You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
BALibrary/examples/Delay/AnalogDelayDemoExpansion/AnalogDelayDemoExpansion.ino

243 lines
9.9 KiB

/*************************************************************************
* This demo uses the BALibrary library to provide enhanced control of
* the TGA Pro board.
*
* The latest copy of the BA Guitar library can be obtained from
* https://github.com/Blackaddr/BALibrary
*
* This example demonstrates teh BAAudioEffectsAnalogDelay effect. It can
* be controlled using the Blackaddr Audio "Expansion Control Board".
*
* POT1 (left) controls amount of delay
* POT2 (right) controls amount of feedback
* POT3 (center) controls the wet/dry mix
* SW1 will enable/bypass the audio effect. LED1 will be on when effect is enabled.
* SW2 will cycle through the 3 pre-programmed analog filters. LED2 will be on when SW2 is pressed.
*
* !!! SET POTS TO REASONABLE VALUES BEFORE STARTING TO AVOID SCREECHING FEEDBACK!!!!
* - set POT1 (delay) fully counter-clockwise then increase it slowly.
* - set POT2 (feedback) fully counter-clockwise, then increase it slowly
* - set POT3 (wet/dry mix) to half-way at the detent.
*
* Using the Serial Montitor, send 'u' and 'd' characters to increase or decrease
* the headphone volume between values of 0 and 9.
*/
#include "BALibrary.h"
#include "BAEffects.h"
using namespace BAEffects;
using namespace BALibrary;
//#define USE_CAB_FILTER // uncomment this line to add a simple low-pass filter to simulate a cabinet if you are going straight to headphones
//#define USE_EXT // uncomment this line to use External MEM0
AudioInputI2S i2sIn;
AudioOutputI2S i2sOut;
BAAudioControlWM8731 codec;
#ifdef USE_EXT
// If using external SPI memory, we will instantiate a SRAM
// manager and create an external memory slot to use as the memory
// for our audio delay
ExternalSramManager externalSram;
ExtMemSlot delaySlot; // Declare an external memory slot.
// Instantiate the AudioEffectAnalogDelay to use external memory by
/// passing it the delay slot.
AudioEffectAnalogDelay analogDelay(&delaySlot);
#else
// If using internal memory, we will instantiate the AudioEffectAnalogDelay
// by passing it the maximum amount of delay we will use in millseconds. Note that
// audio delay lengths are very limited when using internal memory due to limited
// internal RAM size.
AudioEffectAnalogDelay analogDelay(200.0f); // set the max delay of 200 ms.
// If you use external SPI memory you can get up to 1485.0f ms of delay!
#endif
#if defined(USE_CAB_FILTER)
AudioFilterBiquad cabFilter; // We'll want something to cut out the highs and smooth the tone, just like a guitar cab.
#endif
AudioConnection input(i2sIn,0, analogDelay,0);
#if defined(USE_CAB_FILTER)
AudioConnection delayOut(analogDelay, 0, cabFilter, 0);
AudioConnection leftOut(cabFilter,0, i2sOut, 0);
AudioConnection rightOut(cabFilter,0, i2sOut, 1);
#else
AudioConnection leftOut(analogDelay,0, i2sOut, 0);
AudioConnection rightOut(analogDelay,0, i2sOut, 1);
#endif
//////////////////////////////////////////
// SETUP PHYSICAL CONTROLS
// - POT1 (left) will control the amount of delay
// - POT2 (right) will control the amount of feedback
// - POT3 (centre) will control the wet/dry mix.
// - SW1 (left) will be used as a bypass control
// - LED1 (left) will be illuminated when the effect is ON (not bypass)
// - SW2 (right) will be used to cycle through the three built in analog filter styles available.
// - LED2 (right) will illuminate when pressing SW2.
//////////////////////////////////////////
// To get the calibration values for your particular board, first run the
// BAExpansionCalibrate.ino example and
constexpr int potCalibMin = 1;
constexpr int potCalibMax = 1018;
constexpr bool potSwapDirection = true;
// Create a control object using the number of switches, pots, encoders and outputs on the
// Blackaddr Audio Expansion Board.
BAPhysicalControls controls(BA_EXPAND_NUM_SW, BA_EXPAND_NUM_POT, BA_EXPAND_NUM_ENC, BA_EXPAND_NUM_LED);
elapsedMillis timer;
unsigned filterIndex = 0; // variable for storing which analog filter we're currently using.
constexpr unsigned MAX_HEADPHONE_VOL = 10;
unsigned headphoneVolume = 8; // control headphone volume from 0 to 10.
// BAPhysicalControls returns a handle when you register a new control. We'll uses these handles when working with the controls.
int bypassHandle, filterHandle, delayHandle, feedbackHandle, mixHandle, led1Handle, led2Handle; // Handles for the various controls
void setup() {
TGA_PRO_MKII_REV1(); // Declare the version of the TGA Pro you are using.
//TGA_PRO_REVB(x);
//TGA_PRO_REVA(x);
#ifdef USE_EXT
SPI_MEM0_64M(); // Optional 64Mbit SPI RAM
//SPI_MEM0_4M(); // Older REVB and REVA boards offered 1M or 4M
//SPI_MEM0_1M();
#endif
delay(100); // wait a bit for serial to be available
Serial.begin(57600); // Start the serial port
delay(100);
// Configure the hardware
// Setup the controls. The return value is the handle to use when checking for control changes, etc.
// pushbuttons
bypassHandle = controls.addSwitch(BA_EXPAND_SW1_PIN); // will be used for bypass control
filterHandle = controls.addSwitch(BA_EXPAND_SW2_PIN); // will be used for stepping through filters
// pots
delayHandle = controls.addPot(BA_EXPAND_POT1_PIN, potCalibMin, potCalibMax, potSwapDirection); // control the amount of delay
feedbackHandle = controls.addPot(BA_EXPAND_POT2_PIN, potCalibMin, potCalibMax, potSwapDirection);
mixHandle = controls.addPot(BA_EXPAND_POT3_PIN, potCalibMin, potCalibMax, potSwapDirection);
// leds
led1Handle = controls.addOutput(BA_EXPAND_LED1_PIN);
led2Handle = controls.addOutput(BA_EXPAND_LED2_PIN); // will illuminate when pressing SW2
// Disable the audio codec first
codec.disable();
AudioMemory(128);
// Enable and configure the codec
Serial.println("Enabling codec...\n");
codec.enable();
codec.setHeadphoneVolume(1.0f); // Max headphone volume
// If using external memory request request memory from the manager
// for the slot
#ifdef USE_EXT
Serial.println("Using EXTERNAL memory");
// We have to request memory be allocated to our slot.
externalSram.requestMemory(&delaySlot, 500.0f, MemSelect::MEM0, true);
#else
Serial.println("Using INTERNAL memory");
#endif
// Besure to enable the delay. When disabled, audio is is completely blocked by the effect
// to minimize resource usage to nearly to nearly zero.
analogDelay.enable();
// Set some default values.
// These can be changed using the controls on the Blackaddr Audio Expansion Board
analogDelay.bypass(false);
controls.setOutput(led1Handle, !analogDelay.isBypass()); // Set the LED when NOT bypassed
analogDelay.mix(0.5f);
analogDelay.feedback(0.0f);
//////////////////////////////////
// AnalogDelay filter selection //
// These are commented out, in this example we'll use SW2 to cycle through the different filters
//analogDelay.setFilter(AudioEffectAnalogDelay::Filter::DM3); // The default filter. Naturally bright echo (highs stay, lows fade away)
//analogDelay.setFilter(AudioEffectAnalogDelay::Filter::WARM); // A warm filter with a smooth frequency rolloff above 2Khz
//analogDelay.setFilter(AudioEffectAnalogDelay::Filter::DARK); // A very dark filter, with a sharp rolloff above 1Khz
#if defined(USE_CAB_FILTER)
// Guitar cabinet: Setup 2-stages of LPF, cutoff 4500 Hz, Q-factor 0.7071 (a 'normal' Q-factor)
cabFilter.setLowpass(0, 4500, .7071);
cabFilter.setLowpass(1, 4500, .7071);
#endif
}
void loop() {
float potValue;
// Check if SW1 has been toggled (pushed)
if (controls.isSwitchToggled(bypassHandle)) {
bool bypass = analogDelay.isBypass(); // get the current state
bypass = !bypass; // change it
analogDelay.bypass(bypass); // set the new state
controls.setOutput(led1Handle, !bypass); // Set the LED when NOT bypassed
Serial.println(String("BYPASS is ") + bypass);
}
// Use SW2 to cycle through the filters
controls.setOutput(led2Handle, controls.getSwitchValue(led2Handle));
if (controls.isSwitchToggled(filterHandle)) {
filterIndex = (filterIndex + 1) % 3; // update and potentionall roll the counter 0, 1, 2, 0, 1, 2, ...
// cast the index between 0 to 2 to the enum class AudioEffectAnalogDelay::Filter
analogDelay.setFilter(static_cast<AudioEffectAnalogDelay::Filter>(filterIndex)); // will cycle through 0 to 2
Serial.println(String("Filter set to ") + filterIndex);
}
// Use POT1 (left) to control the delay setting
if (controls.checkPotValue(delayHandle, potValue)) {
// Pot has changed
Serial.println(String("New DELAY setting: ") + potValue);
analogDelay.delayFractionMax(potValue);
}
// Use POT2 (right) to control the feedback setting
if (controls.checkPotValue(feedbackHandle, potValue)) {
// Pot has changed
Serial.println(String("New FEEDBACK setting: ") + potValue);
analogDelay.feedback(potValue);
}
// Use POT3 (centre) to control the mix setting
if (controls.checkPotValue(mixHandle, potValue)) {
// Pot has changed
Serial.println(String("New MIX setting: ") + potValue);
analogDelay.mix(potValue);
}
// Use the 'u' and 'd' keys to adjust volume across ten levels.
if (Serial) {
if (Serial.available() > 0) {
while (Serial.available()) {
char key = Serial.read();
if (key == 'u') {
headphoneVolume = (headphoneVolume + 1) % MAX_HEADPHONE_VOL;
Serial.println(String("Increasing HEADPHONE volume to ") + headphoneVolume);
}
else if (key == 'd') {
headphoneVolume = (headphoneVolume - 1) % MAX_HEADPHONE_VOL;
Serial.println(String("Decreasing HEADPHONE volume to ") + headphoneVolume);
}
codec.setHeadphoneVolume(static_cast<float>(headphoneVolume) / static_cast<float>(MAX_HEADPHONE_VOL));
}
}
}
delay(20); // Without some minimal delay here it will be difficult for the pots/switch changes to be detected.
if (timer > 1000) {
timer = 0;
Serial.print("Processor Usage, Total: "); Serial.print(AudioProcessorUsage());
Serial.print("% ");
Serial.print(" analogDelay: "); Serial.print(analogDelay.processorUsage());
Serial.println("%");
}
}