You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
BALibrary/examples/Tests/Multiverse_BasicDemo/Multiverse_BasicDemo.ino

285 lines
8.8 KiB

/***********************************************************************************
* MULTIVERSE DEMO
*
* This demo program shows how to use BALibrary to access the hardware
* features of the Aviate Audio Multiverse effects processor.
*
* The following are demonstrated in this programming using BALibrary:
* - WM8731 stereo audio codec in master mode (NOTE: not slave mode like TGA Pro)
* - Interact with all physical controls
* - Control the 128x64 pixel OLED display (connected to SPI0)
* - Use the 8MB external SRAM (simple memory test)
*
* REQUIREMENTS:
* This demo for Multiverse uses its OLED display which requires several Arduino
* libraries be downloaded first. The SH1106 library is modifed to work with Teensy
* and must be downloaded from the AviateAudio github.
*
* Adafruit_BusIO : https://github.com/adafruit/Adafruit_BusIO
* Adafruit_GFX_Library : https://github.com/adafruit/Adafruit-GFX-Library
* Adafruit_SH1106 : https://github.com/AviateAudio/Adafruit_SH1106
*
*
* USAGE INSTRUCTIONS
* - Use the 'Gain' knob to control the input gain on the codec. See checkPot().
* - Use the 'Level' knob to control output volume with an AudioMixer4 object.
* - Stomp switches S1 and S2 will write status to display, and turn on LED
* - Encoder push-button switches will write status to display when pressed/released
* - Encoder rotary control will adjust a positive/negative count and update display
*/
#include <Audio.h>
#include <SPI.h>
#include "BALibrary.h"
#include "DebugPrintf.h"
#include "PhysicalControls.h"
using namespace BALibrary;
// OLED display stuff
#include "Adafruit_SH1106.h"
#include "Adafruit_GFX.h"
#include "Fonts/FreeSansBold9pt7b.h"
constexpr unsigned SCREEN_WIDTH = 128; // OLED display width, in pixels
constexpr unsigned SCREEN_HEIGHT = 64; // OLED display height, in pixels
Adafruit_SH1106 display(37, 35, 10);
// External SPI RAM
ExternalSramManager sramManager;
ExtMemSlot memSlot;
BASpiMemory spiMem1(SpiDeviceId::SPI_DEVICE1);
unsigned spiAddress = 0;
unsigned spiAddressMax;
unsigned sramStage = 0; // stage 0 is zero, 1 is write, 2 is read
volatile float sramCompletion = 0.0f;
volatile unsigned errorCount = 0;
AudioInputI2Sslave i2sIn;
AudioOutputI2Sslave i2sOut;
AudioMixer4 volumeOut;
// i2sIn --> volumeOut(Mixer) --> i2sOut
AudioConnection patchIn0(i2sIn, 0, volumeOut, 0);
AudioConnection patchIn1(i2sIn, 1, volumeOut, 1);
AudioConnection patchOut0(volumeOut,0, i2sOut, 0);
AudioConnection patchOut1(volumeOut,0, i2sOut, 1);
BAAudioControlWM8731master codec;
elapsedMillis timer;
// Create a control object using the number of switches, pots, encoders and outputs on the
// Multiverse pedal
BAPhysicalControls controls(6, 4, 4, 2); // (SW, POT, ENC, LED)
unsigned loopCounter = 0;
void drawProgressBar(float completion); // declaration
void drawBlackaddrAudio() {
display.setCursor(0, 24); // (x,y)
display.printf(" Blackaddr");
display.setCursor(0, 40); // (x,y)
display.printf(" Audio");
}
void setup() {
codec.disable(); // this will reset the codec
// wait up for the serial to appear for up to 1 second, then continue
Serial.begin(57600);
unsigned serialLoopCount = 10;
while (!Serial && (serialLoopCount > 0)) {
delay(100);
serialLoopCount--;
}
MULTIVERSE_REV1(); // constants defined in BALibrary become valid only after this call
SPI_MEM1_64M(); // Declare the correct memory size
// Init the display
display.begin(SH1106_SWITCHCAPVCC, SH1106_I2C_ADDRESS, true);
display.clearDisplay();
display.display();
display.setTextColor(WHITE); // Draw white text
display.setFont(&FreeSansBold9pt7b);
drawBlackaddrAudio();
display.display();
configPhysicalControls(&controls, &codec);
// Request a memory slot from the external RAM
size_t numBytes = BAHardwareConfig.getSpiMemSizeBytes(MemSelect::MEM1);
spiAddressMax = BAHardwareConfig.getSpiMemMaxAddr(1)/4; // test the first 25% of memory
bool success = sramManager.requestMemory(&memSlot, numBytes, MemSelect::MEM1, /* no DMA */ false);
if (!success && Serial) { printf("Request for memory slot failed\n\r"); }
// Allocated audio buffers and enable codec
AudioMemory(64);
codec.enable();
delay(100);
// Mixer at full volume
volumeOut.gain(0,1.0f);
volumeOut.gain(1,1.0f);
// flush the pot filters. The analog measurement of the analog pots is averaged (filtered)
// over time, so at startup you will see a bunch of false changes detected as the filter
// settles. We can force this with a few dozen repeated calls.
for (unsigned i=0; i < 50; i++) {
float potValue;
for (unsigned j=0; j < BA_EXPAND_NUM_POT; j++) {
controls.checkPotValue(j, potValue);
}
delay(10);
}
}
void loop() {
// Check all the physical controls for updates
checkPot(0);
checkPot(1);
checkPot(2);
checkPot(3);
checkSwitch(0);
checkSwitch(1);
checkSwitch(2);
checkSwitch(3);
checkSwitch(4);
checkSwitch(5);
checkEncoder(0);
checkEncoder(1);
checkEncoder(2);
checkEncoder(3);
// If the SRAM test is not complete, run the next block
if (sramCompletion < 1.0f) {
nextSpiMemTestBlock();
}
// Adjusting one of the knobs/switches will result in its value being display for
// 2 seconds in the check*() functions.
if (timer > 2000) {
loopCounter++;
display.clearDisplay();
drawBlackaddrAudio();
drawSramProgress(sramCompletion);
display.display();
}
}
// This function will draw on the display which stage the memory test is in, and
// the percentage complete for that stage.
void drawSramProgress(float completion)
{
if (errorCount > 0) { // If errors, print the error count
display.setCursor(0, SCREEN_HEIGHT-1);
display.printf("Errors: %d", errorCount);
return;
}
// Draw the SRAM test progress at the bottom of the screen
display.setCursor(0, SCREEN_HEIGHT-1);
switch(sramStage) {
case 0 : display.printf("0 mem:"); break;
case 1 : display.printf("0 chk:"); break;
case 2 : display.printf("wr mem:"); break;
case 3 : display.printf("rd mem:"); break;
case 4 : // same as default
default: display.printf("Done"); break;
}
display.setCursor(SCREEN_WIDTH*0.63f, SCREEN_HEIGHT-1); // position to lower right corner
display.printf("%0.f%%", 100.0f * completion);
}
// Create a predictable data pattern based on address.
constexpr int mask0 = 0x5555;
constexpr int mask1 = 0xaaaa;
int calcNextData(int spiAddress, int loopPhase, int maskPhase)
{
int data;
int phase = ((loopPhase << 1) + maskPhase) & 0x3;
switch(phase)
{
case 0 :
data = spiAddress ^ mask0;
break;
case 1:
data = spiAddress ^ mask1;
break;
case 2:
data = ~spiAddress ^ mask0;
break;
case 3:
data = ~spiAddress ^ mask1;
}
return (data & 0xffff);
}
// Process the next block of data in the memory test
void nextSpiMemTestBlock()
{
constexpr unsigned BLOCK_SIZE_BYTES = 256; // transfer 256 bytes (arbitrary) per transaction
constexpr unsigned NUM_BLOCK_WORDS = BLOCK_SIZE_BYTES;
static uint8_t buffer[BLOCK_SIZE_BYTES];
static int16_t buffer16a[NUM_BLOCK_WORDS];
static int16_t buffer16b[NUM_BLOCK_WORDS];
static int maskPhase = 0;
if (sramStage == 0) { // Zero write
// zero the memory
while (spiMem1.isWriteBusy()) {} // wait for DMA write to complete
memSlot.zero(spiAddress, BLOCK_SIZE_BYTES);
spiAddress += BLOCK_SIZE_BYTES;
} else if (sramStage == 1) { // Zero check
memSlot.read(spiAddress, buffer, BLOCK_SIZE_BYTES);
while (spiMem1.isReadBusy()) {} // wait for DMA read results
for (unsigned i=0; i < BLOCK_SIZE_BYTES; i++) {
if (buffer[i] != 0) { errorCount++; }
}
spiAddress += BLOCK_SIZE_BYTES;
}
else if (sramStage == 2) { // write test
// Calculate the data for a block
for (unsigned i=0; i<NUM_BLOCK_WORDS; i++) {
buffer16a[i] = calcNextData(spiAddress+i, 0, 0);
maskPhase = (maskPhase+1) % 2;
}
memSlot.write16(spiAddress, buffer16a, NUM_BLOCK_WORDS);
while (memSlot.isWriteBusy()) {} // wait for DMA write to complete
spiAddress += BLOCK_SIZE_BYTES;
}
else if (sramStage == 3) { // read test
// Calculate the data for a block
for (unsigned i=0; i<NUM_BLOCK_WORDS; i++) {
buffer16a[i] = calcNextData(spiAddress+i, 0, 0);
maskPhase = (maskPhase+1) % 2;
}
memSlot.read16(spiAddress, buffer16b, NUM_BLOCK_WORDS);
while (memSlot.isReadBusy()) {} // wait for DMA read results
for (unsigned i=0; i < NUM_BLOCK_WORDS; i++) {
if (buffer16a[i] != buffer16b[i]) { errorCount++; }
}
spiAddress += BLOCK_SIZE_BYTES;
}
else if (sramStage == 4) {
sramCompletion = 1.0f;
return;
}
if (spiAddress > spiAddressMax && sramStage < 4) {
spiAddress = 0; sramStage++; sramCompletion = 0.0f;
return;
}
sramCompletion = (float)spiAddress / (float)spiAddressMax ;
}