_eeprom_checksum();
#ifdef DEBUG
uint8_t tmp;
Serial.print(F("Setting volume: VOL="));
Serial.print(v, DEC);
Serial.print(F("["));
tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR);
Serial.print(tmp, DEC);
Serial.print(F("/"));
Serial.print(float(tmp) / UCHAR_MAX, DEC);
Serial.print(F("] VOL_L="));
Serial.print(vl, DEC);
Serial.print(F("["));
tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR);
Serial.print(tmp, DEC);
Serial.print(F("/"));
Serial.print(float(tmp) / UCHAR_MAX, DEC);
Serial.print(F("] VOL_R="));
Serial.print(vr, DEC);
Serial.print(F("["));
tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR);
Serial.print(tmp, DEC);
Serial.print(F("/"));
Serial.print(float(tmp) / UCHAR_MAX, DEC);
Serial.println(F("]"));
#endif
#ifdef TEENSY_AUDIO_BOARD
sgtl5000_1.dacVolume(vol * vol_left, vol * vol_right);
#else
volume_master.gain(vol);
volume_r.gain(vr);
volume_l.gain(vl);
#endif
}
/*
void handle_sysex_parameter(const uint8_t* sysex, uint8_t len)
{
if (sysex[1] != 0x43) // check for Yamaha sysex
{
#ifdef DEBUG
Serial.println(F("E: SysEx vendor not Yamaha."));
#endif
return;
}
// parse parameter change
if (len == 7)
{
if ((sysex[3] & 0x7c) != 0 || (sysex[3] & 0x7c) != 2)
{
#ifdef DEBUG
Serial.println(F("E: Not a SysEx parameter or function parameter change."));
#endif
return;
}
if (sysex[6] != 0xf7)
{
#ifdef DEBUG
Serial.println(F("E: SysEx end status byte not detected."));
#endif
return;
}
if ((sysex[3] & 0x7c) == 0)
{
dexed->data[sysex[4]] = sysex[5]; // set parameter
dexed->doRefreshVoice();
}
else
{
dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET - 63 + sysex[4]] = sysex[5]; // set function parameter
dexed->controllers.values_[kControllerPitchRange] = dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_RANGE];
dexed->controllers.values_[kControllerPitchStep] = dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_STEP];
dexed->controllers.wheel.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_RANGE]);
dexed->controllers.wheel.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_ASSIGN]);
dexed->controllers.foot.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_RANGE]);
dexed->controllers.foot.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_ASSIGN]);
dexed->controllers.breath.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_RANGE]);
dexed->controllers.breath.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_ASSIGN]);
dexed->controllers.at.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_RANGE]);
dexed->controllers.at.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_ASSIGN]);
dexed->controllers.masterTune = (dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MASTER_TUNE] * 0x4000 << 11) * (1.0 / 12);
dexed->controllers.refresh();
}
#ifdef DEBUG
Serial.print(F("SysEx"));
if ((sysex[3] & 0x7c) == 0)
Serial.print(F(" function"));
Serial.print(F(" parameter "));
Serial.print(sysex[4], DEC);
Serial.print(F(" = "));
Serial.println(sysex[5], DEC);
#endif
}
#ifdef DEBUG
else
Serial.println(F("E: SysEx parameter length wrong."));
#endif
}
*/
void initial_values_from_eeprom(void)
{
uint32_t crc_eeprom = read_eeprom_checksum();
uint32_t crc = eeprom_crc32(EEPROM_OFFSET, EEPROM_DATA_LENGTH);
#ifdef DEBUG
Serial.print(F("EEPROM checksum: 0x"));
Serial.print(crc_eeprom, HEX);
Serial.print(F(" / 0x"));
Serial.print(crc, HEX);
#endif
if (crc_eeprom != crc)
{
#ifdef DEBUG
Serial.print(F(" - mismatch -> initializing EEPROM!"));
#endif
EEPROM.update(EEPROM_OFFSET + EEPROM_BANK_ADDR, bank);
EEPROM.update(EEPROM_OFFSET + EEPROM_VOICE_ADDR, voice);
EEPROM.update(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR, uint8_t(vol * UCHAR_MAX));
EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR, uint8_t(vol_right * UCHAR_MAX));
EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR, uint8_t(vol_left * UCHAR_MAX));
update_eeprom_checksum();
}
else
{
bank = EEPROM.read(EEPROM_OFFSET + EEPROM_BANK_ADDR);
voice = EEPROM.read(EEPROM_OFFSET + EEPROM_VOICE_ADDR);
vol = float(EEPROM.read(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR)) / UCHAR_MAX;
vol_right = float(EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR)) / UCHAR_MAX;
vol_left = float(EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR)) / UCHAR_MAX;
}
#ifdef DEBUG
Serial.println();
#endif
}
uint32_t read_eeprom_checksum(void)
{
return (EEPROM.read(EEPROM_CRC32_ADDR) << 24 | EEPROM.read(EEPROM_CRC32_ADDR + 1) << 16 | EEPROM.read(EEPROM_CRC32_ADDR + 2) << 8 | EEPROM.read(EEPROM_CRC32_ADDR + 3));
}
void update_eeprom_checksum(void)
{
write_eeprom_checksum(eeprom_crc32(EEPROM_OFFSET, EEPROM_DATA_LENGTH)); // recalculate crc and write to eeprom
}
void write_eeprom_checksum(uint32_t crc)
{
EEPROM.update(EEPROM_CRC32_ADDR, (crc & 0xff000000) >> 24);
EEPROM.update(EEPROM_CRC32_ADDR + 1, (crc & 0x00ff0000) >> 16);
EEPROM.update(EEPROM_CRC32_ADDR + 2, (crc & 0x0000ff00) >> 8);
EEPROM.update(EEPROM_CRC32_ADDR + 3, crc & 0x000000ff);
}
uint32_t eeprom_crc32(uint16_t calc_start, uint16_t calc_bytes) // base code from https://www.arduino.cc/en/Tutorial/EEPROMCrc
{
const uint32_t crc_table[16] =
{
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
};
uint32_t crc = ~0L;
if (calc_start + calc_bytes > EEPROM.length())
calc_bytes = EEPROM.length() - calc_start;
for (uint16_t index = calc_start ; index < (calc_start + calc_bytes) ; ++index)
{
crc = crc_table[(crc ^ EEPROM[index]) & 0x0f] ^ (crc >> 4);
crc = crc_table[(crc ^ (EEPROM[index] >> 4)) & 0x0f] ^ (crc >> 4);
crc = ~crc;
}
return (crc);
}
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
void show_cpu_and_mem_usage(void)
{
Serial.print(F("CPU: "));
Serial.print(AudioProcessorUsage(), DEC);
Serial.print(F(" CPU MAX: "));
Serial.print(AudioProcessorUsageMax(), DEC);
Serial.print(F(" MEM: "));
Serial.print(AudioMemoryUsage(), DEC);
Serial.print(F(" MEM MAX: "));
Serial.print(AudioMemoryUsageMax(), DEC);
Serial.print(F(" RENDER_TIME_MAX: "));
Serial.print(render_time_max, DEC);
Serial.print(F(" XRUN: "));
Serial.print(xrun, DEC);
Serial.print(F(" OVERLOAD: "));
Serial.print(overload, DEC);
Serial.print(F(" PEAK: "));
Serial.print(peak, DEC);
Serial.println();
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
render_time_max = 0;
}
#endif
#ifdef TEST_NOTE
void note_on(void)
{
randomSeed(analogRead(A0));
queue_midi_event(0x90, TEST_NOTE, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 1
queue_midi_event(0x90, TEST_NOTE + 5, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 2
queue_midi_event(0x90, TEST_NOTE + 8, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 3
queue_midi_event(0x90, TEST_NOTE + 12, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 4
queue_midi_event(0x90, TEST_NOTE + 17, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 5
queue_midi_event(0x90, TEST_NOTE + 20, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 6
queue_midi_event(0x90, TEST_NOTE + 24, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 7
queue_midi_event(0x90, TEST_NOTE + 29, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 8
queue_midi_event(0x90, TEST_NOTE + 32, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 9
queue_midi_event(0x90, TEST_NOTE + 37, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 10
queue_midi_event(0x90, TEST_NOTE + 40, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 11
queue_midi_event(0x90, TEST_NOTE + 46, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 12
queue_midi_event(0x90, TEST_NOTE + 49, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 13
queue_midi_event(0x90, TEST_NOTE + 52, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 14
queue_midi_event(0x90, TEST_NOTE + 57, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 15
queue_midi_event(0x90, TEST_NOTE + 60, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 16
}
void note_off(void)
{
queue_midi_event(0x80, TEST_NOTE, 0); // 1
queue_midi_event(0x80, TEST_NOTE + 5, 0); // 2
queue_midi_event(0x80, TEST_NOTE + 8, 0); // 3
queue_midi_event(0x80, TEST_NOTE + 12, 0); // 4
queue_midi_event(0x80, TEST_NOTE + 17, 0); // 5
queue_midi_event(0x80, TEST_NOTE + 20, 0); // 6
queue_midi_event(0x80, TEST_NOTE + 24, 0); // 7
queue_midi_event(0x80, TEST_NOTE + 29, 0); // 8
queue_midi_event(0x80, TEST_NOTE + 32, 0); // 9
queue_midi_event(0x80, TEST_NOTE + 37, 0); // 10
queue_midi_event(0x80, TEST_NOTE + 40, 0); // 11
queue_midi_event(0x80, TEST_NOTE + 46, 0); // 12
queue_midi_event(0x80, TEST_NOTE + 49, 0); // 13
queue_midi_event(0x80, TEST_NOTE + 52, 0); // 14
queue_midi_event(0x80, TEST_NOTE + 57, 0); // 15
queue_midi_event(0x80, TEST_NOTE + 60, 0); // 16
}
#endif