You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
uClock/src/uClock.cpp

520 lines
12 KiB

/*!
* @file uClock.cpp
* Project BPM clock generator for Arduino
* @brief A Library to implement BPM clock tick calls using hardware interruption. Supported and tested on AVR boards(ATmega168/328, ATmega16u4/32u4 and ATmega2560) and ARM boards(Teensy, Seedstudio XIAO M0 and ESP32)
* @version 2.0.0
* @author Romulo Silva
* @date 10/06/2017
* @license MIT - (c) 2024 - Romulo Silva - contact@midilab.co
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "uClock.h"
//
// General Arduino AVRs port
//
#if defined(ARDUINO_ARCH_AVR)
#include "platforms/avr.h"
#endif
//
// Teensyduino ARMs port
//
#if defined(TEENSYDUINO)
#include "platforms/teensy.h"
#endif
//
// Seedstudio XIAO M0 port
//
#if defined(SEEED_XIAO_M0)
#include "platforms/samd.h"
#endif
//
// ESP32 family
//
#if defined(ARDUINO_ARCH_ESP32) || defined(ESP32)
#include "platforms/esp32.h"
#endif
//
// STM32XX family
//
#if defined(ARDUINO_ARCH_STM32)
#include "platforms/stm32.h"
#endif
//
// RP2040 (Raspberry Pico) family
//
#if defined(ARDUINO_ARCH_RP2040)
#include "platforms/rp2040.h"
#endif
//
// Platform specific timer setup/control
//
// initTimer(uint32_t us_interval) and setTimer(uint32_t us_interval)
// are called from architecture specific module included at the
// header of this file
void uclockInitTimer()
{
// begin at 120bpm
initTimer(uClock.bpmToMicroSeconds(120.00));
}
void setTimerTempo(float bpm)
{
setTimer(uClock.bpmToMicroSeconds(bpm));
}
namespace umodular { namespace clock {
static inline uint32_t phase_mult(uint32_t val)
{
return (val * PHASE_FACTOR) >> 8;
}
static inline uint32_t clock_diff(uint32_t old_clock, uint32_t new_clock)
{
if (new_clock >= old_clock) {
return new_clock - old_clock;
} else {
return new_clock + (4294967295 - old_clock);
}
}
uClockClass::uClockClass()
{
tempo = 120;
start_timer = 0;
last_interval = 0;
sync_interval = 0;
state = PAUSED;
mode = INTERNAL_CLOCK;
resetCounters();
onPPQNCallback = nullptr;
onSync24Callback = nullptr;
onStepCallback = nullptr;
onClockStartCallback = nullptr;
onClockStopCallback = nullptr;
// first ppqn references calculus
setPPQN(PPQN_96);
}
void uClockClass::init()
{
uclockInitTimer();
// first interval calculus
setTempo(tempo);
}
uint32_t uClockClass::bpmToMicroSeconds(float bpm)
{
return (60000000 / ppqn / bpm);
}
void uClockClass::setPPQN(PPQNResolution resolution)
{
// stop clock to make it safe changing those references
// so we avoid volatile then and ATOMIC everyone
stop();
ppqn = resolution;
// calculate the mod24 and mod_step tick reference trigger
mod24_ref = ppqn / 24;
mod_step_ref = ppqn / 4;
}
void uClockClass::start()
{
resetCounters();
start_timer = millis();
if (onClockStartCallback) {
onClockStartCallback();
}
if (mode == INTERNAL_CLOCK) {
state = STARTED;
} else {
state = STARTING;
}
}
void uClockClass::stop()
{
state = PAUSED;
start_timer = 0;
resetCounters();
if (onClockStopCallback) {
onClockStopCallback();
}
}
void uClockClass::pause()
{
if (mode == INTERNAL_CLOCK) {
if (state == PAUSED) {
start();
} else {
stop();
}
}
}
void uClockClass::setTempo(float bpm)
{
if (mode == EXTERNAL_CLOCK) {
return;
}
if (bpm < MIN_BPM || bpm > MAX_BPM) {
return;
}
ATOMIC(
tempo = bpm
)
setTimerTempo(bpm);
}
// this function is based on sync24PPQN
float inline uClockClass::freqToBpm(uint32_t freq)
{
float usecs = 1/((float)freq/1000000.0);
return (float)((float)(usecs/(float)24) * 60.0);
}
float uClockClass::getTempo()
{
if (mode == EXTERNAL_CLOCK) {
uint32_t acc = 0;
// wait the buffer to get full
if (ext_interval_buffer[EXT_INTERVAL_BUFFER_SIZE-1] == 0) {
return tempo;
}
for (uint8_t i=0; i < EXT_INTERVAL_BUFFER_SIZE; i++) {
acc += ext_interval_buffer[i];
}
if (acc != 0) {
return freqToBpm(acc / EXT_INTERVAL_BUFFER_SIZE);
}
}
return tempo;
}
void uClockClass::setMode(SyncMode tempo_mode)
{
mode = tempo_mode;
}
uClockClass::SyncMode uClockClass::getMode()
{
return mode;
}
void uClockClass::clockMe()
{
if (mode == EXTERNAL_CLOCK) {
ATOMIC(
handleExternalClock()
)
}
}
void uClockClass::resetCounters()
{
tick = 0;
int_clock_tick = 0;
mod24_counter = 0;
mod_step_counter = 0;
step_counter = 0;
ext_clock_tick = 0;
ext_clock_us = 0;
ext_interval_idx = 0;
for (uint8_t i=0; i < EXT_INTERVAL_BUFFER_SIZE; i++) {
ext_interval_buffer[i] = 0;
}
}
// TODO: Tap stuff
void uClockClass::tap()
{
// tap me
}
void uClockClass::setShuffle(bool active)
{
ATOMIC(shuffle.active = active)
}
bool uClockClass::isShuffled()
{
return shuffle.active;
}
void uClockClass::setShuffleSize(uint8_t size)
{
if (size > MAX_SHUFFLE_TEMPLATE_SIZE)
size = MAX_SHUFFLE_TEMPLATE_SIZE;
ATOMIC(shuffle.size = size)
}
void uClockClass::setShuffleData(uint8_t step, int8_t tick)
{
if (step >= MAX_SHUFFLE_TEMPLATE_SIZE)
return;
ATOMIC(shuffle.step[step] = tick)
}
void uClockClass::setShuffleTemplate(int8_t * shuff, uint8_t size)
{
//uint8_t size = sizeof(shuff) / sizeof(shuff[0]);
if (size > MAX_SHUFFLE_TEMPLATE_SIZE)
size = MAX_SHUFFLE_TEMPLATE_SIZE;
ATOMIC(shuffle.size = size)
for (uint8_t i=0; i < size; i++) {
setShuffleData(i, shuff[i]);
}
}
int8_t uClockClass::getShuffleLength()
{
return shuffle_length_ctrl;
}
bool inline uClockClass::processShuffle()
{
if (!shuffle.active) {
return mod_step_counter == 0;
}
int8_t mod_shuffle = 0;
// check shuffle template of current
int8_t shff = shuffle.step[step_counter%shuffle.size];
if (shuffle_shoot_ctrl == false && mod_step_counter == 0)
shuffle_shoot_ctrl = true;
//if (mod_step_counter == mod_step_ref-1)
if (shff >= 0) {
mod_shuffle = mod_step_counter - shff;
// any late shuffle? we should skip next mod_step_counter == 0
if (last_shff < 0 && mod_step_counter != 1)
return false;
} else if (shff < 0) {
mod_shuffle = mod_step_counter - (mod_step_ref + shff);
//if (last_shff < 0 && mod_step_counter != 1)
// return false;
shuffle_shoot_ctrl = true;
}
last_shff = shff;
// shuffle_shoot_ctrl helps keep track if we have shoot or not a note for the step space of ppqn/4 pulses
if (mod_shuffle == 0 && shuffle_shoot_ctrl == true) {
// keep track of next note shuffle for current note lenght control
shuffle_length_ctrl = shuffle.step[(step_counter+1)%shuffle.size];
if (shff > 0)
shuffle_length_ctrl -= shff;
if (shff < 0)
shuffle_length_ctrl += shff;
shuffle_shoot_ctrl = false;
return true;
}
return false;
}
// it is expected to be called in 24PPQN
void uClockClass::handleExternalClock()
{
switch (state) {
case PAUSED:
break;
case STARTING:
state = STARTED;
ext_clock_us = micros();
break;
case STARTED:
uint32_t now_clock_us = micros();
last_interval = clock_diff(ext_clock_us, now_clock_us);
ext_clock_us = now_clock_us;
// external clock tick me!
ext_clock_tick++;
// accumulate interval incomming ticks data for getTempo() smooth reads on slave mode
if(++ext_interval_idx >= EXT_INTERVAL_BUFFER_SIZE) {
ext_interval_idx = 0;
}
ext_interval_buffer[ext_interval_idx] = last_interval;
if (ext_clock_tick == 1) {
ext_interval = last_interval;
} else {
ext_interval = (((uint32_t)ext_interval * (uint32_t)PLL_X) + (uint32_t)(256 - PLL_X) * (uint32_t)last_interval) >> 8;
}
break;
}
}
void uClockClass::handleTimerInt()
{
// reset mod24 counter reference ?
if (mod24_counter == mod24_ref)
mod24_counter = 0;
// process sync signals first please...
if (mod24_counter == 0) {
if (mode == EXTERNAL_CLOCK) {
// sync tick position with external tick clock
if ((int_clock_tick < ext_clock_tick) || (int_clock_tick > (ext_clock_tick + 1))) {
int_clock_tick = ext_clock_tick;
tick = int_clock_tick * mod24_ref;
mod24_counter = tick % mod24_ref;
mod_step_counter = tick % mod_step_ref;
}
uint32_t counter = ext_interval;
uint32_t now_clock_us = micros();
sync_interval = clock_diff(ext_clock_us, now_clock_us);
if (int_clock_tick <= ext_clock_tick) {
counter -= phase_mult(sync_interval);
} else {
if (counter > sync_interval) {
counter += phase_mult(counter - sync_interval);
}
}
// update internal clock timer frequency
float bpm = freqToBpm(counter);
if (bpm != tempo) {
if (bpm >= MIN_BPM && bpm <= MAX_BPM) {
tempo = bpm;
setTimerTempo(bpm);
}
}
}
if (onSync24Callback) {
onSync24Callback(int_clock_tick);
}
// internal clock tick me! sync24 tick too
++int_clock_tick;
}
// PPQNCallback time!
if (onPPQNCallback) {
onPPQNCallback(tick);
}
// reset step mod counter reference ?
if (mod_step_counter == mod_step_ref)
mod_step_counter = 0;
// step callback to support 16th old school style sequencers
// with builtin shuffle for this callback only
if (onStepCallback) {
// processShufle make use of mod_step_counter == 0 logic too
if (processShuffle()) {
onStepCallback(step_counter);
// going forward to the next step call
++step_counter;
}
}
// tick me!
++tick;
// increment mod counters
++mod24_counter;
++mod_step_counter;
}
// elapsed time support
uint8_t uClockClass::getNumberOfSeconds(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return ((_millis - time) / 1000) % SECS_PER_MIN;
}
uint8_t uClockClass::getNumberOfMinutes(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return (((_millis - time) / 1000) / SECS_PER_MIN) % SECS_PER_MIN;
}
uint8_t uClockClass::getNumberOfHours(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return (((_millis - time) / 1000) % SECS_PER_DAY) / SECS_PER_HOUR;
}
uint8_t uClockClass::getNumberOfDays(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return ((_millis - time) / 1000) / SECS_PER_DAY;
}
uint32_t uClockClass::getNowTimer()
{
return _millis;
}
uint32_t uClockClass::getPlayTime()
{
return start_timer;
}
} } // end namespace umodular::clock
umodular::clock::uClockClass uClock;
volatile uint32_t _millis = 0;
//
// TIMER HANDLER
//
#if defined(ARDUINO_ARCH_AVR)
ISR(TIMER1_COMPA_vect)
#else
void uClockHandler()
#endif
{
// global timer counter
_millis = millis();
if (uClock.state == uClock.STARTED) {
uClock.handleTimerInt();
}
}