Added AudioEffectSimpleChorus, created from AudioEffectAnalogDelay.master
parent
7721cfdb80
commit
c4cf09efed
@ -0,0 +1,159 @@ |
||||
/**************************************************************************//**
|
||||
* @file |
||||
* @author Steve Lascos |
||||
* @company Blackaddr Audio |
||||
* |
||||
* AudioEffectSimpleChorus is a class for simulating a classic BBD based delay |
||||
* like the Boss DM-2. This class works with either internal RAM, or external |
||||
* SPI RAM for longer delays. The exteranl ram uses DMA to minimize load on the |
||||
* CPU. |
||||
* |
||||
* @copyright This program is free software: you can redistribute it and/or modify |
||||
* it under the terms of the GNU General Public License as published by |
||||
* the Free Software Foundation, either version 3 of the License, or |
||||
* (at your option) any later version.* |
||||
* |
||||
* This program is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
* GNU General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU General Public License |
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*****************************************************************************/ |
||||
|
||||
#ifndef __BAEFFECTS_BAAUDIOEFFECTSIMPLECHORUS_H |
||||
#define __BAEFFECTS_BAAUDIOEFFECTSIMPLECHORUS_H |
||||
|
||||
#include <Audio.h> |
||||
#include "LibBasicFunctions.h" |
||||
|
||||
namespace BAEffects { |
||||
|
||||
/**************************************************************************//**
|
||||
* AudioEffectSimpleChorus models BBD based analog delays. It provides controls |
||||
* for delay, feedback (or regen), mix and output level. All parameters can be |
||||
* controlled by MIDI. The class supports internal memory, or external SPI |
||||
* memory by providing an ExtMemSlot. External memory access uses DMA to reduce |
||||
* process load. |
||||
*****************************************************************************/ |
||||
class AudioEffectSimpleChorus : public AudioStream { |
||||
public: |
||||
|
||||
///< List of AudioEffectSimpleChorus MIDI controllable parameters
|
||||
enum { |
||||
BYPASS = 0, ///< controls effect bypass
|
||||
FREQUENCY, ///< controls the amount of delay
|
||||
INTENSITY, ///< controls the amount of echo feedback (regen)
|
||||
MIX, ///< controls the the mix of input and echo signals
|
||||
NUM_CONTROLS ///< this can be used as an alias for the number of MIDI controls
|
||||
}; |
||||
|
||||
// *** CONSTRUCTORS ***
|
||||
AudioEffectSimpleChorus() = delete; |
||||
|
||||
/// Construct an analog delay using internal memory by specifying the maximum
|
||||
/// delay in milliseconds.
|
||||
/// @param maxDelayMs maximum delay in milliseconds. Larger delays use more memory.
|
||||
AudioEffectSimpleChorus(float maxDelayMs); |
||||
|
||||
/// Construct an analog delay using internal memory by specifying the maximum
|
||||
|
||||
virtual ~AudioEffectSimpleChorus(); ///< Destructor
|
||||
|
||||
// *** PARAMETERS ***
|
||||
|
||||
/// Bypass the effect.
|
||||
/// @param byp when true, bypass wil disable the effect, when false, effect is enabled.
|
||||
/// Note that audio still passes through when bypass is enabled.
|
||||
void bypass(bool byp) { m_bypass = byp; } |
||||
|
||||
/// Get if the effect is bypassed
|
||||
/// @returns true if bypassed, false if not bypassed
|
||||
bool isBypass() { return m_bypass; } |
||||
|
||||
/// Toggle the bypass effect
|
||||
void toggleBypass() { m_bypass = !m_bypass; } |
||||
|
||||
/// Set the amount of echo feedback (a.k.a regeneration).
|
||||
/// @param feedback a floating point number between 0.0 and 1.0.
|
||||
void frequency(float frequency) { m_frequency = frequency; } |
||||
|
||||
/// Set the amount of echo feedback (a.k.a regeneration).
|
||||
/// @param feedback a floating point number between 0.0 and 1.0.
|
||||
void intensity(float intensity) { m_intensity = intensity; } |
||||
|
||||
/// Set the amount of blending between dry and wet (echo) at the output.
|
||||
/// @param mix When 0.0, output is 100% dry, when 1.0, output is 100% wet. When
|
||||
/// 0.5, output is 50% Dry, 50% Wet.
|
||||
void mix(float mix) { m_mix = mix; } |
||||
|
||||
// ** ENABLE / DISABLE **
|
||||
|
||||
/// Enables audio processing. Note: when not enabled, CPU load is nearly zero.
|
||||
void enable() { m_enable = true; } |
||||
|
||||
/// Disables audio process. When disabled, CPU load is nearly zero.
|
||||
void disable() { m_enable = false; } |
||||
|
||||
// ** MIDI **
|
||||
|
||||
/// Sets whether MIDI OMNI channel is processig on or off. When on,
|
||||
/// all midi channels are used for matching CCs.
|
||||
/// @param isOmni when true, all channels are processed, when false, channel
|
||||
/// must match configured value.
|
||||
void setMidiOmni(bool isOmni) { m_isOmni = isOmni; } |
||||
|
||||
/// Configure an effect parameter to be controlled by a MIDI CC
|
||||
/// number on a particular channel.
|
||||
/// @param parameter one of the parameter names in the class enum
|
||||
/// @param midiCC the CC number from 0 to 127
|
||||
/// @param midiChannel the effect will only response to the CC on this channel
|
||||
/// when OMNI mode is off.
|
||||
void mapMidiControl(int parameter, int midiCC, int midiChannel = 0); |
||||
|
||||
/// process a MIDI Continous-Controller (CC) message
|
||||
/// @param channel the MIDI channel from 0 to 15)
|
||||
/// @param midiCC the CC number from 0 to 127
|
||||
/// @param value the CC value from 0 to 127
|
||||
void processMidi(int channel, int midiCC, int value); |
||||
|
||||
virtual void update(void); ///< update automatically called by the Teesny Audio Library
|
||||
|
||||
private: |
||||
/// Set the delay in milliseconds.
|
||||
/// @param milliseconds the request delay in milliseconds. Must be less than max delay.
|
||||
void delay(float milliseconds); |
||||
|
||||
/// Set the delay in number of audio samples.
|
||||
/// @param delaySamples the request delay in audio samples. Must be less than max delay.
|
||||
void delay(size_t delaySamples); |
||||
|
||||
/// Set the delay as a fraction of the maximum delay.
|
||||
/// The value should be between 0.0f and 1.0f
|
||||
void delayFractionMax(float delayFraction); |
||||
|
||||
audio_block_t *m_inputQueueArray[1]; |
||||
bool m_isOmni = false; |
||||
bool m_bypass = true; |
||||
bool m_enable = false; |
||||
BALibrary::AudioDelay *m_memory = nullptr; |
||||
size_t m_maxDelaySamples = 0; |
||||
audio_block_t *m_previousBlock = nullptr; |
||||
audio_block_t *m_blockToRelease = nullptr; |
||||
BALibrary::LowFrequencyOscillatorVector<float> lfo; |
||||
|
||||
// Controls
|
||||
int m_midiConfig[NUM_CONTROLS][2]; // stores the midi parameter mapping
|
||||
size_t m_delaySamples = 0; |
||||
float m_frequency = 1.0f; |
||||
float m_intensity = 1.0f; |
||||
float m_mix = 0.0f; |
||||
|
||||
void m_postProcessing(audio_block_t *out, audio_block_t *dry, audio_block_t *wet); |
||||
|
||||
}; |
||||
|
||||
} |
||||
|
||||
#endif /* __BAEFFECTS_BAAUDIOEFFECTANALOGDELAY_H */ |
@ -0,0 +1,198 @@ |
||||
/*
|
||||
* AudioEffectSimpleChorus.cpp |
||||
* |
||||
* Created on: Jan 7, 2018 |
||||
* Author: slascos |
||||
*/ |
||||
#include <new> |
||||
#include <cmath> // std::roundf |
||||
#include "AudioEffectAnalogDelayFilters.h" |
||||
#include "AudioEffectSimpleChorus.h" |
||||
|
||||
using namespace BALibrary; |
||||
|
||||
namespace BAEffects { |
||||
|
||||
constexpr int MIDI_CHANNEL = 0; |
||||
constexpr int MIDI_CONTROL = 1; |
||||
|
||||
AudioEffectSimpleChorus::AudioEffectSimpleChorus(float maxDelayMs) |
||||
: AudioStream(1, m_inputQueueArray) |
||||
{ |
||||
delay(maxDelayMs); |
||||
m_memory = new AudioDelay(maxDelayMs); |
||||
m_maxDelaySamples = calcAudioSamples(maxDelayMs); |
||||
lfo.setRateAudio(m_frequency); |
||||
} |
||||
|
||||
AudioEffectSimpleChorus::~AudioEffectSimpleChorus() |
||||
{ |
||||
if (m_memory) delete m_memory; |
||||
} |
||||
|
||||
void AudioEffectSimpleChorus::update(void) |
||||
{ |
||||
audio_block_t *inputAudioBlock = receiveReadOnly(); // get the next block of input samples
|
||||
|
||||
// Check is block is disabled
|
||||
if (m_enable == false) { |
||||
// do not transmit or process any audio, return as quickly as possible.
|
||||
if (inputAudioBlock) release(inputAudioBlock); |
||||
|
||||
// release all held memory resources
|
||||
if (m_previousBlock) { |
||||
release(m_previousBlock); m_previousBlock = nullptr; |
||||
} |
||||
// when using internal memory we have to release all references in the ring buffer
|
||||
while (m_memory->getRingBuffer()->size() > 0) { |
||||
audio_block_t *releaseBlock = m_memory->getRingBuffer()->front(); |
||||
m_memory->getRingBuffer()->pop_front(); |
||||
if (releaseBlock) release(releaseBlock); |
||||
} |
||||
return; |
||||
} |
||||
|
||||
// Check is block is bypassed, if so either transmit input directly or create silence
|
||||
if (m_bypass == true) { |
||||
// transmit the input directly
|
||||
if (!inputAudioBlock) { |
||||
// create silence
|
||||
inputAudioBlock = allocate(); |
||||
if (!inputAudioBlock) { return; } // failed to allocate
|
||||
else { |
||||
clearAudioBlock(inputAudioBlock); |
||||
} |
||||
} |
||||
transmit(inputAudioBlock, 0); |
||||
release(inputAudioBlock); |
||||
return; |
||||
} |
||||
|
||||
// Otherwise perform normal processing
|
||||
// In order to make use of the SPI DMA, we need to request the read from memory first,
|
||||
// then do other processing while it fills in the back.
|
||||
audio_block_t *blockToOutput = nullptr; // this will hold the output audio
|
||||
blockToOutput = allocate(); |
||||
if (!blockToOutput) return; // skip this update cycle due to failure
|
||||
|
||||
// get the data. If using external memory with DMA, this won't be filled until
|
||||
// later.
|
||||
m_memory->getSamples(blockToOutput, m_delaySamples); |
||||
|
||||
//audio_block_t *blockToRelease = m_memory->addBlock(blockToOutput);
|
||||
|
||||
// If using DMA, we need something else to do while that read executes, so
|
||||
// move on to input preprocessing
|
||||
|
||||
// Chorus
|
||||
float *mod = lfo.getNextVector(); |
||||
for(uint8_t i=0;i<AUDIO_BLOCK_SAMPLES;i++) |
||||
{ |
||||
/// HIER
|
||||
//float sample=std::roundf((m_delaySamples/2)*mod[i]*(float)inputAudioBlock->data[i])+(m_delaySamples/2);
|
||||
//inputAudioBlock->data[i] = (int16_t)sample/2+inputAudioBlock->data[i]/2;
|
||||
blockToOutput->data[i]=(float(inputAudioBlock->data[i])*mod[i]); |
||||
} |
||||
|
||||
// BACK TO OUTPUT PROCESSING
|
||||
|
||||
// perform the wet/dry mix mix
|
||||
//m_postProcessing(blockToOutput, inputAudioBlock, blockToOutput);
|
||||
transmit(blockToOutput); |
||||
|
||||
release(inputAudioBlock); |
||||
release(m_previousBlock); |
||||
m_previousBlock = blockToOutput; |
||||
|
||||
//if (m_blockToRelease) release(m_blockToRelease);
|
||||
//m_blockToRelease = blockToRelease;
|
||||
} |
||||
|
||||
void AudioEffectSimpleChorus::delay(float milliseconds) |
||||
{ |
||||
size_t delaySamples = calcAudioSamples(milliseconds); |
||||
|
||||
if (delaySamples > m_memory->getMaxDelaySamples()) { |
||||
// this exceeds max delay value, limit it.
|
||||
delaySamples = m_memory->getMaxDelaySamples(); |
||||
} |
||||
|
||||
if (!m_memory) { Serial.println("delay(): m_memory is not valid"); } |
||||
|
||||
m_delaySamples = delaySamples; |
||||
} |
||||
|
||||
void AudioEffectSimpleChorus::delay(size_t delaySamples) |
||||
{ |
||||
if (!m_memory) { Serial.println("delay(): m_memory is not valid"); } |
||||
|
||||
m_delaySamples = delaySamples; |
||||
} |
||||
|
||||
void AudioEffectSimpleChorus::delayFractionMax(float delayFraction) |
||||
{ |
||||
size_t delaySamples = static_cast<size_t>(static_cast<float>(m_memory->getMaxDelaySamples()) * delayFraction); |
||||
|
||||
if (delaySamples > m_memory->getMaxDelaySamples()) { |
||||
// this exceeds max delay value, limit it.
|
||||
delaySamples = m_memory->getMaxDelaySamples(); |
||||
} |
||||
|
||||
if (!m_memory) { Serial.println("delay(): m_memory is not valid"); } |
||||
|
||||
m_delaySamples = delaySamples; |
||||
} |
||||
|
||||
void AudioEffectSimpleChorus::m_postProcessing(audio_block_t *out, audio_block_t *dry, audio_block_t *wet) |
||||
{ |
||||
if (!out) return; // no valid output buffer
|
||||
|
||||
if ( out && dry && wet) { |
||||
// Simulate the LPF IIR nature of the analog systems
|
||||
alphaBlend(out, dry, wet, m_mix); |
||||
} else if (dry) { |
||||
memcpy(out->data, dry->data, sizeof(int16_t) * AUDIO_BLOCK_SAMPLES); |
||||
} |
||||
} |
||||
|
||||
void AudioEffectSimpleChorus::processMidi(int channel, int control, int value) |
||||
{ |
||||
float val = (float)value / 127.0f; |
||||
|
||||
if ((m_midiConfig[FREQUENCY][MIDI_CHANNEL] == channel) && |
||||
(m_midiConfig[FREQUENCY][MIDI_CONTROL] == control)) { |
||||
// Frequency
|
||||
frequency(value/10); |
||||
Serial.println(String("AudioEffectSimpleChorus::frequency (Hz): ") + calcAudioTimeMs(value/10)); |
||||
return; |
||||
} |
||||
|
||||
if ((m_midiConfig[BYPASS][MIDI_CHANNEL] == channel) && |
||||
(m_midiConfig[BYPASS][MIDI_CONTROL] == control)) { |
||||
// Bypass
|
||||
if (value >= 65) { bypass(false); Serial.println(String("AudioEffectSimpleChorus::not bypassed -> ON") + value); } |
||||
else { bypass(true); Serial.println(String("AudioEffectSimpleChorus::bypassed -> OFF") + value); } |
||||
return; |
||||
} |
||||
|
||||
if ((m_midiConfig[MIX][MIDI_CHANNEL] == channel) && |
||||
(m_midiConfig[MIX][MIDI_CONTROL] == control)) { |
||||
// Mix
|
||||
Serial.println(String("AudioEffectSimpleChorus::mix: Dry: ") + 100*(1-val) + String("% Wet: ") + 100*val ); |
||||
mix(val); |
||||
return; |
||||
} |
||||
} |
||||
|
||||
void AudioEffectSimpleChorus::mapMidiControl(int parameter, int midiCC, int midiChannel) |
||||
{ |
||||
if (parameter >= NUM_CONTROLS) { |
||||
return ; // Invalid midi parameter
|
||||
} |
||||
m_midiConfig[parameter][MIDI_CHANNEL] = midiChannel; |
||||
m_midiConfig[parameter][MIDI_CONTROL] = midiCC; |
||||
} |
||||
|
||||
} |
||||
|
||||
|
Loading…
Reference in new issue