/*! * @file uClock.cpp * Project BPM clock generator for Arduino * @brief A Library to implement BPM clock tick calls using hardware timer1 interruption. Tested on ATmega168/328, ATmega16u4/32u4 and ATmega2560. * Derived work from mididuino MidiClock class. (c) 2008 - 2011 - Manuel Odendahl - wesen@ruinwesen.com * @version 0.9.0 * @author Romulo Silva * @date 08/21/2020 * @license MIT - (c) 2020 - Romulo Silva - contact@midilab.co * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "uClock.h" #define ATOMIC(X) noInterrupts(); X; interrupts(); // // Timer setup // Work clock at: 62.5kHz/16usec // #if defined(TEENSYDUINO) IntervalTimer _teensyTimer; void teensyInterrupt(); void initTeensyTimer() { _teensyTimer.begin(teensyInterrupt, 16); // Set the interrupt priority level, controlling which other interrupts // this timer is allowed to interrupt. Lower numbers are higher priority, // with 0 the highest and 255 the lowest. Most other interrupts default to 128. // As a general guideline, interrupt routines that run longer should be given // lower priority (higher numerical values). //_teensyTimer.priority(128); } #else void initArduinoTimer() { // // Configure timers and prescale // Timmer1: ATMega128, ATMega328, AtMega16U4 and AtMega32U4 // Clock Speed Selection // CS10: Clock (No prescaling) // Waveform Generation Mode (WGM) 16-bit timer settings // (WGM10, WGM12) Mode 5 // Fast Pulse Width Modulation (PWM), 8-bit: // TOP: 0x00FF (255) // OCR1x Update: BOTTOM // TOV1 Flag: TOP // Overflow Interrupt Enable ATOMIC( TCCR1A = 0; TCCR1A = _BV(WGM10); TCCR1B = 0; TCCR1B = _BV(CS10) | _BV(WGM12); TIMSK1 |= _BV(TOIE1); ) } #endif void initWorkTimer() { #if defined(TEENSYDUINO) initTeensyTimer(); #else initArduinoTimer(); #endif } namespace umodular { namespace clock { static inline uint32_t phase_mult(uint32_t val) { return (val * PHASE_FACTOR) >> 8; } static inline uint16_t clock_diff(uint16_t old_clock, uint16_t new_clock) { if (new_clock >= old_clock) { return new_clock - old_clock; } else { return new_clock + (65535 - old_clock); } } uClockClass::uClockClass() { // 11 is good for native 31250bps midi interface // 4 is good for usb-to-midi hid on leonardo // 1 is good on teensy lc usb midi drift = 11; pll_x = 220; start_timer = 0; state = PAUSED; mode = INTERNAL_CLOCK; resetCounters(); onClock96PPQNCallback = NULL; onClock32PPQNCallback = NULL; onClock16PPQNCallback = NULL; onClockStartCallback = NULL; onClockStopCallback = NULL; } void uClockClass::init() { setTempo(120); initWorkTimer(); } void uClockClass::start() { resetCounters(); start_timer = millis(); if (onClockStartCallback) { onClockStartCallback(); } if (mode == INTERNAL_CLOCK) { state = STARTED; } else { state = STARTING; } } void uClockClass::stop() { state = PAUSED; start_timer = 0; resetCounters(); if (onClockStopCallback) { onClockStopCallback(); } } void uClockClass::pause() { if (mode == INTERNAL_CLOCK) { if (state == PAUSED) { start(); } else { stop(); } } } void uClockClass::setTempo(uint16_t bpm) { if (mode == EXTERNAL_CLOCK) { return; } if (tempo == bpm) { return; } if (bpm > 300 || bpm == 0) { return; } tempo = bpm; ATOMIC( //interval = 62500 / (tempo * 24 / 60) - drift; interval = (uint16_t)(156250 / tempo) - drift; ) } uint16_t uClockClass::getTempo() { if (mode == EXTERNAL_CLOCK) { tempo = (156250 / interval); } return tempo; } void uClockClass::setDrift(uint8_t value) { ATOMIC( drift = value; ) } uint8_t uClockClass::getMode() { return mode; } void uClockClass::setMode(uint8_t tempo_mode) { mode = tempo_mode; } void uClockClass::clockMe() { if (mode == EXTERNAL_CLOCK) { ATOMIC( handleExternalClock() ) } } void uClockClass::resetCounters() { counter = 0; last_clock = 0; div96th_counter = 0; div32th_counter = 0; div16th_counter = 0; mod6_counter = 0; indiv96th_counter = 0; inmod6_counter = 0; } // TODO: Tap stuff void uClockClass::tap() { // tap me } // TODO: Shuffle stuff void uClockClass::shuffle() { // shuffle me } void uClockClass::handleExternalClock() { uint16_t cur_clock = _clock; uint16_t diff = clock_diff(last_clock, cur_clock); last_interval = diff; last_clock = cur_clock; indiv96th_counter++; inmod6_counter++; if (inmod6_counter == 6) { inmod6_counter = 0; } switch (state) { case PAUSED: break; case STARTING: state = STARTED; break; case STARTED: if (indiv96th_counter == 2) { interval = diff; } else { interval = (((uint32_t)interval * (uint32_t)pll_x) + (uint32_t)(256 - pll_x) * (uint32_t)diff) >> 8; } break; } } void uClockClass::handleTimerInt() { if (counter == 0) { counter = interval; if (onClock96PPQNCallback) { onClock96PPQNCallback(&div96th_counter); } if (mod6_counter == 0) { if (onClock32PPQNCallback) { onClock32PPQNCallback(&div32th_counter); } if (onClock16PPQNCallback) { onClock16PPQNCallback(&div16th_counter); } div16th_counter++; div32th_counter++; } if (mod6_counter == 3) { if (onClock32PPQNCallback) { onClock32PPQNCallback(&div32th_counter); } div32th_counter++; } div96th_counter++; mod6_counter++; if (mode == EXTERNAL_CLOCK) { uint16_t cur_clock = _clock; uint16_t diff = clock_diff(last_clock, cur_clock); if ((div96th_counter < indiv96th_counter) || (div96th_counter > (indiv96th_counter + 1))) { div96th_counter = indiv96th_counter; mod6_counter = inmod6_counter; } if (div96th_counter <= indiv96th_counter) { counter -= phase_mult(diff); } else { if (counter > diff) { counter += phase_mult(counter - diff); } } } if (mod6_counter == 6) { mod6_counter = 0; } } else { counter--; } } // elapsed time support uint8_t uClockClass::getNumberOfSeconds(uint32_t time) { if ( time == 0 ) { return time; } return ((_timer - time) / 1000) % SECS_PER_MIN; } uint8_t uClockClass::getNumberOfMinutes(uint32_t time) { if ( time == 0 ) { return time; } return (((_timer - time) / 1000) / SECS_PER_MIN) % SECS_PER_MIN; } uint8_t uClockClass::getNumberOfHours(uint32_t time) { if ( time == 0 ) { return time; } return (((_timer - time) / 1000) % SECS_PER_DAY) / SECS_PER_HOUR; } uint8_t uClockClass::getNumberOfDays(uint32_t time) { if ( time == 0 ) { return time; } return ((_timer - time) / 1000) / SECS_PER_DAY; } uint32_t uClockClass::getNowTimer() { return _timer; } uint32_t uClockClass::getPlayTime() { return start_timer; } } } // end namespace umodular::clock umodular::clock::uClockClass uClock; volatile uint16_t _clock = 0; volatile uint32_t _timer = 0; // // TIMER INTERRUPT HANDLER // Clocked at: 62.5kHz/16usec // #if defined(TEENSYDUINO) void teensyInterrupt() #else ISR(TIMER1_OVF_vect) #endif { // global timer counter _timer = millis(); if (uClock.state == umodular::clock::STARTED) { _clock++; uClock.handleTimerInt(); } }