/*! * @file uClock.cpp * Project BPM clock generator for Arduino * @brief A Library to implement BPM clock tick calls using hardware interruption. Supported and tested on AVR boards(ATmega168/328, ATmega16u4/32u4 and ATmega2560) and ARM boards(Teensy, Seedstudio XIAO M0 and ESP32) * @version 1.2.0 * @author Romulo Silva * @date 10/06/2017 * @license MIT - (c) 2022 - Romulo Silva - contact@midilab.co * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "uClock.h" // // Timer setup for work clock // // all non-avr timmers setup // Teensyduino port #if defined(TEENSYDUINO) IntervalTimer _uclockTimer; #endif // Seedstudio XIAO M0 port #if defined(SEEED_XIAO_M0) // 24 bits timer #include // uses TimerTcc0 // 16 bits timer //#include // uses TimerTc3 #endif // ESP32 family #if defined(ARDUINO_ARCH_ESP32) || defined(ESP32) hw_timer_t * _uclockTimer = NULL; #endif #if defined(ARDUINO_ARCH_AVR) void uclockInitTimer() { ATOMIC( // 16bits Timer1 init // begin at 120bpm (48.0007680122882 Hz) TCCR1A = 0; // set entire TCCR1A register to 0 TCCR1B = 0; // same for TCCR1B TCNT1 = 0; // initialize counter value to 0 // set compare match register for 48.0007680122882 Hz increments OCR1A = 41665; // = 16000000 / (8 * 48.0007680122882) - 1 (must be <65536) // turn on CTC mode TCCR1B |= (1 << WGM12); // Set CS12, CS11 and CS10 bits for 8 prescaler TCCR1B |= (0 << CS12) | (1 << CS11) | (0 << CS10); // enable timer compare interrupt TIMSK1 |= (1 << OCIE1A); ) } #else void uclockISR(); void uclockInitTimer() { // begin at 120bpm (20833us) const uint16_t init_clock = 20833; #if defined(TEENSYDUINO) _uclockTimer.begin(uclockISR, init_clock); // Set the interrupt priority level, controlling which other interrupts // this timer is allowed to interrupt. Lower numbers are higher priority, // with 0 the highest and 255 the lowest. Most other interrupts default to 128. // As a general guideline, interrupt routines that run longer should be given // lower priority (higher numerical values). _uclockTimer.priority(0); #endif #if defined(SEEED_XIAO_M0) TimerTcc0.initialize(init_clock); // attach to generic uclock ISR TimerTcc0.attachInterrupt(uclockISR); #endif #if defined(ARDUINO_ARCH_ESP32) || defined(ESP32) _uclockTimer = timerBegin(0, 80, true); // attach to generic uclock ISR timerAttachInterrupt(_uclockTimer, &uclockISR, true); // init clock tick time timerAlarmWrite(_uclockTimer, init_clock, true); // activate it! timerAlarmEnable(_uclockTimer); #endif } #endif namespace umodular { namespace clock { static inline uint32_t phase_mult(uint32_t val) { return (val * PHASE_FACTOR) >> 8; } static inline uint32_t clock_diff(uint32_t old_clock, uint32_t new_clock) { if (new_clock >= old_clock) { return new_clock - old_clock; } else { return new_clock + (4294967295 - old_clock); } } uClockClass::uClockClass() { tempo = 120; start_timer = 0; last_interval = 0; sync_interval = 0; state = PAUSED; mode = INTERNAL_CLOCK; resetCounters(); onClock96PPQNCallback = NULL; onClock32PPQNCallback = NULL; onClock16PPQNCallback = NULL; onClockStartCallback = NULL; onClockStopCallback = NULL; } void uClockClass::init() { uclockInitTimer(); // first interval calculus setTempo(tempo); } void uClockClass::start() { resetCounters(); start_timer = millis(); if (onClockStartCallback) { onClockStartCallback(); } if (mode == INTERNAL_CLOCK) { state = STARTED; } else { state = STARTING; } } void uClockClass::stop() { state = PAUSED; start_timer = 0; resetCounters(); if (onClockStopCallback) { onClockStopCallback(); } } void uClockClass::pause() { if (mode == INTERNAL_CLOCK) { if (state == PAUSED) { start(); } else { stop(); } } } void uClockClass::setTimerTempo(float bpm) { // 96 ppqn resolution uint32_t tick_us_interval = (60000000 / 24 / bpm); #if defined(ARDUINO_ARCH_AVR) float tick_hertz_interval = 1/((float)tick_us_interval/1000000); uint32_t ocr; uint8_t tccr = 0; // 16bits avr timer setup if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 1 )) < 65535) { // Set CS12, CS11 and CS10 bits for 1 prescaler tccr |= (0 << CS12) | (0 << CS11) | (1 << CS10); } else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 8 )) < 65535) { // Set CS12, CS11 and CS10 bits for 8 prescaler tccr |= (0 << CS12) | (1 << CS11) | (0 << CS10); } else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 64 )) < 65535) { // Set CS12, CS11 and CS10 bits for 64 prescaler tccr |= (0 << CS12) | (1 << CS11) | (1 << CS10); } else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 256 )) < 65535) { // Set CS12, CS11 and CS10 bits for 256 prescaler tccr |= (1 << CS12) | (0 << CS11) | (0 << CS10); } else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 1024 )) < 65535) { // Set CS12, CS11 and CS10 bits for 1024 prescaler tccr |= (1 << CS12) | (0 << CS11) | (1 << CS10); } else { // tempo not achiavable return; } ATOMIC( TCCR1B = 0; OCR1A = ocr-1; TCCR1B |= (1 << WGM12); TCCR1B |= tccr; ) #else #if defined(TEENSYDUINO) _uclockTimer.update(tick_us_interval); #endif #if defined(SEEED_XIAO_M0) TimerTcc0.setPeriod(tick_us_interval); #endif #if defined(ARDUINO_ARCH_ESP32) || defined(ESP32) timerAlarmWrite(_uclockTimer, tick_us_interval, true); #endif #endif } void uClockClass::setTempo(float bpm) { if (mode == EXTERNAL_CLOCK) { return; } if (bpm < MIN_BPM || bpm > MAX_BPM) { return; } ATOMIC( tempo = bpm ) setTimerTempo(bpm); } float inline uClockClass::freqToBpm(uint32_t freq) { float usecs = 1/((float)freq/1000000.0); return (float)((float)(usecs/24.0) * 60.0); } float uClockClass::getTempo() { if (mode == EXTERNAL_CLOCK) { uint32_t acc = 0; // wait the buffer get full if (ext_interval_buffer[EXT_INTERVAL_BUFFER_SIZE-1] == 0) { return tempo; } for (uint8_t i=0; i < EXT_INTERVAL_BUFFER_SIZE; i++) { acc += ext_interval_buffer[i]; } if (acc != 0) { return freqToBpm(acc / EXT_INTERVAL_BUFFER_SIZE); } } return tempo; } void uClockClass::setMode(uint8_t tempo_mode) { mode = tempo_mode; } uint8_t uClockClass::getMode() { return mode; } void uClockClass::clockMe() { if (mode == EXTERNAL_CLOCK) { ATOMIC( handleExternalClock() ) } } void uClockClass::resetCounters() { external_clock = 0; internal_tick = 0; external_tick = 0; div32th_counter = 0; div16th_counter = 0; mod6_counter = 0; indiv32th_counter = 0; indiv16th_counter = 0; inmod6_counter = 0; ext_interval_idx = 0; for (uint8_t i=0; i < EXT_INTERVAL_BUFFER_SIZE; i++) { ext_interval_buffer[i] = 0; } } // TODO: Tap stuff void uClockClass::tap() { // tap me } // TODO: Shuffle stuff void uClockClass::shuffle() { // shuffle me } void uClockClass::handleExternalClock() { switch (state) { case PAUSED: break; case STARTING: state = STARTED; external_clock = micros(); break; case STARTED: uint32_t u_timer = micros(); last_interval = clock_diff(external_clock, u_timer); external_clock = u_timer; if (inmod6_counter == 0) { indiv16th_counter++; indiv32th_counter++; } if (inmod6_counter == 3) { indiv32th_counter++; } // slave tick me! external_tick++; inmod6_counter++; if (inmod6_counter == 6) { inmod6_counter = 0; } // accumulate interval incomming ticks data for getTempo() smooth reads on slave mode if(++ext_interval_idx >= EXT_INTERVAL_BUFFER_SIZE) { ext_interval_idx = 0; } ext_interval_buffer[ext_interval_idx] = last_interval; if (external_tick == 1) { interval = last_interval; } else { interval = (((uint32_t)interval * (uint32_t)PLL_X) + (uint32_t)(256 - PLL_X) * (uint32_t)last_interval) >> 8; } break; } } void uClockClass::handleTimerInt() { if (mode == EXTERNAL_CLOCK) { // sync tick position with external tick clock if ((internal_tick < external_tick) || (internal_tick > (external_tick + 1))) { internal_tick = external_tick; div32th_counter = indiv32th_counter; div16th_counter = indiv16th_counter; mod6_counter = inmod6_counter; } uint32_t counter = interval; uint32_t u_timer = micros(); sync_interval = clock_diff(external_clock, u_timer); if (internal_tick <= external_tick) { counter -= phase_mult(sync_interval); } else { if (counter > sync_interval) { counter += phase_mult(counter - sync_interval); } } // update internal clock timer frequency float bpm = freqToBpm(counter); if (bpm != tempo) { if (bpm >= MIN_BPM && bpm <= MAX_BPM) { tempo = bpm; setTimerTempo(bpm); } } } if (onClock96PPQNCallback) { onClock96PPQNCallback(internal_tick); } if (mod6_counter == 0) { if (onClock32PPQNCallback) { onClock32PPQNCallback(div32th_counter); } if (onClock16PPQNCallback) { onClock16PPQNCallback(div16th_counter); } div16th_counter++; div32th_counter++; } if (mod6_counter == 3) { if (onClock32PPQNCallback) { onClock32PPQNCallback(div32th_counter); } div32th_counter++; } // tick me! internal_tick++; mod6_counter++; if (mod6_counter == 6) { mod6_counter = 0; } } // elapsed time support uint8_t uClockClass::getNumberOfSeconds(uint32_t time) { if ( time == 0 ) { return time; } return ((_timer - time) / 1000) % SECS_PER_MIN; } uint8_t uClockClass::getNumberOfMinutes(uint32_t time) { if ( time == 0 ) { return time; } return (((_timer - time) / 1000) / SECS_PER_MIN) % SECS_PER_MIN; } uint8_t uClockClass::getNumberOfHours(uint32_t time) { if ( time == 0 ) { return time; } return (((_timer - time) / 1000) % SECS_PER_DAY) / SECS_PER_HOUR; } uint8_t uClockClass::getNumberOfDays(uint32_t time) { if ( time == 0 ) { return time; } return ((_timer - time) / 1000) / SECS_PER_DAY; } uint32_t uClockClass::getNowTimer() { return _timer; } uint32_t uClockClass::getPlayTime() { return start_timer; } } } // end namespace umodular::clock umodular::clock::uClockClass uClock; volatile uint32_t _timer = 0; // // TIMER INTERRUPT HANDLER // // #if defined(ARDUINO_ARCH_AVR) ISR(TIMER1_COMPA_vect) #else void uclockISR() #endif { // global timer counter _timer = millis(); if (uClock.state == uClock.STARTED) { uClock.handleTimerInt(); } }