AcidStepSequencer: separation of code into main sequencer engine, user interface and hardware interface for better code reuse. Added ATOMIC() macro to access sequencer data in a atomic way(since uClock runs on timmer interrupt)

pull/7/head
midilab 6 years ago
parent b4e95eaa85
commit db5682f08b
  1. 62
      README.md
  2. 388
      examples/AcidStepSequencer/AcidStepSequencer.ino
  3. 276
      examples/AcidStepSequencer/DefaultUserInterface.ino
  4. 120
      examples/AcidStepSequencer/HardwareInterface.ino

@ -83,20 +83,32 @@ A clone of Roland TB303 step sequencer main engine, here is a example with no us
```c++
// Roland TB303 Step Sequencer engine clone.
// No interface here, just the engine as example.
// Acid StepSequencer, a Roland TB303 step sequencer engine clone
// author: midilab contact@midilab.co
// under MIT license
#include "Arduino.h"
#include <uClock.h>
// Sequencer config
#define STEP_MAX_SIZE 16
#define SEQUENCER_MIN_BPM 50
#define SEQUENCER_MAX_BPM 177
#define NOTE_LENGTH 4 // min: 1 max: 5 DO NOT EDIT BEYOND!!!
#define NOTE_VELOCITY 90
#define ACCENT_VELOCITY 127
#define NOTE_STACK_SIZE 3 // 1 for no glide note, other 2 for overlap glide notes
// MIDI config
// MIDI modes
#define MIDI_CHANNEL 0 // 0 = channel 1
#define MIDI_MODE
//#define SERIAL_MODE
// do not edit from here!
#define NOTE_STACK_SIZE 3
// MIDI clock, start, stop, note on and note off byte definitions - based on MIDI 1.0 Standards.
#define MIDI_CLOCK 0xF8
#define MIDI_START 0xFA
#define MIDI_STOP 0xFC
#define NOTE_ON 0x90
#define NOTE_OFF 0x80
// Sequencer data
typedef struct
@ -107,26 +119,25 @@ typedef struct
bool rest;
} SEQUENCER_STEP_DATA;
SEQUENCER_STEP_DATA _sequencer[STEP_MAX_SIZE];
typedef struct
{
uint8_t note;
int8_t length;
} STACK_NOTE_DATA;
// main sequencer data
SEQUENCER_STEP_DATA _sequencer[STEP_MAX_SIZE];
STACK_NOTE_DATA _note_stack[NOTE_STACK_SIZE];
bool _playing = false;
uint16_t _step, _step_edit = 0;
uint16_t _step_length = STEP_MAX_SIZE;
// MIDI clock, start, stop, note on and note off byte definitions - based on MIDI 1.0 Standards.
#define MIDI_CLOCK 0xF8
#define MIDI_START 0xFA
#define MIDI_STOP 0xFC
#define NOTE_ON 0x90
#define NOTE_OFF 0x80
// make sure all above sequencer data are modified atomicly only
// eg. ATOMIC(_sequencer[0].accent = true); ATOMIC(_step_length = 7);
uint8_t _tmpSREG;
#define ATOMIC(X) _tmpSREG = SREG; cli(); X; SREG = _tmpSREG;
// shared data to be used for user interface feedback
bool _playing = false;
uint16_t _step = 0;
void sendMidiMessage(uint8_t command, uint8_t byte1, uint8_t byte2)
{
@ -137,8 +148,7 @@ void sendMidiMessage(uint8_t command, uint8_t byte1, uint8_t byte2)
Serial.write(byte2);
}
// The callback function wich will be called by uClock each Pulse of 16PPQN clock resolution.
// Each call represents exactly one step here.
// The callback function wich will be called by uClock each Pulse of 16PPQN clock resolution. Each call represents exactly one step.
void ClockOut16PPQN(uint32_t * tick)
{
uint16_t step, length;
@ -148,9 +158,7 @@ void ClockOut16PPQN(uint32_t * tick)
// send note on only if this step are not in rest mode
if ( _sequencer[_step].rest == false ) {
// send note on
sendMidiMessage(NOTE_ON, _sequencer[_step].note, _sequencer[_step].accent ? ACCENT_VELOCITY : NOTE_VELOCITY);
// check for glide event ahead of _step
step = _step;
for ( uint16_t i = 1; i < _step_length; i++ ) {
@ -170,6 +178,8 @@ void ClockOut16PPQN(uint32_t * tick)
if ( _note_stack[i].length == -1 ) {
_note_stack[i].note = _sequencer[_step].note;
_note_stack[i].length = length;
// send note on
sendMidiMessage(NOTE_ON, _sequencer[_step].note, _sequencer[_step].accent ? ACCENT_VELOCITY : NOTE_VELOCITY);
return;
}
}
@ -192,6 +202,9 @@ void ClockOut96PPQN(uint32_t * tick)
}
}
}
// user feedback about sequence time events
tempoInterface(tick);
}
// The callback function wich will be called when clock starts by using Clock.start() method.
@ -205,6 +218,7 @@ void onClockStart()
void onClockStop()
{
Serial.write(MIDI_STOP);
// send all note off on sequencer stop
for ( uint8_t i = 0; i < NOTE_STACK_SIZE; i++ ) {
sendMidiMessage(NOTE_OFF, _note_stack[i].note, 0);
_note_stack[i].length = -1;
@ -215,8 +229,14 @@ void onClockStop()
void setup()
{
// Initialize serial communication
#ifdef MIDI_MODE
// the default MIDI serial speed communication at 31250 bits per second
Serial.begin(31250);
#endif
#ifdef SERIAL_MODE
// for usage with a PC with a serial to MIDI bridge
Serial.begin(115200);
#endif
// Inits the clock
uClock.init();
@ -236,7 +256,7 @@ void setup()
// initing sequencer data
for ( uint16_t i = 0; i < STEP_MAX_SIZE; i++ ) {
_sequencer[i].note = 36;
_sequencer[i].note = 48;
_sequencer[i].accent = false;
_sequencer[i].glide = false;
_sequencer[i].rest = false;

@ -6,42 +6,24 @@
// Sequencer config
#define STEP_MAX_SIZE 16
#define SEQUENCER_MIN_BPM 50
#define SEQUENCER_MAX_BPM 177
#define NOTE_LENGTH 4 // min: 1 max: 5 DO NOT EDIT BEYOND!!!
#define NOTE_VELOCITY 90
#define ACCENT_VELOCITY 127
// do not edit this!
#define NOTE_STACK_SIZE 3
// Ui config
#define LOCK_POT_SENSTIVITY 3
// MIDI modes
#define MIDI_CHANNEL 0 // 0 = channel 1
#define MIDI_MODE
//#define SERIAL_MODE
// hardware setup to fit different kinda of setups and arduino models
#define OCTAVE_POT_PIN A3
#define NOTE_POT_PIN A2
#define STEP_LENGTH_POT_PIN A1
#define TEMPO_POT_PIN A0
#define PREVIOUS_STEP_BUTTON_PIN 2
#define NEXT_STEP_BUTTON_PIN 3
#define REST_BUTTON_PIN 4
#define GLIDE_BUTTON_PIN 5
#define ACCENT_BUTTON_PIN 6
#define PLAY_STOP_BUTTON_PIN 7
// do not edit from here!
#define NOTE_STACK_SIZE 3
#define PREVIOUS_STEP_LED_PIN 8
#define NEXT_STEP_LED_PIN 9
#define REST_LED_PIN 10
#define GLIDE_LED_PIN 11
#define ACCENT_LED_PIN 12
#define PLAY_STOP_LED_PIN 13
// MIDI clock, start, stop, note on and note off byte definitions - based on MIDI 1.0 Standards.
#define MIDI_CLOCK 0xF8
#define MIDI_START 0xFA
#define MIDI_STOP 0xFC
#define NOTE_ON 0x90
#define NOTE_OFF 0x80
// Sequencer data
typedef struct
@ -52,36 +34,25 @@ typedef struct
bool rest;
} SEQUENCER_STEP_DATA;
SEQUENCER_STEP_DATA _sequencer[STEP_MAX_SIZE];
typedef struct
{
uint8_t note;
int8_t length;
} STACK_NOTE_DATA;
// main sequencer data
SEQUENCER_STEP_DATA _sequencer[STEP_MAX_SIZE];
STACK_NOTE_DATA _note_stack[NOTE_STACK_SIZE];
bool _playing = false;
uint16_t _step, _step_edit = 0;
uint16_t _step_length = STEP_MAX_SIZE;
// MIDI clock, start, stop, note on and note off byte definitions - based on MIDI 1.0 Standards.
#define MIDI_CLOCK 0xF8
#define MIDI_START 0xFA
#define MIDI_STOP 0xFC
#define NOTE_ON 0x90
#define NOTE_OFF 0x80
// make sure all above sequencer data are modified atomicly only
// eg. ATOMIC(_sequencer[0].accent = true); ATOMIC(_step_length = 7);
uint8_t _tmpSREG;
#define ATOMIC(X) _tmpSREG = SREG; cli(); X; SREG = _tmpSREG;
// User Interface data
// 6 buttons to keep last value track
// 4 10k potentiometers to keep lasta value track
uint8_t _button_state[6] = {1};
uint16_t _pot_state[4] = {0};
bool _lock_pot[4] = {true};
uint8_t _last_octave = 3;
uint8_t _last_note = 0;
uint8_t _bpm_blink_timer = 1;
// shared data to be used for user interface feedback
bool _playing = false;
uint16_t _step = 0;
void sendMidiMessage(uint8_t command, uint8_t byte1, uint8_t byte2)
{
@ -92,8 +63,7 @@ void sendMidiMessage(uint8_t command, uint8_t byte1, uint8_t byte2)
Serial.write(byte2);
}
// The callback function wich will be called by uClock each Pulse of 16PPQN clock resolution.
// Each call represents exactly one step here.
// The callback function wich will be called by uClock each Pulse of 16PPQN clock resolution. Each call represents exactly one step.
void ClockOut16PPQN(uint32_t * tick)
{
uint16_t step, length;
@ -103,9 +73,7 @@ void ClockOut16PPQN(uint32_t * tick)
// send note on only if this step are not in rest mode
if ( _sequencer[_step].rest == false ) {
// send note on
sendMidiMessage(NOTE_ON, _sequencer[_step].note, _sequencer[_step].accent ? ACCENT_VELOCITY : NOTE_VELOCITY);
// check for glide event ahead of _step
step = _step;
for ( uint16_t i = 1; i < _step_length; i++ ) {
@ -125,12 +93,11 @@ void ClockOut16PPQN(uint32_t * tick)
if ( _note_stack[i].length == -1 ) {
_note_stack[i].note = _sequencer[_step].note;
_note_stack[i].length = length;
// send note on
sendMidiMessage(NOTE_ON, _sequencer[_step].note, _sequencer[_step].accent ? ACCENT_VELOCITY : NOTE_VELOCITY);
return;
}
}
// if we reach at this point means we could not find a free note stack for this note... so lets send note off to avoid ghost notes in the air
sendMidiMessage(NOTE_OFF, _sequencer[_step].note, 0);
}
}
@ -151,23 +118,14 @@ void ClockOut96PPQN(uint32_t * tick)
}
}
// BPM led indicator
if ( !(*tick % (96)) || (*tick == 0) ) { // first compass step will flash longer
_bpm_blink_timer = 8;
digitalWrite(PLAY_STOP_LED_PIN , HIGH);
} else if ( !(*tick % (24)) ) { // each quarter led on
digitalWrite(PLAY_STOP_LED_PIN , HIGH);
} else if ( !(*tick % _bpm_blink_timer) ) { // get led off
digitalWrite(PLAY_STOP_LED_PIN , LOW);
_bpm_blink_timer = 1;
}
// user feedback about sequence time events
tempoInterface(tick);
}
// The callback function wich will be called when clock starts by using Clock.start() method.
void onClockStart()
{
Serial.write(MIDI_START);
digitalWrite(PLAY_STOP_LED_PIN , LOW);
_playing = true;
}
@ -175,6 +133,7 @@ void onClockStart()
void onClockStop()
{
Serial.write(MIDI_STOP);
// send all note off on sequencer stop
for ( uint8_t i = 0; i < NOTE_STACK_SIZE; i++ ) {
sendMidiMessage(NOTE_OFF, _note_stack[i].note, 0);
_note_stack[i].length = -1;
@ -182,33 +141,6 @@ void onClockStop()
_playing = false;
}
void configureInterface()
{
// Buttons config
// use internal pullup for buttons
pinMode(PREVIOUS_STEP_BUTTON_PIN, INPUT_PULLUP);
pinMode(NEXT_STEP_BUTTON_PIN, INPUT_PULLUP);
pinMode(REST_BUTTON_PIN, INPUT_PULLUP);
pinMode(GLIDE_BUTTON_PIN, INPUT_PULLUP);
pinMode(ACCENT_BUTTON_PIN, INPUT_PULLUP);
pinMode(PLAY_STOP_BUTTON_PIN, INPUT_PULLUP);
// Leds config
pinMode(PREVIOUS_STEP_LED_PIN, OUTPUT);
pinMode(NEXT_STEP_LED_PIN, OUTPUT);
pinMode(REST_LED_PIN, OUTPUT);
pinMode(GLIDE_LED_PIN, OUTPUT);
pinMode(ACCENT_LED_PIN, OUTPUT);
pinMode(PLAY_STOP_LED_PIN, OUTPUT);
digitalWrite(PREVIOUS_STEP_LED_PIN, LOW);
digitalWrite(NEXT_STEP_LED_PIN, LOW);
digitalWrite(REST_LED_PIN, LOW);
digitalWrite(GLIDE_LED_PIN, LOW);
digitalWrite(ACCENT_LED_PIN, LOW);
digitalWrite(PLAY_STOP_LED_PIN, LOW);
}
void setup()
{
// Initialize serial communication
@ -239,7 +171,7 @@ void setup()
// initing sequencer data
for ( uint16_t i = 0; i < STEP_MAX_SIZE; i++ ) {
_sequencer[i].note = 36;
_sequencer[i].note = 48;
_sequencer[i].accent = false;
_sequencer[i].glide = false;
_sequencer[i].rest = false;
@ -253,278 +185,10 @@ void setup()
// pins, buttons, leds and pots config
configureInterface();
acidRandomize();
}
void acidRandomize()
{
// ramdom it all
for ( uint16_t i = 0; i < STEP_MAX_SIZE; i++ ) {
_sequencer[i].note = random(36, 70); // octave 2 to 4. octave 3 to 5 (40 - 83)
_sequencer[i].accent = random(0, 2);
_sequencer[i].glide = random(0, 2);
_sequencer[i].rest = random(0, 1);
}
}
void sendPreviewNote(uint16_t step)
{
unsigned long milliTime, preMilliTime;
sendMidiMessage(NOTE_ON, _sequencer[step].note, _sequencer[step].accent ? ACCENT_VELOCITY : NOTE_VELOCITY);
// avoid delay() call here because of uClock timmer1 usage
//delay(200);
preMilliTime = millis();
while ( true ) {
milliTime = millis();
if (abs(milliTime - preMilliTime) >= 200) {
break;
}
}
sendMidiMessage(NOTE_OFF, _sequencer[step].note, 0);
}
void lockPotsState(bool state)
{
for ( uint8_t i = 0; i < 4; i++ ) {
_lock_pot[i] = state;
}
}
bool pressed(uint8_t button_pin)
{
uint8_t value;
uint8_t * last_value;
switch(button_pin) {
case PREVIOUS_STEP_BUTTON_PIN:
last_value = &_button_state[0];
break;
case NEXT_STEP_BUTTON_PIN:
last_value = &_button_state[1];
break;
case REST_BUTTON_PIN:
last_value = &_button_state[2];
break;
case GLIDE_BUTTON_PIN:
last_value = &_button_state[3];
break;
case ACCENT_BUTTON_PIN:
last_value = &_button_state[4];
break;
case PLAY_STOP_BUTTON_PIN:
last_value = &_button_state[5];
break;
default:
return false;
}
value = digitalRead(button_pin);
// check, using pullup pressed button goes LOW
if ( value != *last_value && value == LOW ) {
*last_value = value;
return true;
} else {
*last_value = value;
return false;
}
}
int16_t getPotChanges(uint8_t pot_pin, uint16_t min_value, uint16_t max_value)
{
uint16_t value;
uint16_t * last_value;
bool * lock_pot;
uint8_t pot_sensitivity = 1;
switch(pot_pin) {
case OCTAVE_POT_PIN:
last_value = &_pot_state[0];
lock_pot = &_lock_pot[0];
break;
case NOTE_POT_PIN:
last_value = &_pot_state[1];
lock_pot = &_lock_pot[1];
break;
case STEP_LENGTH_POT_PIN:
last_value = &_pot_state[2];
lock_pot = &_lock_pot[2];
break;
case TEMPO_POT_PIN:
last_value = &_pot_state[3];
lock_pot = &_lock_pot[3];
break;
default:
return -1;
}
// range our value
value = (analogRead(pot_pin) / (1024 / ((max_value - min_value) + 1))) + min_value;
// a lock system to not mess with some data(pots are terrible for some kinda of user interface data controls)
if ( *lock_pot == true ) {
pot_sensitivity = LOCK_POT_SENSTIVITY;
}
if ( abs(value - *last_value) >= pot_sensitivity ) {
*last_value = value;
if ( *lock_pot == true ) {
*lock_pot = false;
}
return value;
} else {
return -1;
}
}
void processPots()
{
int8_t octave, note, step_note;
int16_t tempo, step_length;
octave = getPotChanges(OCTAVE_POT_PIN, 0, 10);
if ( octave != -1 ) {
_last_octave = octave;
}
note = getPotChanges(NOTE_POT_PIN, 0, 11);
if ( note != -1 ) {
_last_note = note;
}
// changes on octave or note pot?
if ( octave != -1 || note != -1 ) {
_sequencer[_step_edit].note = (_last_octave * 8) + _last_note;
if ( _playing == false && _sequencer[_step_edit].rest == false ) {
sendPreviewNote(_step_edit);
}
}
step_length = getPotChanges(STEP_LENGTH_POT_PIN, 1, STEP_MAX_SIZE);
if ( step_length != -1 ) {
_step_length = step_length;
if ( _step_edit >= _step_length ) {
_step_edit = _step_length-1;
}
}
tempo = getPotChanges(TEMPO_POT_PIN, SEQUENCER_MIN_BPM, SEQUENCER_MAX_BPM);
if ( tempo != -1 ) {
uClock.setTempo(tempo);
}
}
void processButtons()
{
// play/stop
if ( pressed(PLAY_STOP_BUTTON_PIN) ) {
if ( _playing == false ) {
// Starts the clock, tick-tac-tick-tac...
uClock.start();
} else {
// stop the clock
uClock.stop();
}
}
// previous step edit
if ( pressed(PREVIOUS_STEP_BUTTON_PIN) ) {
if ( _step_edit != 0 ) {
// add a lock here for octave and note to not mess with edit mode when moving steps around
lockPotsState(true);
--_step_edit;
}
if ( _playing == false && _sequencer[_step_edit].rest == false ) {
sendPreviewNote(_step_edit);
}
}
// next step edit
if ( pressed(NEXT_STEP_BUTTON_PIN) ) {
if ( _step_edit < _step_length-1 ) {
// add a lock here for octave and note to not mess with edit mode when moving steps around
lockPotsState(true);
++_step_edit;
}
if ( _playing == false && _sequencer[_step_edit].rest == false ) {
sendPreviewNote(_step_edit);
}
}
// step rest
if ( pressed(REST_BUTTON_PIN) ) {
_sequencer[_step_edit].rest = !_sequencer[_step_edit].rest;
if ( _playing == false && _sequencer[_step_edit].rest == false ) {
sendPreviewNote(_step_edit);
}
}
// step glide
if ( pressed(GLIDE_BUTTON_PIN) ) {
_sequencer[_step_edit].glide = !_sequencer[_step_edit].glide;
}
// step accent
if ( pressed(ACCENT_BUTTON_PIN) ) {
_sequencer[_step_edit].accent = !_sequencer[_step_edit].accent;
if ( _playing == false && _sequencer[_step_edit].rest == false ) {
sendPreviewNote(_step_edit);
}
}
}
void processLeds()
{
// Editing First Step?
if ( _step_edit == 0 ) {
digitalWrite(PREVIOUS_STEP_LED_PIN , HIGH);
} else {
digitalWrite(PREVIOUS_STEP_LED_PIN , LOW);
}
// Editing Last Step?
if ( _step_edit == _step_length-1 ) {
digitalWrite(NEXT_STEP_LED_PIN , HIGH);
} else {
digitalWrite(NEXT_STEP_LED_PIN , LOW);
}
// Rest
if ( _sequencer[_step_edit].rest == true ) {
digitalWrite(REST_LED_PIN , HIGH);
} else {
digitalWrite(REST_LED_PIN , LOW);
}
// Glide
if ( _sequencer[_step_edit].glide == true ) {
digitalWrite(GLIDE_LED_PIN , HIGH);
} else {
digitalWrite(GLIDE_LED_PIN , LOW);
}
// Accent
if ( _sequencer[_step_edit].accent == true ) {
digitalWrite(ACCENT_LED_PIN , HIGH);
} else {
digitalWrite(ACCENT_LED_PIN , LOW);
}
// shut down play led if we are stoped
if ( _playing == false ) {
digitalWrite(PLAY_STOP_LED_PIN , LOW);
}
}
// User interaction goes here
void loop()
{
processButtons();
processLeds();
processPots();
processInterface();
}

@ -0,0 +1,276 @@
#define SEQUENCER_MIN_BPM 50
#define SEQUENCER_MAX_BPM 177
// Ui config
#define LOCK_POT_SENSTIVITY 3
// hardware setup to fit different kinda of setups and arduino models
#define OCTAVE_POT_PIN A3
#define NOTE_POT_PIN A2
#define STEP_LENGTH_POT_PIN A1
#define TEMPO_POT_PIN A0
#define PREVIOUS_STEP_BUTTON_PIN 2
#define NEXT_STEP_BUTTON_PIN 3
#define REST_BUTTON_PIN 4
#define GLIDE_BUTTON_PIN 5
#define ACCENT_BUTTON_PIN 6
#define PLAY_STOP_BUTTON_PIN 7
#define PREVIOUS_STEP_LED_PIN 8
#define NEXT_STEP_LED_PIN 9
#define REST_LED_PIN 10
#define GLIDE_LED_PIN 11
#define ACCENT_LED_PIN 12
#define PLAY_STOP_LED_PIN 13
// User Interface data
uint16_t _step_edit = 0;
uint8_t _last_octave = 3;
uint8_t _last_note = 0;
uint8_t _bpm_blink_timer = 1;
void configureInterface()
{
// Buttons config
// use internal pullup for buttons
pinMode(PREVIOUS_STEP_BUTTON_PIN, INPUT_PULLUP);
pinMode(NEXT_STEP_BUTTON_PIN, INPUT_PULLUP);
pinMode(REST_BUTTON_PIN, INPUT_PULLUP);
pinMode(GLIDE_BUTTON_PIN, INPUT_PULLUP);
pinMode(ACCENT_BUTTON_PIN, INPUT_PULLUP);
pinMode(PLAY_STOP_BUTTON_PIN, INPUT_PULLUP);
// Leds config
pinMode(PREVIOUS_STEP_LED_PIN, OUTPUT);
pinMode(NEXT_STEP_LED_PIN, OUTPUT);
pinMode(REST_LED_PIN, OUTPUT);
pinMode(GLIDE_LED_PIN, OUTPUT);
pinMode(ACCENT_LED_PIN, OUTPUT);
pinMode(PLAY_STOP_LED_PIN, OUTPUT);
digitalWrite(PREVIOUS_STEP_LED_PIN, LOW);
digitalWrite(NEXT_STEP_LED_PIN, LOW);
digitalWrite(REST_LED_PIN, LOW);
digitalWrite(GLIDE_LED_PIN, LOW);
digitalWrite(ACCENT_LED_PIN, LOW);
digitalWrite(PLAY_STOP_LED_PIN, LOW);
// getting first value state
pressed(PREVIOUS_STEP_BUTTON_PIN);
pressed(NEXT_STEP_BUTTON_PIN);
pressed(REST_BUTTON_PIN);
pressed(GLIDE_BUTTON_PIN);
pressed(ACCENT_BUTTON_PIN);
pressed(PLAY_STOP_BUTTON_PIN);
// getting first values
getPotChanges(OCTAVE_POT_PIN, 0, 10);
getPotChanges(NOTE_POT_PIN, 0, 11);
getPotChanges(STEP_LENGTH_POT_PIN, 1, STEP_MAX_SIZE);
getPotChanges(TEMPO_POT_PIN, SEQUENCER_MIN_BPM, SEQUENCER_MAX_BPM);
lockPotsState(true);
//acidRandomize();
}
void processInterface()
{
processButtons();
processLeds();
processPots();
}
void tempoInterface(uint32_t * tick)
{
// BPM led indicator
if ( !(*tick % (96)) || (*tick == 0) ) { // first compass step will flash longer
_bpm_blink_timer = 8;
digitalWrite(PLAY_STOP_LED_PIN , HIGH);
} else if ( !(*tick % (24)) ) { // each quarter led on
digitalWrite(PLAY_STOP_LED_PIN , HIGH);
} else if ( !(*tick % _bpm_blink_timer) ) { // get led off
digitalWrite(PLAY_STOP_LED_PIN , LOW);
_bpm_blink_timer = 1;
}
}
void sendPreviewNote(uint16_t step)
{
unsigned long milliTime, preMilliTime;
sendMidiMessage(NOTE_ON, _sequencer[step].note, _sequencer[step].accent ? ACCENT_VELOCITY : NOTE_VELOCITY);
// avoid delay() call because of uClock timmer1 usage
//delay(200);
preMilliTime = millis();
while ( true ) {
milliTime = millis();
if (abs(milliTime - preMilliTime) >= 200) {
break;
}
}
sendMidiMessage(NOTE_OFF, _sequencer[step].note, 0);
}
void processPots()
{
static int8_t octave, note, step_note;
static int16_t tempo, step_length;
octave = getPotChanges(OCTAVE_POT_PIN, 0, 10);
if ( octave != -1 ) {
_last_octave = octave;
}
note = getPotChanges(NOTE_POT_PIN, 0, 11);
if ( note != -1 ) {
_last_note = note;
}
// changes on octave or note pot?
if ( octave != -1 || note != -1 ) {
ATOMIC(_sequencer[_step_edit].note = (_last_octave * 8) + _last_note);
if ( _playing == false && _sequencer[_step_edit].rest == false ) {
sendPreviewNote(_step_edit);
}
}
step_length = getPotChanges(STEP_LENGTH_POT_PIN, 1, STEP_MAX_SIZE);
if ( step_length != -1 ) {
ATOMIC(_step_length = step_length);
if ( _step_edit >= _step_length ) {
_step_edit = _step_length-1;
}
}
tempo = getPotChanges(TEMPO_POT_PIN, SEQUENCER_MIN_BPM, SEQUENCER_MAX_BPM);
if ( tempo != -1 ) {
//uClock.setTempo(tempo);
}
}
void processButtons()
{
// play/stop
if ( pressed(PLAY_STOP_BUTTON_PIN) ) {
if ( _playing == false ) {
// Starts the clock, tick-tac-tick-tac...
uClock.start();
} else {
// stop the clock
uClock.stop();
}
}
// ramdom test
//if ( pressed(PREVIOUS_STEP_BUTTON_PIN) && pressed(NEXT_STEP_BUTTON_PIN) ) {
//acidRandomize();
//return;
//}
// previous step edit
if ( pressed(PREVIOUS_STEP_BUTTON_PIN) ) {
if ( _step_edit != 0 ) {
// add a lock here for octave and note to not mess with edit mode when moving steps around
lockPotsState(true);
--_step_edit;
} else { // TODO: just for tests.. take this guy off here and put it on second page
acidRandomize();
}
if ( _playing == false && _sequencer[_step_edit].rest == false ) {
sendPreviewNote(_step_edit);
}
}
// next step edit
if ( pressed(NEXT_STEP_BUTTON_PIN) ) {
if ( _step_edit < _step_length-1 ) {
// add a lock here for octave and note to not mess with edit mode when moving steps around
lockPotsState(true);
++_step_edit;
}
if ( _playing == false && _sequencer[_step_edit].rest == false ) {
sendPreviewNote(_step_edit);
}
}
// step rest
if ( pressed(REST_BUTTON_PIN) ) {
ATOMIC(_sequencer[_step_edit].rest = !_sequencer[_step_edit].rest);
if ( _playing == false && _sequencer[_step_edit].rest == false ) {
sendPreviewNote(_step_edit);
}
}
// step glide
if ( pressed(GLIDE_BUTTON_PIN) ) {
ATOMIC(_sequencer[_step_edit].glide = !_sequencer[_step_edit].glide);
}
// step accent
if ( pressed(ACCENT_BUTTON_PIN) ) {
ATOMIC(_sequencer[_step_edit].accent = !_sequencer[_step_edit].accent);
if ( _playing == false && _sequencer[_step_edit].rest == false ) {
sendPreviewNote(_step_edit);
}
}
}
void processLeds()
{
// Editing First Step?
if ( _step_edit == 0 ) {
digitalWrite(PREVIOUS_STEP_LED_PIN , HIGH);
} else {
digitalWrite(PREVIOUS_STEP_LED_PIN , LOW);
}
// Editing Last Step?
if ( _step_edit == _step_length-1 ) {
digitalWrite(NEXT_STEP_LED_PIN , HIGH);
} else {
digitalWrite(NEXT_STEP_LED_PIN , LOW);
}
// Rest
if ( _sequencer[_step_edit].rest == true ) {
digitalWrite(REST_LED_PIN , HIGH);
} else {
digitalWrite(REST_LED_PIN , LOW);
}
// Glide
if ( _sequencer[_step_edit].glide == true ) {
digitalWrite(GLIDE_LED_PIN , HIGH);
} else {
digitalWrite(GLIDE_LED_PIN , LOW);
}
// Accent
if ( _sequencer[_step_edit].accent == true ) {
digitalWrite(ACCENT_LED_PIN , HIGH);
} else {
digitalWrite(ACCENT_LED_PIN , LOW);
}
// shut down play led if we are stoped
if ( _playing == false ) {
digitalWrite(PLAY_STOP_LED_PIN , LOW);
}
}
void acidRandomize()
{
// ramdom it all
for ( uint16_t i = 0; i < STEP_MAX_SIZE; i++ ) {
ATOMIC(_sequencer[i].note = random(36, 70)); // octave 2 to 4. octave 3 to 5 (40 - 83)
ATOMIC(_sequencer[i].accent = random(0, 2));
ATOMIC(_sequencer[i].glide = random(0, 2));
ATOMIC(_sequencer[i].rest = random(0, 1));
}
}

@ -0,0 +1,120 @@
#define POT_NUMBER 4
#define BUTTON_NUMBER 6
// pot data
typedef struct
{
uint8_t pin;
uint16_t state;
bool lock;
} POT_DATA;
// button data
typedef struct
{
uint8_t pin;
bool state;
} BUTTON_DATA;
POT_DATA _pot[POT_NUMBER];
BUTTON_DATA _button[BUTTON_NUMBER];
void lockPotsState(bool lock)
{
for ( uint8_t i = 0; i < POT_NUMBER; i++ ) {
_pot[i].lock = lock;
}
}
bool pressed(uint8_t button_pin)
{
bool value;
bool * last_value;
switch(button_pin) {
case PREVIOUS_STEP_BUTTON_PIN:
last_value = &_button[0].state;
break;
case NEXT_STEP_BUTTON_PIN:
last_value = &_button[1].state;
break;
case REST_BUTTON_PIN:
last_value = &_button[2].state;
break;
case GLIDE_BUTTON_PIN:
last_value = &_button[3].state;
break;
case ACCENT_BUTTON_PIN:
last_value = &_button[4].state;
break;
case PLAY_STOP_BUTTON_PIN:
last_value = &_button[5].state;
break;
default:
return false;
}
value = digitalRead(button_pin);
// check, using pullup pressed button goes LOW
if ( value != *last_value && value == LOW ) {
*last_value = value;
return true;
} else {
*last_value = value;
return false;
}
}
int16_t getPotChanges(uint8_t pot_pin, uint16_t min_value, uint16_t max_value)
{
uint16_t value, value_ranged, last_value_ranged;
uint16_t * last_value;
bool * lock_pot;
uint8_t pot_sensitivity = 1;
switch(pot_pin) {
case OCTAVE_POT_PIN:
last_value = &_pot[0].state;
lock_pot = &_pot[0].lock;
break;
case NOTE_POT_PIN:
last_value = &_pot[1].state;
lock_pot = &_pot[1].lock;
break;
case STEP_LENGTH_POT_PIN:
last_value = &_pot[2].state;
lock_pot = &_pot[2].lock;
break;
case TEMPO_POT_PIN:
last_value = &_pot[3].state;
lock_pot = &_pot[3].lock;
break;
default:
return -1;
}
// get absolute value
value = analogRead(pot_pin);
// range that value and our last_value
value_ranged = (value / (1024 / ((max_value - min_value) + 1))) + min_value;
last_value_ranged = (*last_value / (1024 / ((max_value - min_value) + 1))) + min_value;
// a lock system to not mess with some data(pots are terrible for some kinda of user interface data controls, but lets keep it low cost!)
if ( *lock_pot == true ) {
pot_sensitivity = LOCK_POT_SENSTIVITY;
}
if ( abs(value_ranged - last_value_ranged) >= pot_sensitivity ) {
*last_value = value;
if ( *lock_pot == true ) {
*lock_pot = false;
}
return value_ranged;
} else {
return -1;
}
}
Loading…
Cancel
Save