|
|
|
/*************************************************************************
|
|
|
|
* This demo uses the BALibrary library to provide enhanced control of
|
|
|
|
* the TGA Pro board.
|
|
|
|
*
|
|
|
|
* The latest copy of the BA Guitar library can be obtained from
|
|
|
|
* https://github.com/Blackaddr/BALibrary
|
|
|
|
*
|
|
|
|
* This example demonstrates teh BAAudioEffectsAnalogDelay effect. It can
|
|
|
|
* be controlled using the Blackaddr Audio "Expansion Control Board".
|
|
|
|
*
|
|
|
|
* POT1 (left) controls amount of delay
|
|
|
|
* POT2 (right) controls amount of feedback
|
|
|
|
* POT3 (center) controls the wet/dry mix
|
|
|
|
* SW1 will enable/bypass the audio effect. LED1 will be on when effect is enabled.
|
|
|
|
* SW2 will cycle through the 3 pre-programmed analog filters. LED2 will be on when SW2 is pressed.
|
|
|
|
*
|
|
|
|
* !!! SET POTS TO REASONABLE VALUES BEFORE STARTING TO AVOID SCREECHING FEEDBACK!!!!
|
|
|
|
* - set POT1 (delay) fully counter-clockwise then increase it slowly.
|
|
|
|
* - set POT2 (feedback) fully counter-clockwise, then increase it slowly
|
|
|
|
* - set POT3 (wet/dry mix) to half-way at the detent.
|
|
|
|
*
|
|
|
|
* Using the Serial Montitor, send 'u' and 'd' characters to increase or decrease
|
|
|
|
* the headphone volume between values of 0 and 9.
|
|
|
|
*/
|
|
|
|
#include "BALibrary.h"
|
|
|
|
#include "BAEffects.h"
|
|
|
|
|
|
|
|
using namespace BAEffects;
|
|
|
|
using namespace BALibrary;
|
|
|
|
|
|
|
|
//#define USE_CAB_FILTER // uncomment this line to add a simple low-pass filter to simulate a cabinet if you are going straight to headphones
|
|
|
|
//#define USE_EXT // uncomment this line to use External MEM0
|
|
|
|
|
|
|
|
AudioInputI2S i2sIn;
|
|
|
|
AudioOutputI2S i2sOut;
|
|
|
|
BAAudioControlWM8731 codec;
|
|
|
|
|
|
|
|
#ifdef USE_EXT
|
|
|
|
// If using external SPI memory, we will instantiate a SRAM
|
|
|
|
// manager and create an external memory slot to use as the memory
|
|
|
|
// for our audio delay
|
|
|
|
ExternalSramManager externalSram;
|
|
|
|
ExtMemSlot delaySlot; // Declare an external memory slot.
|
|
|
|
|
|
|
|
// Instantiate the AudioEffectAnalogDelay to use external memory by
|
|
|
|
/// passing it the delay slot.
|
|
|
|
AudioEffectAnalogDelay analogDelay(&delaySlot);
|
|
|
|
#else
|
|
|
|
// If using internal memory, we will instantiate the AudioEffectAnalogDelay
|
|
|
|
// by passing it the maximum amount of delay we will use in millseconds. Note that
|
|
|
|
// audio delay lengths are very limited when using internal memory due to limited
|
|
|
|
// internal RAM size.
|
|
|
|
AudioEffectAnalogDelay analogDelay(200.0f); // set the max delay of 200 ms.
|
|
|
|
// If you use external SPI memory you can get up to 1485.0f ms of delay!
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(USE_CAB_FILTER)
|
|
|
|
AudioFilterBiquad cabFilter; // We'll want something to cut out the highs and smooth the tone, just like a guitar cab.
|
|
|
|
#endif
|
|
|
|
|
|
|
|
AudioConnection input(i2sIn,0, analogDelay,0);
|
|
|
|
#if defined(USE_CAB_FILTER)
|
|
|
|
AudioConnection delayOut(analogDelay, 0, cabFilter, 0);
|
|
|
|
AudioConnection leftOut(cabFilter,0, i2sOut, 0);
|
|
|
|
AudioConnection rightOut(cabFilter,0, i2sOut, 1);
|
|
|
|
#else
|
|
|
|
AudioConnection leftOut(analogDelay,0, i2sOut, 0);
|
|
|
|
AudioConnection rightOut(analogDelay,0, i2sOut, 1);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//////////////////////////////////////////
|
|
|
|
// SETUP PHYSICAL CONTROLS
|
|
|
|
// - POT1 (left) will control the amount of delay
|
|
|
|
// - POT2 (right) will control the amount of feedback
|
|
|
|
// - POT3 (centre) will control the wet/dry mix.
|
|
|
|
// - SW1 (left) will be used as a bypass control
|
|
|
|
// - LED1 (left) will be illuminated when the effect is ON (not bypass)
|
|
|
|
// - SW2 (right) will be used to cycle through the three built in analog filter styles available.
|
|
|
|
// - LED2 (right) will illuminate when pressing SW2.
|
|
|
|
//////////////////////////////////////////
|
|
|
|
// To get the calibration values for your particular board, first run the
|
|
|
|
// BAExpansionCalibrate.ino example and
|
|
|
|
constexpr int potCalibMin = 1;
|
|
|
|
constexpr int potCalibMax = 1018;
|
|
|
|
constexpr bool potSwapDirection = true;
|
|
|
|
|
|
|
|
// Create a control object using the number of switches, pots, encoders and outputs on the
|
|
|
|
// Blackaddr Audio Expansion Board.
|
|
|
|
BAPhysicalControls controls(BA_EXPAND_NUM_SW, BA_EXPAND_NUM_POT, BA_EXPAND_NUM_ENC, BA_EXPAND_NUM_LED);
|
|
|
|
|
|
|
|
elapsedMillis timer;
|
|
|
|
unsigned filterIndex = 0; // variable for storing which analog filter we're currently using.
|
|
|
|
constexpr unsigned MAX_HEADPHONE_VOL = 10;
|
|
|
|
unsigned headphoneVolume = 8; // control headphone volume from 0 to 10.
|
|
|
|
|
|
|
|
// BAPhysicalControls returns a handle when you register a new control. We'll uses these handles when working with the controls.
|
|
|
|
int bypassHandle, filterHandle, delayHandle, feedbackHandle, mixHandle, led1Handle, led2Handle; // Handles for the various controls
|
|
|
|
|
|
|
|
void setup() {
|
|
|
|
TGA_PRO_MKII_REV1(); // Declare the version of the TGA Pro you are using.
|
|
|
|
//TGA_PRO_REVB(x);
|
|
|
|
//TGA_PRO_REVA(x);
|
|
|
|
|
|
|
|
#ifdef USE_EXT
|
|
|
|
SPI_MEM0_64M(); // Optional 64Mbit SPI RAM
|
|
|
|
//SPI_MEM0_4M(); // Older REVB and REVA boards offered 1M or 4M
|
|
|
|
//SPI_MEM0_1M();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
delay(100); // wait a bit for serial to be available
|
|
|
|
Serial.begin(57600); // Start the serial port
|
|
|
|
delay(100);
|
|
|
|
|
|
|
|
// Configure the hardware
|
|
|
|
|
|
|
|
// Setup the controls. The return value is the handle to use when checking for control changes, etc.
|
|
|
|
// pushbuttons
|
|
|
|
bypassHandle = controls.addSwitch(BA_EXPAND_SW1_PIN); // will be used for bypass control
|
|
|
|
filterHandle = controls.addSwitch(BA_EXPAND_SW2_PIN); // will be used for stepping through filters
|
|
|
|
// pots
|
|
|
|
delayHandle = controls.addPot(BA_EXPAND_POT1_PIN, potCalibMin, potCalibMax, potSwapDirection); // control the amount of delay
|
|
|
|
feedbackHandle = controls.addPot(BA_EXPAND_POT2_PIN, potCalibMin, potCalibMax, potSwapDirection);
|
|
|
|
mixHandle = controls.addPot(BA_EXPAND_POT3_PIN, potCalibMin, potCalibMax, potSwapDirection);
|
|
|
|
// leds
|
|
|
|
led1Handle = controls.addOutput(BA_EXPAND_LED1_PIN);
|
|
|
|
led2Handle = controls.addOutput(BA_EXPAND_LED2_PIN); // will illuminate when pressing SW2
|
|
|
|
|
|
|
|
// Disable the audio codec first
|
|
|
|
codec.disable();
|
|
|
|
AudioMemory(128);
|
|
|
|
|
|
|
|
// Enable and configure the codec
|
|
|
|
if (Serial) { Serial.println("Enabling codec...\n"); }
|
|
|
|
codec.enable();
|
|
|
|
codec.setHeadphoneVolume(1.0f); // Max headphone volume
|
|
|
|
|
|
|
|
// If using external memory request request memory from the manager
|
|
|
|
// for the slot
|
|
|
|
#ifdef USE_EXT
|
|
|
|
if (Serial) { Serial.println("Using EXTERNAL memory"); }
|
|
|
|
// We have to request memory be allocated to our slot.
|
|
|
|
externalSram.requestMemory(&delaySlot, 500.0f, MemSelect::MEM0, true);
|
|
|
|
delaySlot.clear();
|
|
|
|
#else
|
|
|
|
if (Serial) { Serial.println("Using INTERNAL memory"); }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Besure to enable the delay. When disabled, audio is is completely blocked by the effect
|
|
|
|
// to minimize resource usage to nearly to nearly zero.
|
|
|
|
analogDelay.enable();
|
|
|
|
|
|
|
|
// Set some default values.
|
|
|
|
// These can be changed using the controls on the Blackaddr Audio Expansion Board
|
|
|
|
analogDelay.bypass(false);
|
|
|
|
controls.setOutput(led1Handle, !analogDelay.isBypass()); // Set the LED when NOT bypassed
|
|
|
|
analogDelay.mix(0.5f);
|
|
|
|
analogDelay.feedback(0.0f);
|
|
|
|
|
|
|
|
//////////////////////////////////
|
|
|
|
// AnalogDelay filter selection //
|
|
|
|
// These are commented out, in this example we'll use SW2 to cycle through the different filters
|
|
|
|
//analogDelay.setFilter(AudioEffectAnalogDelay::Filter::DM3); // The default filter. Naturally bright echo (highs stay, lows fade away)
|
|
|
|
//analogDelay.setFilter(AudioEffectAnalogDelay::Filter::WARM); // A warm filter with a smooth frequency rolloff above 2Khz
|
|
|
|
//analogDelay.setFilter(AudioEffectAnalogDelay::Filter::DARK); // A very dark filter, with a sharp rolloff above 1Khz
|
|
|
|
|
|
|
|
#if defined(USE_CAB_FILTER)
|
|
|
|
// Guitar cabinet: Setup 2-stages of LPF, cutoff 4500 Hz, Q-factor 0.7071 (a 'normal' Q-factor)
|
|
|
|
cabFilter.setLowpass(0, 4500, .7071);
|
|
|
|
cabFilter.setLowpass(1, 4500, .7071);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void loop() {
|
|
|
|
|
|
|
|
float potValue;
|
|
|
|
|
|
|
|
// Check if SW1 has been toggled (pushed)
|
|
|
|
if (controls.isSwitchToggled(bypassHandle)) {
|
|
|
|
bool bypass = analogDelay.isBypass(); // get the current state
|
|
|
|
bypass = !bypass; // change it
|
|
|
|
analogDelay.bypass(bypass); // set the new state
|
|
|
|
controls.setOutput(led1Handle, !bypass); // Set the LED when NOT bypassed
|
|
|
|
if (Serial) { Serial.println(String("BYPASS is ") + bypass); }
|
|
|
|
}
|
|
|
|
|
|
|
|
// Use SW2 to cycle through the filters
|
|
|
|
controls.setOutput(led2Handle, controls.getSwitchValue(led2Handle));
|
|
|
|
if (controls.isSwitchToggled(filterHandle)) {
|
|
|
|
filterIndex = (filterIndex + 1) % 3; // update and potentionall roll the counter 0, 1, 2, 0, 1, 2, ...
|
|
|
|
// cast the index between 0 to 2 to the enum class AudioEffectAnalogDelay::Filter
|
|
|
|
analogDelay.setFilter(static_cast<AudioEffectAnalogDelay::Filter>(filterIndex)); // will cycle through 0 to 2
|
|
|
|
if (Serial) { Serial.println(String("Filter set to ") + filterIndex); }
|
|
|
|
}
|
|
|
|
|
|
|
|
// Use POT1 (left) to control the delay setting
|
|
|
|
if (controls.checkPotValue(delayHandle, potValue)) {
|
|
|
|
// Pot has changed
|
|
|
|
if (Serial) { Serial.println(String("New DELAY setting: ") + potValue); }
|
|
|
|
analogDelay.delayFractionMax(potValue);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Use POT2 (right) to control the feedback setting
|
|
|
|
if (controls.checkPotValue(feedbackHandle, potValue)) {
|
|
|
|
// Pot has changed
|
|
|
|
if (Serial) { Serial.println(String("New FEEDBACK setting: ") + potValue); }
|
|
|
|
analogDelay.feedback(potValue);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Use POT3 (centre) to control the mix setting
|
|
|
|
if (controls.checkPotValue(mixHandle, potValue)) {
|
|
|
|
// Pot has changed
|
|
|
|
if (Serial) { Serial.println(String("New MIX setting: ") + potValue); }
|
|
|
|
analogDelay.mix(potValue);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Use the 'u' and 'd' keys to adjust volume across ten levels.
|
|
|
|
if (Serial) {
|
|
|
|
if (Serial.available() > 0) {
|
|
|
|
while (Serial.available()) {
|
|
|
|
char key = Serial.read();
|
|
|
|
if (key == 'u') {
|
|
|
|
headphoneVolume = (headphoneVolume + 1) % MAX_HEADPHONE_VOL;
|
|
|
|
Serial.println(String("Increasing HEADPHONE volume to ") + headphoneVolume);
|
|
|
|
}
|
|
|
|
else if (key == 'd') {
|
|
|
|
headphoneVolume = (headphoneVolume - 1) % MAX_HEADPHONE_VOL;
|
|
|
|
Serial.println(String("Decreasing HEADPHONE volume to ") + headphoneVolume);
|
|
|
|
}
|
|
|
|
codec.setHeadphoneVolume(static_cast<float>(headphoneVolume) / static_cast<float>(MAX_HEADPHONE_VOL));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
delay(20); // Without some minimal delay here it will be difficult for the pots/switch changes to be detected.
|
|
|
|
|
|
|
|
if (timer > 1000) {
|
|
|
|
timer = 0;
|
|
|
|
if (Serial) {
|
|
|
|
Serial.print("Processor Usage, Total: "); Serial.print(AudioProcessorUsage());
|
|
|
|
Serial.print("% ");
|
|
|
|
Serial.print(" analogDelay: "); Serial.print(analogDelay.processorUsage());
|
|
|
|
Serial.println("%");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|