You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
BALibrary/src/LibBasicFunctions.cpp

202 lines
5.8 KiB

/*
* LibBasicFunctions.cpp
*
* Created on: Dec 23, 2017
* Author: slascos
*/
#include "Audio.h"
#include "LibBasicFunctions.h"
namespace BAGuitar {
size_t calcAudioSamples(float milliseconds)
{
return (size_t)((milliseconds*(AUDIO_SAMPLE_RATE_EXACT/1000.0f))+0.5f);
}
QueuePosition calcQueuePosition(size_t numSamples)
{
QueuePosition queuePosition;
queuePosition.index = (int)(numSamples / AUDIO_BLOCK_SAMPLES);
queuePosition.offset = numSamples % AUDIO_BLOCK_SAMPLES;
return queuePosition;
}
QueuePosition calcQueuePosition(float milliseconds) {
size_t numSamples = (int)((milliseconds*(AUDIO_SAMPLE_RATE_EXACT/1000.0f))+0.5f);
return calcQueuePosition(numSamples);
}
size_t calcOffset(QueuePosition position)
{
return (position.index*AUDIO_BLOCK_SAMPLES) + position.offset;
}
audio_block_t alphaBlend(audio_block_t *out, audio_block_t *dry, audio_block_t* wet, float mix)
{
for (int i=0; i< AUDIO_BLOCK_SAMPLES; i++) {
out->data[i] = (dry->data[i] * (1 - mix)) + (wet->data[i] * mix);
}
}
void clearAudioBlock(audio_block_t *block)
{
memset(block->data, 0, sizeof(int16_t)*AUDIO_BLOCK_SAMPLES);
}
AudioDelay::AudioDelay(size_t maxSamples)
: m_slot(nullptr)
{
m_type = (MemType::MEM_INTERNAL);
// INTERNAL memory consisting of audio_block_t data structures.
QueuePosition pos = calcQueuePosition(maxSamples);
m_ringBuffer = new RingBuffer<audio_block_t *>(pos.index+2); // If the delay is in queue x, we need to overflow into x+1, thus x+2 total buffers.
}
AudioDelay::AudioDelay(float maxDelayTimeMs)
: AudioDelay(calcAudioSamples(maxDelayTimeMs))
{
}
AudioDelay::AudioDelay(ExtMemSlot *slot)
{
m_type = (MemType::MEM_EXTERNAL);
m_slot = slot;
}
AudioDelay::~AudioDelay()
{
if (m_ringBuffer) delete m_ringBuffer;
}
audio_block_t* AudioDelay::addBlock(audio_block_t *block)
{
audio_block_t *blockToRelease = nullptr;
if (m_type == (MemType::MEM_INTERNAL)) {
// INTERNAL memory
// purposefully don't check if block is valid, the ringBuffer can support nullptrs
if ( m_ringBuffer->size() >= m_ringBuffer->max_size() ) {
// pop before adding
blockToRelease = m_ringBuffer->front();
m_ringBuffer->pop_front();
}
// add the new buffer
m_ringBuffer->push_back(block);
return blockToRelease;
} else {
// EXTERNAL memory
if (!m_slot) { Serial.println("addBlock(): m_slot is not valid"); }
if (block) {
// Audio is stored in reverse in block so we need to write it backwards to external memory
// to maintain temporal coherency.
// int16_t *srcPtr = block->data + AUDIO_BLOCK_SAMPLES - 1;
// for (int i=0; i<AUDIO_BLOCK_SAMPLES; i++) {
// m_slot->writeAdvance16(*srcPtr);
// srcPtr--;
// }
int16_t *srcPtr = block->data;
for (int i=0; i<AUDIO_BLOCK_SAMPLES; i++) {
m_slot->writeAdvance16(*srcPtr);
srcPtr++;
}
}
blockToRelease = block;
}
return blockToRelease;
}
audio_block_t* AudioDelay::getBlock(size_t index)
{
audio_block_t *ret = nullptr;
if (m_type == (MemType::MEM_INTERNAL)) {
ret = m_ringBuffer->at(m_ringBuffer->get_index_from_back(index));
}
return ret;
}
bool AudioDelay::getSamples(audio_block_t *dest, size_t offset, size_t numSamples)
{
if (!dest) return false;
if (m_type == (MemType::MEM_INTERNAL)) {
QueuePosition position = calcQueuePosition(offset);
size_t index = position.index;
if (position.offset == 0) {
// single transfer
audio_block_t *currentQueue = m_ringBuffer->at(m_ringBuffer->get_index_from_back(index));
memcpy(static_cast<void*>(dest->data), static_cast<void*>(currentQueue->data), numSamples * sizeof(int16_t));
return true;
}
// Otherwise we need to break the transfer into two memcpy because it will go across two source queues.
// Audio is stored in reverse order. That means the first sample (in time) goes in the last location in the audio block.
int16_t *destStart = dest->data;
audio_block_t *currentQueue;
int16_t *srcStart;
// Break the transfer into two. Copy the 'older' data first then the 'newer' data with respect to current time.
currentQueue = m_ringBuffer->at(m_ringBuffer->get_index_from_back(index+1)); // The latest buffer is at the back. We need index+1 counting from the back.
srcStart = (currentQueue->data + AUDIO_BLOCK_SAMPLES - position.offset);
size_t numData = position.offset;
memcpy(static_cast<void*>(destStart), static_cast<void*>(srcStart), numData * sizeof(int16_t));
currentQueue = m_ringBuffer->at(m_ringBuffer->get_index_from_back(index)); // now grab the queue where the 'first' data sample was
destStart += numData; // we already wrote numData so advance by this much.
srcStart = (currentQueue->data);
numData = AUDIO_BLOCK_SAMPLES - numData;
memcpy(static_cast<void*>(destStart), static_cast<void*>(srcStart), numData * sizeof(int16_t));
return true;
} else {
// EXTERNAL Memory
if (numSamples*sizeof(int16_t) <= m_slot->size() ) {
int currentPositionBytes = (int)m_slot->getWritePosition() - (int)(AUDIO_BLOCK_SAMPLES*sizeof(int16_t));
size_t offsetBytes = offset * sizeof(int16_t);
if ((int)offsetBytes <= currentPositionBytes) {
m_slot->setReadPosition(currentPositionBytes - offsetBytes);
} else {
// It's going to wrap around to the end of the slot
int readPosition = (int)m_slot->size() + currentPositionBytes - offsetBytes;
m_slot->setReadPosition((size_t)readPosition);
}
//m_slot->printStatus();
// write the data to the destination block in reverse
// int16_t *destPtr = dest->data + AUDIO_BLOCK_SAMPLES-1;
// for (int i=0; i<AUDIO_BLOCK_SAMPLES; i++) {
// *destPtr = m_slot->readAdvance16();
// destPtr--;
// }
int16_t *destPtr = dest->data;
for (int i=0; i<AUDIO_BLOCK_SAMPLES; i++) {
*destPtr = m_slot->readAdvance16();
destPtr++;
}
return true;
} else {
// numSampmles is > than total slot size
Serial.println("getSamples(): ERROR numSamples > total slot size");
return false;
}
}
}
}