Rewrote BAAudioEffectDelayExternal, renamed some examples

master
Steve Lascos 7 years ago
parent 80bb07abdf
commit 2ab66f50b0
  1. 0
      examples/0_TGA_Pro_TRY_FIRST/TGA_Pro_nolib_demo.ino
  2. 0
      examples/1_TGA_Pro_demo/SerialMonitorResults.txt
  3. 0
      examples/1_TGA_Pro_demo/TGA_Pro_demo.ino
  4. 0
      examples/2_TGA_Pro_1MEM/TGA_Pro_1MEM.ino
  5. 0
      examples/3_TGA_Pro_2MEM/TGA_Pro_2MEM.ino
  6. 0
      examples/4_TGA_Pro_delay_reverb/TGA_Pro_delay_reverb.ino
  7. 292
      src/BAAudioEffectDelayExternal.cpp
  8. 79
      src/BAAudioEffectDelayExternal.h

@ -22,62 +22,53 @@
namespace BAGuitar { namespace BAGuitar {
/* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
//#include "effect_delay_ext.h"
//#define INTERNAL_TEST
// While 20 MHz (Teensy actually uses 16 MHz in most cases) and even 24 MHz
// have worked well in testing at room temperature with 3.3V power, to fully
// meet all the worst case timing specs, the SPI clock low time would need
// to be 40ns (12.5 MHz clock) for the single chip case and 51ns (9.8 MHz
// clock) for the 6-chip memoryboard with 74LCX126 buffers.
//
// Timing analysis and info is here:
// https://forum.pjrc.com/threads/29276-Limits-of-delay-effect-in-audio-library?p=97506&viewfull=1#post97506
#define SPISETTING SPISettings(20000000, MSBFIRST, SPI_MODE0) #define SPISETTING SPISettings(20000000, MSBFIRST, SPI_MODE0)
// Use these with the audio adaptor board (should be adjustable by the user...) struct MemSpiConfig {
//#define SPIRAM_MOSI_PIN 7 unsigned mosiPin;
//#define SPIRAM_MISO_PIN 12 unsigned misoPin;
//#define SPIRAM_SCK_PIN 14 unsigned sckPin;
// unsigned csPin;
//#define SPIRAM_CS_PIN 6 unsigned memSize;
};
constexpr MemSpiConfig Mem0Config = {7, 8, 14, 15, 65536 };
constexpr MemSpiConfig Mem1Config = {21, 5, 20, 31, 65536 };
BAAudioEffectDelayExternal::BAAudioEffectDelayExternal()
: AudioStream(1, inputQueueArray)
{
initialize(MemSelect::MEM0, Mem0Config.memSize);
}
// Use with TGA Pro BAAudioEffectDelayExternal::BAAudioEffectDelayExternal(MemSelect mem, float milliseconds)
#define SPIRAM_MOSI_PIN 7 : AudioStream(1, inputQueueArray)
#define SPIRAM_MISO_PIN 8 {
#define SPIRAM_SCK_PIN 14 uint32_t n = (milliseconds*(AUDIO_SAMPLE_RATE_EXACT/1000.0f))+0.5f;
#define SPIRAM_CS_PIN 15 initialize(mem, n);
}
#define MEMBOARD_CS0_PIN 2 void BAAudioEffectDelayExternal::delay(uint8_t channel, float milliseconds) {
#define MEMBOARD_CS1_PIN 3
#define MEMBOARD_CS2_PIN 4 if (channel >= 8) return;
if (milliseconds < 0.0) milliseconds = 0.0;
uint32_t n = (milliseconds*(AUDIO_SAMPLE_RATE_EXACT/1000.0f))+0.5f;
n += AUDIO_BLOCK_SAMPLES;
if (n > memory_length - AUDIO_BLOCK_SAMPLES)
n = memory_length - AUDIO_BLOCK_SAMPLES;
delay_length[channel] = n;
uint8_t mask = activemask;
if (activemask == 0) AudioStartUsingSPI();
activemask = mask | (1<<channel);
}
void BAAudioEffectDelayExternal::disable(uint8_t channel) {
if (channel >= 8) return;
uint8_t mask = activemask & ~(1<<channel);
activemask = mask;
if (mask == 0) AudioStopUsingSPI();
}
void BAAudioEffectDelayExternal::update(void) void BAAudioEffectDelayExternal::update(void)
{ {
@ -86,11 +77,7 @@ void BAAudioEffectDelayExternal::update(void)
// grab incoming data and put it into the memory // grab incoming data and put it into the memory
block = receiveReadOnly(); block = receiveReadOnly();
if (memory_type >= BA_AUDIO_MEMORY_UNDEFINED) {
// ignore input and do nothing if undefined memory type
release(block);
return;
}
if (block) { if (block) {
if (head_offset + AUDIO_BLOCK_SAMPLES <= memory_length) { if (head_offset + AUDIO_BLOCK_SAMPLES <= memory_length) {
// a single write is enough // a single write is enough
@ -145,123 +132,101 @@ void BAAudioEffectDelayExternal::update(void)
uint32_t BAAudioEffectDelayExternal::allocated[2] = {0, 0}; uint32_t BAAudioEffectDelayExternal::allocated[2] = {0, 0};
void BAAudioEffectDelayExternal::initialize(BAAudioEffectDelayMemoryType_t type, uint32_t samples) void BAAudioEffectDelayExternal::initialize(MemSelect mem, uint32_t samples)
{ {
uint32_t memsize, avail; uint32_t memsize, avail;
activemask = 0; activemask = 0;
head_offset = 0; head_offset = 0;
memory_type = type; memsize = 65536;
m_mem = mem;
SPI.setMOSI(SPIRAM_MOSI_PIN); switch (mem) {
SPI.setMISO(SPIRAM_MISO_PIN); case MemSelect::MEM0 :
SPI.setSCK(SPIRAM_SCK_PIN); {
m_misoPin = Mem0Config.misoPin;
m_mosiPin = Mem0Config.mosiPin;
m_sckPin = Mem0Config.sckPin;
m_csPin = Mem0Config.csPin;
SPI.setMOSI(m_mosiPin);
SPI.setMISO(m_misoPin);
SPI.setSCK(m_sckPin);
SPI.begin(); SPI.begin();
break;
if (type == BA_AUDIO_MEMORY_23LC1024) {
#ifdef INTERNAL_TEST
memsize = 8000;
#else
memsize = 65536;
#endif
pinMode(SPIRAM_CS_PIN, OUTPUT);
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
} else if (type == BA_AUDIO_MEMORY_MEMORYBOARD) {
memsize = 393216;
pinMode(MEMBOARD_CS0_PIN, OUTPUT);
pinMode(MEMBOARD_CS1_PIN, OUTPUT);
pinMode(MEMBOARD_CS2_PIN, OUTPUT);
digitalWriteFast(MEMBOARD_CS0_PIN, LOW);
digitalWriteFast(MEMBOARD_CS1_PIN, LOW);
digitalWriteFast(MEMBOARD_CS2_PIN, LOW);
} else if (type == BA_AUDIO_MEMORY_CY15B104) {
#ifdef INTERNAL_TEST
memsize = 8000;
#else
memsize = 262144;
#endif
pinMode(SPIRAM_CS_PIN, OUTPUT);
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
} else {
return;
} }
avail = memsize - allocated[type]; case MemSelect::MEM1 :
if (avail < AUDIO_BLOCK_SAMPLES*2+1) { m_misoPin = Mem1Config.misoPin;
memory_type = BA_AUDIO_MEMORY_UNDEFINED; m_mosiPin = Mem1Config.mosiPin;
return; m_sckPin = Mem1Config.sckPin;
m_csPin = Mem1Config.csPin;
SPI1.setMOSI(m_mosiPin);
SPI1.setMISO(m_misoPin);
SPI1.setSCK(m_sckPin);
SPI1.begin();
break;
} }
pinMode(m_csPin, OUTPUT);
digitalWriteFast(m_csPin, HIGH);
avail = memsize - allocated[mem];
if (samples > avail) samples = avail; if (samples > avail) samples = avail;
memory_begin = allocated[type]; memory_begin = allocated[mem];
allocated[type] += samples; allocated[mem] += samples;
memory_length = samples; memory_length = samples;
zero(0, memory_length); zero(0, memory_length);
} }
#ifdef INTERNAL_TEST
static int16_t testmem[8000]; // testing only
#endif
void BAAudioEffectDelayExternal::read(uint32_t offset, uint32_t count, int16_t *data) void BAAudioEffectDelayExternal::read(uint32_t offset, uint32_t count, int16_t *data)
{ {
uint32_t addr = memory_begin + offset; uint32_t addr = memory_begin + offset;
#ifdef INTERNAL_TEST
while (count) { *data++ = testmem[addr++]; count--; } // testing only
#else
if (memory_type == BA_AUDIO_MEMORY_23LC1024 ||
memory_type == BA_AUDIO_MEMORY_CY15B104) {
addr *= 2; addr *= 2;
switch(m_mem) {
case MemSelect::MEM0 :
SPI.beginTransaction(SPISETTING); SPI.beginTransaction(SPISETTING);
digitalWriteFast(SPIRAM_CS_PIN, LOW); digitalWriteFast(m_csPin, LOW);
SPI.transfer16((0x03 << 8) | (addr >> 16)); SPI.transfer16((0x03 << 8) | (addr >> 16));
SPI.transfer16(addr & 0xFFFF); SPI.transfer16(addr & 0xFFFF);
while (count) { while (count) {
*data++ = (int16_t)(SPI.transfer16(0)); *data++ = (int16_t)(SPI.transfer16(0));
count--; count--;
} }
digitalWriteFast(SPIRAM_CS_PIN, HIGH); digitalWriteFast(m_csPin, HIGH);
SPI.endTransaction(); SPI.endTransaction();
} else if (memory_type == BA_AUDIO_MEMORY_MEMORYBOARD) { break;
SPI.beginTransaction(SPISETTING); case MemSelect::MEM1 :
SPI1.beginTransaction(SPISETTING);
digitalWriteFast(m_csPin, LOW);
SPI1.transfer16((0x03 << 8) | (addr >> 16));
SPI1.transfer16(addr & 0xFFFF);
while (count) { while (count) {
uint32_t chip = (addr >> 16) + 1; *data++ = (int16_t)(SPI1.transfer16(0));
digitalWriteFast(MEMBOARD_CS0_PIN, chip & 1); count--;
digitalWriteFast(MEMBOARD_CS1_PIN, chip & 2);
digitalWriteFast(MEMBOARD_CS2_PIN, chip & 4);
uint32_t chipaddr = (addr & 0xFFFF) << 1;
SPI.transfer16((0x03 << 8) | (chipaddr >> 16));
SPI.transfer16(chipaddr & 0xFFFF);
uint32_t num = 0x10000 - (addr & 0xFFFF);
if (num > count) num = count;
count -= num;
addr += num;
do {
*data++ = (int16_t)(SPI.transfer16(0));
} while (--num > 0);
} }
digitalWriteFast(MEMBOARD_CS0_PIN, LOW); digitalWriteFast(m_csPin, HIGH);
digitalWriteFast(MEMBOARD_CS1_PIN, LOW); SPI1.endTransaction();
digitalWriteFast(MEMBOARD_CS2_PIN, LOW); break;
SPI.endTransaction();
} }
#endif
} }
void BAAudioEffectDelayExternal::write(uint32_t offset, uint32_t count, const int16_t *data) void BAAudioEffectDelayExternal::write(uint32_t offset, uint32_t count, const int16_t *data)
{ {
uint32_t addr = memory_begin + offset; uint32_t addr = memory_begin + offset;
#ifdef INTERNAL_TEST switch(m_mem) {
while (count) { testmem[addr++] = *data++; count--; } // testing only case MemSelect::MEM0 :
#else
if (memory_type == BA_AUDIO_MEMORY_23LC1024) {
addr *= 2; addr *= 2;
SPI.beginTransaction(SPISETTING); SPI.beginTransaction(SPISETTING);
digitalWriteFast(SPIRAM_CS_PIN, LOW); digitalWriteFast(m_csPin, LOW);
SPI.transfer16((0x02 << 8) | (addr >> 16)); SPI.transfer16((0x02 << 8) | (addr >> 16));
SPI.transfer16(addr & 0xFFFF); SPI.transfer16(addr & 0xFFFF);
while (count) { while (count) {
@ -270,53 +235,34 @@ void BAAudioEffectDelayExternal::write(uint32_t offset, uint32_t count, const in
SPI.transfer16(w); SPI.transfer16(w);
count--; count--;
} }
digitalWriteFast(SPIRAM_CS_PIN, HIGH); digitalWriteFast(m_csPin, HIGH);
SPI.endTransaction(); SPI.endTransaction();
} else if (memory_type == BA_AUDIO_MEMORY_CY15B104) { break;
case MemSelect::MEM1 :
addr *= 2; addr *= 2;
SPI1.beginTransaction(SPISETTING);
SPI.beginTransaction(SPISETTING); digitalWriteFast(m_csPin, LOW);
digitalWriteFast(SPIRAM_CS_PIN, LOW); SPI1.transfer16((0x02 << 8) | (addr >> 16));
SPI.transfer(0x06); //write-enable before every write SPI1.transfer16(addr & 0xFFFF);
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
asm volatile ("NOP\n NOP\n NOP\n NOP\n NOP\n NOP\n");
digitalWriteFast(SPIRAM_CS_PIN, LOW);
SPI.transfer16((0x02 << 8) | (addr >> 16));
SPI.transfer16(addr & 0xFFFF);
while (count) { while (count) {
int16_t w = 0; int16_t w = 0;
if (data) w = *data++; if (data) w = *data++;
SPI.transfer16(w); SPI1.transfer16(w);
count--; count--;
} }
digitalWriteFast(SPIRAM_CS_PIN, HIGH); digitalWriteFast(m_csPin, HIGH);
SPI.endTransaction(); SPI1.endTransaction();
} else if (memory_type == BA_AUDIO_MEMORY_MEMORYBOARD) { break;
SPI.beginTransaction(SPISETTING);
while (count) {
uint32_t chip = (addr >> 16) + 1;
digitalWriteFast(MEMBOARD_CS0_PIN, chip & 1);
digitalWriteFast(MEMBOARD_CS1_PIN, chip & 2);
digitalWriteFast(MEMBOARD_CS2_PIN, chip & 4);
uint32_t chipaddr = (addr & 0xFFFF) << 1;
SPI.transfer16((0x02 << 8) | (chipaddr >> 16));
SPI.transfer16(chipaddr & 0xFFFF);
uint32_t num = 0x10000 - (addr & 0xFFFF);
if (num > count) num = count;
count -= num;
addr += num;
do {
int16_t w = 0;
if (data) w = *data++;
SPI.transfer16(w);
} while (--num > 0);
} }
digitalWriteFast(MEMBOARD_CS0_PIN, LOW);
digitalWriteFast(MEMBOARD_CS1_PIN, LOW);
digitalWriteFast(MEMBOARD_CS2_PIN, LOW);
SPI.endTransaction();
}
#endif
} }
///////////////////////////////////////////////////////////////////
// PRIVATE METHODS
///////////////////////////////////////////////////////////////////
void BAAudioEffectDelayExternal::zero(uint32_t address, uint32_t count) {
write(address, count, NULL);
}
} /* namespace BAGuitar */ } /* namespace BAGuitar */

@ -12,90 +12,45 @@
namespace BAGuitar { namespace BAGuitar {
/* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "Arduino.h" #include "Arduino.h"
#include "AudioStream.h" #include "AudioStream.h"
#include "spi_interrupt.h" #include "spi_interrupt.h"
enum BAAudioEffectDelayMemoryType_t { enum MemSelect {
BA_AUDIO_MEMORY_23LC1024 = 0, // 128k x 8 S-RAM MEM0,
BA_AUDIO_MEMORY_MEMORYBOARD = 1, MEM1,
BA_AUDIO_MEMORY_CY15B104 = 2, // 512k x 8 F-RAM
BA_AUDIO_MEMORY_UNDEFINED = 3
}; };
class BAAudioEffectDelayExternal : public AudioStream class BAAudioEffectDelayExternal : public AudioStream
{ {
public: public:
BAAudioEffectDelayExternal() : AudioStream(1, inputQueueArray) { BAAudioEffectDelayExternal();
initialize(BA_AUDIO_MEMORY_23LC1024, 65536); BAAudioEffectDelayExternal(MemSelect type, float milliseconds=1e6);
}
BAAudioEffectDelayExternal(BAAudioEffectDelayMemoryType_t type, float milliseconds=1e6)
: AudioStream(1, inputQueueArray) {
uint32_t n = (milliseconds*(AUDIO_SAMPLE_RATE_EXACT/1000.0f))+0.5f;
initialize(type, n);
}
void delay(uint8_t channel, float milliseconds) { void delay(uint8_t channel, float milliseconds);
if (channel >= 8 || memory_type >= BA_AUDIO_MEMORY_UNDEFINED) return; void disable(uint8_t channel);
if (milliseconds < 0.0) milliseconds = 0.0;
uint32_t n = (milliseconds*(AUDIO_SAMPLE_RATE_EXACT/1000.0f))+0.5f;
n += AUDIO_BLOCK_SAMPLES;
if (n > memory_length - AUDIO_BLOCK_SAMPLES)
n = memory_length - AUDIO_BLOCK_SAMPLES;
delay_length[channel] = n;
uint8_t mask = activemask;
if (activemask == 0) AudioStartUsingSPI();
activemask = mask | (1<<channel);
}
void disable(uint8_t channel) {
if (channel >= 8) return;
uint8_t mask = activemask & ~(1<<channel);
activemask = mask;
if (mask == 0) AudioStopUsingSPI();
}
virtual void update(void); virtual void update(void);
private: private:
void initialize(BAAudioEffectDelayMemoryType_t type, uint32_t samples); void initialize(MemSelect mem, uint32_t samples);
void read(uint32_t address, uint32_t count, int16_t *data); void read(uint32_t address, uint32_t count, int16_t *data);
void write(uint32_t address, uint32_t count, const int16_t *data); void write(uint32_t address, uint32_t count, const int16_t *data);
void zero(uint32_t address, uint32_t count) { void zero(uint32_t address, uint32_t count);
write(address, count, NULL);
}
uint32_t memory_begin; // the first address in the memory we're using uint32_t memory_begin; // the first address in the memory we're using
uint32_t memory_length; // the amount of memory we're using uint32_t memory_length; // the amount of memory we're using
uint32_t head_offset; // head index (incoming) data into external memory uint32_t head_offset; // head index (incoming) data into external memory
uint32_t delay_length[8]; // # of sample delay for each channel (128 = no delay) uint32_t delay_length[8]; // # of sample delay for each channel (128 = no delay)
uint8_t activemask; // which output channels are active uint8_t activemask; // which output channels are active
uint8_t memory_type; // 0=23LC1024, 1=Frank's Memoryboard //uint8_t memory_type; // 0=23LC1024, 1=Frank's Memoryboard
static uint32_t allocated[2]; static uint32_t allocated[2];
audio_block_t *inputQueueArray[1]; audio_block_t *inputQueueArray[1];
MemSelect m_mem;
int m_misoPin;
int m_mosiPin;
int m_sckPin;
int m_csPin;
}; };

Loading…
Cancel
Save