wip - added SOS class

master
Steve Lascos 7 years ago
parent 2ca703cc44
commit 808aedf8c0
  1. 136
      src/AudioEffectSOS.h
  2. 1
      src/BAGuitar.h
  3. 70
      src/LibBasicFunctions.h
  4. 5
      src/common/AudioHelpers.cpp
  5. 110
      src/common/ParameterAutomation.cpp
  6. 221
      src/effects/AudioEffectSOS.cpp

@ -0,0 +1,136 @@
/**************************************************************************//**
* @file
* @author Steve Lascos
* @company Blackaddr Audio
*
* AudioEffectSOS is a class f
*
* @copyright This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*****************************************************************************/
#ifndef __BAGUITAR_BAAUDIOEFFECTSOS_H
#define __BAGUITAR_BAAUDIOEFFECTSOS_H
#include <Audio.h>
#include "LibBasicFunctions.h"
namespace BAEffects {
/**************************************************************************//**
* AudioEffectSOS
*****************************************************************************/
class AudioEffectSOS : public AudioStream {
public:
///< List of AudioEffectAnalogDelay MIDI controllable parameters
enum {
BYPASS = 0, ///< controls effect bypass
GATE_TRIGGER, ///< begins the gate sequence
GATE_OPEN_TIME, ///< controls how long it takes to open the gate
GATE_CLOSE_TIME, ///< controls how long it takes to close the gate (release)
FEEDBACK, ///< controls the amount of feedback, more gives longer SOS sustain
VOLUME, ///< controls the output volume level
NUM_CONTROLS ///< this can be used as an alias for the number of MIDI controls
};
// *** CONSTRUCTORS ***
AudioEffectSOS() = delete;
/// Construct an analog delay using external SPI via an ExtMemSlot. The amount of
/// delay will be determined by the amount of memory in the slot.
/// @param slot A pointer to the ExtMemSlot to use for the delay.
AudioEffectSOS(BAGuitar::ExtMemSlot *slot); // requires sufficiently sized pre-allocated memory
virtual ~AudioEffectSOS(); ///< Destructor
// *** PARAMETERS ***
void gateOpenTime(float milliseconds);
void gateCloseTime(float milliseconds);
void feedback(float feedback) { m_feedback = feedback; }
/// Bypass the effect.
/// @param byp when true, bypass wil disable the effect, when false, effect is enabled.
/// Note that audio still passes through when bypass is enabled.
void bypass(bool byp) { m_bypass = byp; }
/// Set the output volume. This affect both the wet and dry signals.
/// @details The default is 1.0.
/// @param vol Sets the output volume between -1.0 and +1.0
void volume(float vol) {m_volume = vol; }
// ** ENABLE / DISABLE **
/// Enables audio processing. Note: when not enabled, CPU load is nearly zero.
void enable() { m_enable = true; }
/// Disables audio process. When disabled, CPU load is nearly zero.
void disable() { m_enable = false; }
// ** MIDI **
/// Sets whether MIDI OMNI channel is processig on or off. When on,
/// all midi channels are used for matching CCs.
/// @param isOmni when true, all channels are processed, when false, channel
/// must match configured value.
void setMidiOmni(bool isOmni) { m_isOmni = isOmni; }
/// Configure an effect parameter to be controlled by a MIDI CC
/// number on a particular channel.
/// @param parameter one of the parameter names in the class enum
/// @param midiCC the CC number from 0 to 127
/// @param midiChannel the effect will only response to the CC on this channel
/// when OMNI mode is off.
void mapMidiControl(int parameter, int midiCC, int midiChannel = 0);
/// process a MIDI Continous-Controller (CC) message
/// @param channel the MIDI channel from 0 to 15)
/// @param midiCC the CC number from 0 to 127
/// @param value the CC value from 0 to 127
void processMidi(int channel, int midiCC, int value);
virtual void update(void); ///< update automatically called by the Teesny Audio Library
private:
audio_block_t *m_inputQueueArray[1];
bool m_isOmni = false;
bool m_bypass = true;
bool m_enable = false;
BAGuitar::AudioDelay *m_memory = nullptr;
bool m_externalMemory = true;
audio_block_t *m_previousBlock = nullptr;
audio_block_t *m_blockToRelease = nullptr;
size_t m_maxDelaySamples = 0;
// Controls
int m_midiConfig[NUM_CONTROLS][2]; // stores the midi parameter mapping
size_t m_delaySamples = 0;
float m_openTimeMs = 0.0f;
float m_closeTimeMs = 0.0f;
float m_feedback = 0.0f;
float m_volume = 1.0f;
// Automated Controls
BALibrary::ParameterAutomation<float> m_inputGateAuto =
BALibrary::ParameterAutomation<float>(0.0f, 1.0f, 0.0f, BALibrary::ParameterAutomation<float>::Function::LINEAR);
// Private functions
void m_preProcessing (audio_block_t *out, audio_block_t *input, audio_block_t *delayedSignal);
//void m_postProcessing(audio_block_t *out, audio_block_t *dry, audio_block_t *wet);
};
}
#endif /* __BAGUITAR_BAAUDIOEFFECTANALOGDELAY_H */

@ -29,6 +29,7 @@
#include "BAGpio.h" #include "BAGpio.h"
#include "BAAudioEffectDelayExternal.h" #include "BAAudioEffectDelayExternal.h"
#include "AudioEffectAnalogDelay.h" #include "AudioEffectAnalogDelay.h"
#include "AudioEffectSOS.h"
#include "LibBasicFunctions.h" #include "LibBasicFunctions.h"
#include "LibMemoryManagement.h" #include "LibMemoryManagement.h"

@ -92,9 +92,15 @@ void alphaBlend(audio_block_t *out, audio_block_t *dry, audio_block_t* wet, floa
/// @param out pointer to output audio block /// @param out pointer to output audio block
/// @param in pointer to input audio block /// @param in pointer to input audio block
/// @param vol volume cofficient between -1.0 and +1.0 /// @param vol volume cofficient between -1.0 and +1.0
/// @param coeffShift number of bits to shiftt the coefficient /// @param coeffShift number of bits to shift the coefficient
void gainAdjust(audio_block_t *out, audio_block_t *in, float vol, int coeffShift = 0); void gainAdjust(audio_block_t *out, audio_block_t *in, float vol, int coeffShift = 0);
/// Combine two audio blocks through vector addition
/// out[n] = in0[n] + in1[n]
/// @param out pointer to output audio block
/// @param in0 pointer to first input audio block to combine
/// @param in1 pointer to second input audio block to combine
void combine(audio_block_t *out, audio_block_t *in0, audio_block_t *in1);
template <class T> template <class T>
class RingBuffer; // forward declare so AudioDelay can use it. class RingBuffer; // forward declare so AudioDelay can use it.
@ -246,7 +252,7 @@ public:
/// Process the data using the configured IIR filter /// Process the data using the configured IIR filter
/// @details output and input can be the same pointer if in-place modification is desired /// @details output and input can be the same pointer if in-place modification is desired
/// @param output pointer to where the output results will be written /// @param output poinvoid combine(audio_block_t *out, audio_block_t *in0, audio_block_t *in1)ter to where the output results will be written
/// @param input pointer to where the input data will be read from /// @param input pointer to where the input data will be read from
/// @param numSampmles number of samples to process /// @param numSampmles number of samples to process
bool process(int16_t *output, int16_t *input, size_t numSamples); bool process(int16_t *output, int16_t *input, size_t numSamples);
@ -297,7 +303,65 @@ private:
}; };
} } // namespace BAGuitar
namespace BALibrary {
/**************************************************************************//**
* The class will automate a parameter using a trigger from a start value to an
* end value, using either a preprogrammed function or a user-provided LUT.
*****************************************************************************/
template <typename T>
class ParameterAutomation
{
public:
enum class Function : unsigned {
LINEAR = 0, ///< f(x) = x
EXPONENTIAL, ///< f(x) = e^x
LOGARITHMIC, ///< f(x) = ln(x)
PARABOLIC, ///< f(x) = x^2
LOOKUP_TABLE ///< f(x) = lut(x)
};
ParameterAutomation() = delete;
ParameterAutomation(T startValue, T endValue, size_t durationSamples, Function function = Function::LINEAR);
ParameterAutomation(T startValue, T endValue, float durationMilliseconds, Function function = Function::LINEAR);
~ParameterAutomation();
/// set the start and end values for the automation
/// @param function select which automation curve (function) to use
/// @param startValue after reset, parameter automation start from this value
/// @param endValue after the automation duration, paramter will finish at this value
/// @param durationSamples number of samples to transition from startValue to endValue
void reconfigure(T startValue, T endValue, size_t durationSamples, Function function = Function::LINEAR);
void reconfigure(T startValue, T endValue, float durationMilliseconds, Function function = Function::LINEAR);
/// Start the automation from startValue
void trigger();
/// Retrieve the next calculated automation value
/// @returns the calculated parameter value of templated type T
T getNextValue();
private:
Function m_function;
T m_startValue;
T m_endValue;
bool m_running = false;
T m_currentValueX; ///< the current value of x in f(x)
size_t m_duration;
T m_coeffs[3]; ///< some general coefficient storage
};
// TODO: initialize with const number of sequences with null type that automatically skips
// then register each new sequence.
template <typename T>
class ParameterAutomationSequence
{
};
} // BALibrary
#endif /* __BAGUITAR_LIBBASICFUNCTIONS_H */ #endif /* __BAGUITAR_LIBBASICFUNCTIONS_H */

@ -69,6 +69,11 @@ void gainAdjust(audio_block_t *out, audio_block_t *in, float vol, int coeffShift
arm_scale_q15(in->data, scale, coeffShift, out->data, AUDIO_BLOCK_SAMPLES); arm_scale_q15(in->data, scale, coeffShift, out->data, AUDIO_BLOCK_SAMPLES);
} }
void combine(audio_block_t *out, audio_block_t *in0, audio_block_t *in1)
{
arm_add_q15 (in0->data, in1->data, out->data, AUDIO_BLOCK_SAMPLES);
}
void clearAudioBlock(audio_block_t *block) void clearAudioBlock(audio_block_t *block)
{ {
memset(block->data, 0, sizeof(int16_t)*AUDIO_BLOCK_SAMPLES); memset(block->data, 0, sizeof(int16_t)*AUDIO_BLOCK_SAMPLES);

@ -0,0 +1,110 @@
/*
* ParameterAutomation.cpp
*
* Created on: April 14, 2018
* Author: slascos
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "LibBasicFunctions.h"
using namespace BAGuitar;
namespace BALibrary {
constexpr int LINEAR_SLOPE = 0;
template <class T>
ParameterAutomation<T>::ParameterAutomation(T startValue, T endValue, float durationMilliseconds, Function function)
{
reconfigure(startValue, endValue, calcAudioSamples(durationMilliseconds), function);
}
template <class T>
ParameterAutomation<T>::ParameterAutomation(T startValue, T endValue, size_t durationSamples, Function function)
{
reconfigure(startValue, endValue, durationSamples, function);
}
template <class T>
void ParameterAutomation<T>::reconfigure(T startValue, T endValue, float durationMilliseconds, Function function)
{
reconfigure(startValue, endValue, calcAudioSamples(durationMilliseconds), function);
}
template <class T>
void ParameterAutomation<T>::reconfigure(T startValue, T endValue, size_t durationSamples, Function function)
{
m_function = function;
m_startValue = startValue;
m_endValue = endValue;
m_currentValueX = startValue;
m_duration = durationSamples;
// Pre-compute any necessary coefficients
switch(m_function) {
case Function::EXPONENTIAL :
break;
case Function::LOGARITHMIC :
break;
case Function::PARABOLIC :
break;
case Function::LOOKUP_TABLE :
break;
// Default will be same as LINEAR
case Function::LINEAR :
default :
m_coeffs[LINEAR_SLOPE] = (endValue - startValue) / static_cast<T>(m_duration);
break;
}
}
template <class T>
void ParameterAutomation<T>::trigger()
{
m_currentValueX = m_startValue;
m_running = true;
}
template <class T>
T ParameterAutomation<T>::getNextValue()
{
switch(m_function) {
case Function::EXPONENTIAL :
break;
case Function::LOGARITHMIC :
break;
case Function::PARABOLIC :
break;
case Function::LOOKUP_TABLE :
break;
// Default will be same as LINEAR
case Function::LINEAR :
default :
// output = m_currentValueX + slope
m_currentValueX += m_coeffs[LINEAR_SLOPE];
if (m_currentValueX >= m_endValue) {
m_currentValueX = m_endValue;
m_running = false;
}
break;
}
return m_currentValueX;
}
}

@ -0,0 +1,221 @@
/*
* AudioEffectSOS.cpp
*
* Created on: Apr 14, 2018
* Author: blackaddr
*/
#include "AudioEffectSOS.h"
#include "LibBasicFunctions.h"
using namespace BAGuitar;
using namespace BALibrary;
namespace BAEffects {
constexpr int MIDI_CHANNEL = 0;
constexpr int MIDI_CONTROL = 1;
constexpr float MAX_GATE_OPEN_TIME_MS = 3000.0f;
constexpr float MAX_GATE_CLOSE_TIME_MS = 3000.0f;
AudioEffectSOS::AudioEffectSOS(ExtMemSlot *slot)
: AudioStream(1, m_inputQueueArray)
{
m_memory = new AudioDelay(slot);
m_maxDelaySamples = (slot->size() / sizeof(int16_t));
m_delaySamples = m_maxDelaySamples;
m_externalMemory = true;
}
AudioEffectSOS::~AudioEffectSOS()
{
}
void AudioEffectSOS::update(void)
{
audio_block_t *inputAudioBlock = receiveReadOnly(); // get the next block of input samples
// Check is block is disabled
if (m_enable == false) {
// do not transmit or process any audio, return as quickly as possible.
if (inputAudioBlock) release(inputAudioBlock);
// release all held memory resources
if (m_previousBlock) {
release(m_previousBlock); m_previousBlock = nullptr;
}
if (!m_externalMemory) {
// when using internal memory we have to release all references in the ring buffer
while (m_memory->getRingBuffer()->size() > 0) {
audio_block_t *releaseBlock = m_memory->getRingBuffer()->front();
m_memory->getRingBuffer()->pop_front();
if (releaseBlock) release(releaseBlock);
}
}
return;
}
// Check is block is bypassed, if so either transmit input directly or create silence
if (m_bypass == true) {
// transmit the input directly
if (!inputAudioBlock) {
// create silence
inputAudioBlock = allocate();
if (!inputAudioBlock) { return; } // failed to allocate
else {
clearAudioBlock(inputAudioBlock);
}
}
transmit(inputAudioBlock, 0);
release(inputAudioBlock);
return;
}
// Otherwise perform normal processing
// In order to make use of the SPI DMA, we need to request the read from memory first,
// then do other processing while it fills in the back.
audio_block_t *blockToOutput = nullptr; // this will hold the output audio
blockToOutput = allocate();
if (!blockToOutput) return; // skip this update cycle due to failure
// get the data. If using external memory with DMA, this won't be filled until
// later.
m_memory->getSamples(blockToOutput, m_delaySamples);
// If using DMA, we need something else to do while that read executes, so
// move on to input preprocessing
// Preprocessing
audio_block_t *preProcessed = allocate();
// mix the input with the feedback path in the pre-processing stage
m_preProcessing(preProcessed, inputAudioBlock, m_previousBlock);
// consider doing the BBD post processing here to use up more time while waiting
// for the read data to come back
audio_block_t *blockToRelease = m_memory->addBlock(preProcessed);
// BACK TO OUTPUT PROCESSING
// Check if external DMA, if so, we need to be sure the read is completed
if (m_externalMemory && m_memory->getSlot()->isUseDma()) {
// Using DMA
while (m_memory->getSlot()->isReadBusy()) {}
}
// perform the wet/dry mix mix
//m_postProcessing(blockToOutput, inputAudioBlock, blockToOutput);
transmit(blockToOutput);
release(inputAudioBlock);
release(m_previousBlock);
m_previousBlock = blockToOutput;
if (m_blockToRelease) release(m_blockToRelease);
m_blockToRelease = blockToRelease;
}
void AudioEffectSOS::gateOpenTime(float milliseconds)
{
// TODO - change the paramter automation to an automation sequence
m_openTimeMs = milliseconds;
//m_inputGateAuto.reconfigure();
}
void AudioEffectSOS::gateCloseTime(float milliseconds)
{
m_closeTimeMs = milliseconds;
}
////////////////////////////////////////////////////////////////////////
// MIDI PROCESSING
////////////////////////////////////////////////////////////////////////
void AudioEffectSOS::processMidi(int channel, int control, int value)
{
float val = (float)value / 127.0f;
if ((m_midiConfig[GATE_OPEN_TIME][MIDI_CHANNEL] == channel) &&
(m_midiConfig[GATE_OPEN_TIME][MIDI_CONTROL] == control)) {
// Gate Open Time
gateOpenTime(val * MAX_GATE_OPEN_TIME_MS);
Serial.println(String("AudioEffectSOS::gate open time (ms): ") + m_openTimeMs);
return;
}
if ((m_midiConfig[GATE_CLOSE_TIME][MIDI_CHANNEL] == channel) &&
(m_midiConfig[GATE_CLOSE_TIME][MIDI_CONTROL] == control)) {
// Gate Close Time
gateCloseTime(val * MAX_GATE_CLOSE_TIME_MS);
Serial.println(String("AudioEffectSOS::gate close time (ms): ") + m_openTimeMs);
return;
}
if ((m_midiConfig[FEEDBACK][MIDI_CHANNEL] == channel) &&
(m_midiConfig[FEEDBACK][MIDI_CONTROL] == control)) {
// Feedback
Serial.println(String("AudioEffectSOS::feedback: ") + 100*val + String("%"));
feedback(val);
return;
}
if ((m_midiConfig[VOLUME][MIDI_CHANNEL] == channel) &&
(m_midiConfig[VOLUME][MIDI_CONTROL] == control)) {
// Volume
Serial.println(String("AudioEffectSOS::volume: ") + 100*val + String("%"));
volume(val);
return;
}
if ((m_midiConfig[BYPASS][MIDI_CHANNEL] == channel) &&
(m_midiConfig[BYPASS][MIDI_CONTROL] == control)) {
// Bypass
if (value >= 65) { bypass(false); Serial.println(String("AudioEffectSOS::not bypassed -> ON") + value); }
else { bypass(true); Serial.println(String("AudioEffectSOS::bypassed -> OFF") + value); }
return;
}
if ((m_midiConfig[GATE_TRIGGER][MIDI_CHANNEL] == channel) &&
(m_midiConfig[GATE_TRIGGER][MIDI_CONTROL] == control)) {
// The gate is trigged by any value
m_inputGateAuto.trigger();
Serial.println(String("AudioEffectSOS::Gate Triggered!"));
return;
}
}
void AudioEffectSOS::mapMidiControl(int parameter, int midiCC, int midiChannel)
{
if (parameter >= NUM_CONTROLS) {
return ; // Invalid midi parameter
}
m_midiConfig[parameter][MIDI_CHANNEL] = midiChannel;
m_midiConfig[parameter][MIDI_CONTROL] = midiCC;
}
//////////////////////////////////////////////////////////////////////
// PRIVATE FUNCTIONS
//////////////////////////////////////////////////////////////////////
void AudioEffectSOS::m_preProcessing (audio_block_t *out, audio_block_t *input, audio_block_t *delayedSignal)
{
if ( out && input && delayedSignal) {
// Multiply the input signal by the automated gate value
// Multiply the delayed signal by the user set feedback value
// then mix together.
float gateVol = m_inputGateAuto.getNextValue();
audio_block_t tempAudioBuffer;
gainAdjust(out, input, gateVol, 0); // last paremeter is coeff shift, 0 bits
gainAdjust(&tempAudioBuffer, delayedSignal, m_feedback, 0); // last paremeter is coeff shift, 0 bits
combine(out, out, &tempAudioBuffer);
} else if (input) {
memcpy(out->data, input->data, sizeof(int16_t) * AUDIO_BLOCK_SAMPLES);
}
}
} // namespace BAEffects
Loading…
Cancel
Save