You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
347 lines
9.8 KiB
347 lines
9.8 KiB
/*
|
|
* LibBasicFunctions.cpp
|
|
*
|
|
* Created on: Dec 23, 2017
|
|
* Author: slascos
|
|
*/
|
|
|
|
#include "Audio.h"
|
|
#include "LibBasicFunctions.h"
|
|
|
|
namespace BAGuitar {
|
|
|
|
size_t calcAudioSamples(float milliseconds)
|
|
{
|
|
return (size_t)((milliseconds*(AUDIO_SAMPLE_RATE_EXACT/1000.0f))+0.5f);
|
|
}
|
|
|
|
QueuePosition calcQueuePosition(size_t numSamples)
|
|
{
|
|
QueuePosition queuePosition;
|
|
queuePosition.index = (int)(numSamples / AUDIO_BLOCK_SAMPLES);
|
|
queuePosition.offset = numSamples % AUDIO_BLOCK_SAMPLES;
|
|
return queuePosition;
|
|
}
|
|
QueuePosition calcQueuePosition(float milliseconds) {
|
|
size_t numSamples = (int)((milliseconds*(AUDIO_SAMPLE_RATE_EXACT/1000.0f))+0.5f);
|
|
return calcQueuePosition(numSamples);
|
|
}
|
|
|
|
size_t calcOffset(QueuePosition position)
|
|
{
|
|
return (position.index*AUDIO_BLOCK_SAMPLES) + position.offset;
|
|
}
|
|
|
|
void alphaBlend(audio_block_t *out, audio_block_t *dry, audio_block_t* wet, float mix)
|
|
{
|
|
//Non-optimized version for illustrative purposes
|
|
// for (int i=0; i< AUDIO_BLOCK_SAMPLES; i++) {
|
|
// out->data[i] = (dry->data[i] * (1 - mix)) + (wet->data[i] * mix);
|
|
// }
|
|
// return;
|
|
|
|
// ARM DSP optimized
|
|
int16_t wetBuffer[AUDIO_BLOCK_SAMPLES];
|
|
int16_t dryBuffer[AUDIO_BLOCK_SAMPLES];
|
|
int16_t scaleFractWet = (int16_t)(mix * 32767.0f);
|
|
int16_t scaleFractDry = 32767-scaleFractWet;
|
|
|
|
arm_scale_q15(dry->data, scaleFractDry, 0, dryBuffer, AUDIO_BLOCK_SAMPLES);
|
|
arm_scale_q15(wet->data, scaleFractWet, 0, wetBuffer, AUDIO_BLOCK_SAMPLES);
|
|
arm_add_q15(wetBuffer, dryBuffer, out->data, AUDIO_BLOCK_SAMPLES);
|
|
}
|
|
|
|
void clearAudioBlock(audio_block_t *block)
|
|
{
|
|
memset(block->data, 0, sizeof(int16_t)*AUDIO_BLOCK_SAMPLES);
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////
|
|
// AudioDelay
|
|
////////////////////////////////////////////////////
|
|
AudioDelay::AudioDelay(size_t maxSamples)
|
|
: m_slot(nullptr)
|
|
{
|
|
m_type = (MemType::MEM_INTERNAL);
|
|
|
|
// INTERNAL memory consisting of audio_block_t data structures.
|
|
QueuePosition pos = calcQueuePosition(maxSamples);
|
|
m_ringBuffer = new RingBuffer<audio_block_t *>(pos.index+2); // If the delay is in queue x, we need to overflow into x+1, thus x+2 total buffers.
|
|
}
|
|
|
|
AudioDelay::AudioDelay(float maxDelayTimeMs)
|
|
: AudioDelay(calcAudioSamples(maxDelayTimeMs))
|
|
{
|
|
|
|
}
|
|
|
|
AudioDelay::AudioDelay(ExtMemSlot *slot)
|
|
{
|
|
m_type = (MemType::MEM_EXTERNAL);
|
|
m_slot = slot;
|
|
}
|
|
|
|
AudioDelay::~AudioDelay()
|
|
{
|
|
if (m_ringBuffer) delete m_ringBuffer;
|
|
}
|
|
|
|
audio_block_t* AudioDelay::addBlock(audio_block_t *block)
|
|
{
|
|
audio_block_t *blockToRelease = nullptr;
|
|
|
|
if (m_type == (MemType::MEM_INTERNAL)) {
|
|
// INTERNAL memory
|
|
|
|
// purposefully don't check if block is valid, the ringBuffer can support nullptrs
|
|
if ( m_ringBuffer->size() >= m_ringBuffer->max_size() ) {
|
|
// pop before adding
|
|
blockToRelease = m_ringBuffer->front();
|
|
m_ringBuffer->pop_front();
|
|
}
|
|
|
|
// add the new buffer
|
|
m_ringBuffer->push_back(block);
|
|
return blockToRelease;
|
|
|
|
} else {
|
|
// EXTERNAL memory
|
|
if (!m_slot) { Serial.println("addBlock(): m_slot is not valid"); }
|
|
|
|
if (block) {
|
|
|
|
// Audio is stored in reverse in block so we need to write it backwards to external memory
|
|
// to maintain temporal coherency.
|
|
// int16_t *srcPtr = block->data + AUDIO_BLOCK_SAMPLES - 1;
|
|
// for (int i=0; i<AUDIO_BLOCK_SAMPLES; i++) {
|
|
// m_slot->writeAdvance16(*srcPtr);
|
|
// srcPtr--;
|
|
// }
|
|
|
|
int16_t *srcPtr = block->data;
|
|
for (int i=0; i<AUDIO_BLOCK_SAMPLES; i++) {
|
|
m_slot->writeAdvance16(*srcPtr);
|
|
srcPtr++;
|
|
}
|
|
|
|
}
|
|
blockToRelease = block;
|
|
}
|
|
return blockToRelease;
|
|
}
|
|
|
|
audio_block_t* AudioDelay::getBlock(size_t index)
|
|
{
|
|
audio_block_t *ret = nullptr;
|
|
if (m_type == (MemType::MEM_INTERNAL)) {
|
|
ret = m_ringBuffer->at(m_ringBuffer->get_index_from_back(index));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
bool AudioDelay::getSamples(audio_block_t *dest, size_t offset, size_t numSamples)
|
|
{
|
|
if (!dest) {
|
|
Serial.println("getSamples(): dest is invalid");
|
|
return false;
|
|
}
|
|
|
|
if (m_type == (MemType::MEM_INTERNAL)) {
|
|
QueuePosition position = calcQueuePosition(offset);
|
|
size_t index = position.index;
|
|
|
|
audio_block_t *currentQueue0 = m_ringBuffer->at(m_ringBuffer->get_index_from_back(index));
|
|
// The latest buffer is at the back. We need index+1 counting from the back.
|
|
audio_block_t *currentQueue1 = m_ringBuffer->at(m_ringBuffer->get_index_from_back(index+1));
|
|
|
|
// check if either queue is invalid, if so just zero the destination buffer
|
|
if ( (!currentQueue0) || (!currentQueue0) ) {
|
|
// a valid entry is not in all queue positions while it is filling, use zeros
|
|
memset(static_cast<void*>(dest->data), 0, numSamples * sizeof(int16_t));
|
|
return true;
|
|
}
|
|
|
|
if (position.offset == 0) {
|
|
// single transfer
|
|
memcpy(static_cast<void*>(dest->data), static_cast<void*>(currentQueue0->data), numSamples * sizeof(int16_t));
|
|
return true;
|
|
}
|
|
|
|
// Otherwise we need to break the transfer into two memcpy because it will go across two source queues.
|
|
// Audio is stored in reverse order. That means the first sample (in time) goes in the last location in the audio block.
|
|
int16_t *destStart = dest->data;
|
|
int16_t *srcStart;
|
|
|
|
// Break the transfer into two. Copy the 'older' data first then the 'newer' data with respect to current time.
|
|
//currentQueue = m_ringBuffer->at(m_ringBuffer->get_index_from_back(index+1)); // The latest buffer is at the back. We need index+1 counting from the back.
|
|
srcStart = (currentQueue1->data + AUDIO_BLOCK_SAMPLES - position.offset);
|
|
size_t numData = position.offset;
|
|
memcpy(static_cast<void*>(destStart), static_cast<void*>(srcStart), numData * sizeof(int16_t));
|
|
|
|
//currentQueue = m_ringBuffer->at(m_ringBuffer->get_index_from_back(index)); // now grab the queue where the 'first' data sample was
|
|
destStart += numData; // we already wrote numData so advance by this much.
|
|
srcStart = (currentQueue0->data);
|
|
numData = AUDIO_BLOCK_SAMPLES - numData;
|
|
memcpy(static_cast<void*>(destStart), static_cast<void*>(srcStart), numData * sizeof(int16_t));
|
|
|
|
return true;
|
|
|
|
} else {
|
|
// EXTERNAL Memory
|
|
if (numSamples*sizeof(int16_t) <= m_slot->size() ) {
|
|
int currentPositionBytes = (int)m_slot->getWritePosition() - (int)(AUDIO_BLOCK_SAMPLES*sizeof(int16_t));
|
|
size_t offsetBytes = offset * sizeof(int16_t);
|
|
|
|
if ((int)offsetBytes <= currentPositionBytes) {
|
|
m_slot->setReadPosition(currentPositionBytes - offsetBytes);
|
|
} else {
|
|
// It's going to wrap around to the end of the slot
|
|
int readPosition = (int)m_slot->size() + currentPositionBytes - offsetBytes;
|
|
m_slot->setReadPosition((size_t)readPosition);
|
|
}
|
|
|
|
//m_slot->printStatus();
|
|
|
|
// write the data to the destination block in reverse
|
|
// int16_t *destPtr = dest->data + AUDIO_BLOCK_SAMPLES-1;
|
|
// for (int i=0; i<AUDIO_BLOCK_SAMPLES; i++) {
|
|
// *destPtr = m_slot->readAdvance16();
|
|
// destPtr--;
|
|
// }
|
|
|
|
int16_t *destPtr = dest->data;
|
|
for (int i=0; i<AUDIO_BLOCK_SAMPLES; i++) {
|
|
*destPtr = m_slot->readAdvance16();
|
|
destPtr++;
|
|
}
|
|
return true;
|
|
} else {
|
|
// numSampmles is > than total slot size
|
|
Serial.println("getSamples(): ERROR numSamples > total slot size");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////
|
|
// IirBiQuadFilter
|
|
////////////////////////////////////////////////////
|
|
IirBiQuadFilter::IirBiQuadFilter(unsigned numStages, const int32_t *coeffs, int coeffShift)
|
|
: NUM_STAGES(numStages)
|
|
{
|
|
m_coeffs = new int32_t[5*numStages];
|
|
memcpy(m_coeffs, coeffs, 5*numStages * sizeof(int32_t));
|
|
|
|
m_state = new int32_t[4*numStages];
|
|
arm_biquad_cascade_df1_init_q31(&m_iirCfg, numStages, m_coeffs, m_state, coeffShift);
|
|
}
|
|
|
|
IirBiQuadFilter::~IirBiQuadFilter()
|
|
{
|
|
if (m_coeffs) delete [] m_coeffs;
|
|
if (m_state) delete [] m_state;
|
|
}
|
|
|
|
|
|
bool IirBiQuadFilter::process(int16_t *output, int16_t *input, size_t numSamples)
|
|
{
|
|
if (!output) return false;
|
|
if (!input) {
|
|
// send zeros
|
|
memset(output, 0, numSamples * sizeof(int16_t));
|
|
} else {
|
|
|
|
// create convertion buffers on teh stack
|
|
int32_t input32[numSamples];
|
|
int32_t output32[numSamples];
|
|
for (int i=0; i<numSamples; i++) {
|
|
input32[i] = (int32_t)(input[i]);
|
|
}
|
|
|
|
arm_biquad_cascade_df1_fast_q31(&m_iirCfg, input32, output32, numSamples);
|
|
|
|
for (int i=0; i<numSamples; i++) {
|
|
output[i] = (int16_t)(output32[i] & 0xffff);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// HIGH QUALITY
|
|
IirBiQuadFilterHQ::IirBiQuadFilterHQ(unsigned numStages, const int32_t *coeffs, int coeffShift)
|
|
: NUM_STAGES(numStages)
|
|
{
|
|
m_coeffs = new int32_t[5*numStages];
|
|
memcpy(m_coeffs, coeffs, 5*numStages * sizeof(int32_t));
|
|
|
|
m_state = new int64_t[4*numStages];;
|
|
arm_biquad_cas_df1_32x64_init_q31(&m_iirCfg, numStages, m_coeffs, m_state, coeffShift);
|
|
}
|
|
|
|
IirBiQuadFilterHQ::~IirBiQuadFilterHQ()
|
|
{
|
|
if (m_coeffs) delete [] m_coeffs;
|
|
if (m_state) delete [] m_state;
|
|
}
|
|
|
|
|
|
bool IirBiQuadFilterHQ::process(int16_t *output, int16_t *input, size_t numSamples)
|
|
{
|
|
if (!output) return false;
|
|
if (!input) {
|
|
// send zeros
|
|
memset(output, 0, numSamples * sizeof(int16_t));
|
|
} else {
|
|
|
|
// create convertion buffers on teh stack
|
|
int32_t input32[numSamples];
|
|
int32_t output32[numSamples];
|
|
for (int i=0; i<numSamples; i++) {
|
|
input32[i] = (int32_t)(input[i]);
|
|
}
|
|
|
|
arm_biquad_cas_df1_32x64_q31(&m_iirCfg, input32, output32, numSamples);
|
|
|
|
for (int i=0; i<numSamples; i++) {
|
|
output[i] = (int16_t)(output32[i] & 0xffff);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// FLOAT
|
|
IirBiQuadFilterFloat::IirBiQuadFilterFloat(unsigned numStages, const float *coeffs)
|
|
: NUM_STAGES(numStages)
|
|
{
|
|
m_coeffs = new float[5*numStages];
|
|
memcpy(m_coeffs, coeffs, 5*numStages * sizeof(float));
|
|
|
|
m_state = new float[4*numStages];;
|
|
arm_biquad_cascade_df2T_init_f32(&m_iirCfg, numStages, m_coeffs, m_state);
|
|
}
|
|
|
|
IirBiQuadFilterFloat::~IirBiQuadFilterFloat()
|
|
{
|
|
if (m_coeffs) delete [] m_coeffs;
|
|
if (m_state) delete [] m_state;
|
|
}
|
|
|
|
|
|
bool IirBiQuadFilterFloat::process(float *output, float *input, size_t numSamples)
|
|
{
|
|
if (!output) return false;
|
|
if (!input) {
|
|
// send zeros
|
|
memset(output, 0, numSamples * sizeof(float));
|
|
} else {
|
|
|
|
arm_biquad_cascade_df2T_f32(&m_iirCfg, input, output, numSamples);
|
|
|
|
}
|
|
return true;
|
|
}
|
|
|
|
}
|
|
|
|
|