You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
hexefx_audiolib_F32/src/control_SGTL5000_F32.cpp

1020 lines
36 KiB

/* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "control_SGTL5000_F32.h"
#include "control_sgtl5000.h" // for biquad config
#include <AudioStream_F32.h>
#include <Wire.h>
#define SGTL5000_CHIP_ID 0x0000
// 15:8 PARTID 0xA0 - 8 bit identifier for SGTL5000
// 7:0 REVID 0x00 - revision number for SGTL5000.
#define SGTL5000_CHIP_DIG_POWER 0x0002
// 6 ADC_POWERUP 1=Enable, 0=disable the ADC block, both digital & analog,
// 5 DAC_POWERUP 1=Enable, 0=disable the DAC block, both analog and digital
// 4 DAP_POWERUP 1=Enable, 0=disable the DAP block
// 1 I2S_OUT_POWERUP 1=Enable, 0=disable the I2S data output
// 0 I2S_IN_POWERUP 1=Enable, 0=disable the I2S data input
#define SGTL5000_CHIP_CLK_CTRL 0x0004
// 5:4 RATE_MODE Sets the sample rate mode. MCLK_FREQ is still specified
// relative to the rate in SYS_FS
// 0x0 = SYS_FS specifies the rate
// 0x1 = Rate is 1/2 of the SYS_FS rate
// 0x2 = Rate is 1/4 of the SYS_FS rate
// 0x3 = Rate is 1/6 of the SYS_FS rate
// 3:2 SYS_FS Sets the internal system sample rate (default=2)
// 0x0 = 32 kHz
// 0x1 = 44.1 kHz
// 0x2 = 48 kHz
// 0x3 = 96 kHz
// 1:0 MCLK_FREQ Identifies incoming SYS_MCLK frequency and if the PLL should be used
// 0x0 = 256*Fs
// 0x1 = 384*Fs
// 0x2 = 512*Fs
// 0x3 = Use PLL
// The 0x3 (Use PLL) setting must be used if the SYS_MCLK is not
// a standard multiple of Fs (256, 384, or 512). This setting can
// also be used if SYS_MCLK is a standard multiple of Fs.
// Before this field is set to 0x3 (Use PLL), the PLL must be
// powered up by setting CHIP_ANA_POWER->PLL_POWERUP and
// CHIP_ANA_POWER->VCOAMP_POWERUP. Also, the PLL dividers must
// be calculated based on the external MCLK rate and
// CHIP_PLL_CTRL register must be set (see CHIP_PLL_CTRL register
// description details on how to calculate the divisors).
#define SGTL5000_CHIP_I2S_CTRL 0x0006
// 8 SCLKFREQ Sets frequency of I2S_SCLK when in master mode (MS=1). When in slave
// mode (MS=0), this field must be set appropriately to match SCLK input
// rate.
// 0x0 = 64Fs
// 0x1 = 32Fs - Not supported for RJ mode (I2S_MODE = 1)
// 7 MS Configures master or slave of I2S_LRCLK and I2S_SCLK.
// 0x0 = Slave: I2S_LRCLK an I2S_SCLK are inputs
// 0x1 = Master: I2S_LRCLK and I2S_SCLK are outputs
// NOTE: If the PLL is used (CHIP_CLK_CTRL->MCLK_FREQ==0x3),
// the SGTL5000 must be a master of the I2S port (MS==1)
// 6 SCLK_INV Sets the edge that data (input and output) is clocked in on for I2S_SCLK
// 0x0 = data is valid on rising edge of I2S_SCLK
// 0x1 = data is valid on falling edge of I2S_SCLK
// 5:4 DLEN I2S data length (default=1)
// 0x0 = 32 bits (only valid when SCLKFREQ=0),
// not valid for Right Justified Mode
// 0x1 = 24 bits (only valid when SCLKFREQ=0)
// 0x2 = 20 bits
// 0x3 = 16 bits
// 3:2 I2S_MODE Sets the mode for the I2S port
// 0x0 = I2S mode or Left Justified (Use LRALIGN to select)
// 0x1 = Right Justified Mode
// 0x2 = PCM Format A/B
// 0x3 = RESERVED
// 1 LRALIGN I2S_LRCLK Alignment to data word. Not used for Right Justified mode
// 0x0 = Data word starts 1 I2S_SCLK delay after I2S_LRCLK
// transition (I2S format, PCM format A)
// 0x1 = Data word starts after I2S_LRCLK transition (left
// justified format, PCM format B)
// 0 LRPOL I2S_LRCLK Polarity when data is presented.
// 0x0 = I2S_LRCLK = 0 - Left, 1 - Right
// 1x0 = I2S_LRCLK = 0 - Right, 1 - Left
// The left subframe should be presented first regardless of
// the setting of LRPOL.
#define SGTL5000_CHIP_SSS_CTRL 0x000A
// 14 DAP_MIX_LRSWAP DAP Mixer Input Swap
// 0x0 = Normal Operation
// 0x1 = Left and Right channels for the DAP MIXER Input are swapped.
// 13 DAP_LRSWAP DAP Mixer Input Swap
// 0x0 = Normal Operation
// 0x1 = Left and Right channels for the DAP Input are swapped
// 12 DAC_LRSWAP DAC Input Swap
// 0x0 = Normal Operation
// 0x1 = Left and Right channels for the DAC are swapped
// 10 I2S_LRSWAP I2S_DOUT Swap
// 0x0 = Normal Operation
// 0x1 = Left and Right channels for the I2S_DOUT are swapped
// 9:8 DAP_MIX_SELECT Select data source for DAP mixer
// 0x0 = ADC
// 0x1 = I2S_IN
// 0x2 = Reserved
// 0x3 = Reserved
// 7:6 DAP_SELECT Select data source for DAP
// 0x0 = ADC
// 0x1 = I2S_IN
// 0x2 = Reserved
// 0x3 = Reserved
// 5:4 DAC_SELECT Select data source for DAC (default=1)
// 0x0 = ADC
// 0x1 = I2S_IN
// 0x2 = Reserved
// 0x3 = DAP
// 1:0 I2S_SELECT Select data source for I2S_DOUT
// 0x0 = ADC
// 0x1 = I2S_IN
// 0x2 = Reserved
// 0x3 = DAP
#define SGTL5000_CHIP_ADCDAC_CTRL 0x000E
// 13 VOL_BUSY_DAC_RIGHT Volume Busy DAC Right
// 0x0 = Ready
// 0x1 = Busy - This indicates the channel has not reached its
// programmed volume/mute level
// 12 VOL_BUSY_DAC_LEFT Volume Busy DAC Left
// 0x0 = Ready
// 0x1 = Busy - This indicates the channel has not reached its
// programmed volume/mute level
// 9 VOL_RAMP_EN Volume Ramp Enable (default=1)
// 0x0 = Disables volume ramp. New volume settings take immediate
// effect without a ramp
// 0x1 = Enables volume ramp
// This field affects DAC_VOL. The volume ramp effects both
// volume settings and mute When set to 1 a soft mute is enabled.
// 8 VOL_EXPO_RAMP Exponential Volume Ramp Enable
// 0x0 = Linear ramp over top 4 volume octaves
// 0x1 = Exponential ramp over full volume range
// This bit only takes effect if VOL_RAMP_EN is 1.
// 3 DAC_MUTE_RIGHT DAC Right Mute (default=1)
// 0x0 = Unmute
// 0x1 = Muted
// If VOL_RAMP_EN = 1, this is a soft mute.
// 2 DAC_MUTE_LEFT DAC Left Mute (default=1)
// 0x0 = Unmute
// 0x1 = Muted
// If VOL_RAMP_EN = 1, this is a soft mute.
// 1 ADC_HPF_FREEZE ADC High Pass Filter Freeze
// 0x0 = Normal operation
// 0x1 = Freeze the ADC high-pass filter offset register. The
// offset continues to be subtracted from the ADC data stream.
// 0 ADC_HPF_BYPASS ADC High Pass Filter Bypass
// 0x0 = Normal operation
// 0x1 = Bypassed and offset not updated
#define SGTL5000_CHIP_DAC_VOL 0x0010
// 15:8 DAC_VOL_RIGHT DAC Right Channel Volume. Set the Right channel DAC volume
// with 0.5017 dB steps from 0 to -90 dB
// 0x3B and less = Reserved
// 0x3C = 0 dB
// 0x3D = -0.5 dB
// 0xF0 = -90 dB
// 0xFC and greater = Muted
// If VOL_RAMP_EN = 1, there is an automatic ramp to the
// new volume setting.
// 7:0 DAC_VOL_LEFT DAC Left Channel Volume. Set the Left channel DAC volume
// with 0.5017 dB steps from 0 to -90 dB
// 0x3B and less = Reserved
// 0x3C = 0 dB
// 0x3D = -0.5 dB
// 0xF0 = -90 dB
// 0xFC and greater = Muted
// If VOL_RAMP_EN = 1, there is an automatic ramp to the
// new volume setting.
#define SGTL5000_CHIP_PAD_STRENGTH 0x0014
// 9:8 I2S_LRCLK I2S LRCLK Pad Drive Strength (default=1)
// Sets drive strength for output pads per the table below.
// VDDIO 1.8 V 2.5 V 3.3 V
// 0x0 = Disable
// 0x1 = 1.66 mA 2.87 mA 4.02 mA
// 0x2 = 3.33 mA 5.74 mA 8.03 mA
// 0x3 = 4.99 mA 8.61 mA 12.05 mA
// 7:6 I2S_SCLK I2S SCLK Pad Drive Strength (default=1)
// 5:4 I2S_DOUT I2S DOUT Pad Drive Strength (default=1)
// 3:2 CTRL_DATA I2C DATA Pad Drive Strength (default=3)
// 1:0 CTRL_CLK I2C CLK Pad Drive Strength (default=3)
// (all use same table as I2S_LRCLK)
#define SGTL5000_CHIP_ANA_ADC_CTRL 0x0020
// 8 ADC_VOL_M6DB ADC Volume Range Reduction
// This bit shifts both right and left analog ADC volume
// range down by 6.0 dB.
// 0x0 = No change in ADC range
// 0x1 = ADC range reduced by 6.0 dB
// 7:4 ADC_VOL_RIGHT ADC Right Channel Volume
// Right channel analog ADC volume control in 1.5 dB steps.
// 0x0 = 0 dB
// 0x1 = +1.5 dB
// ...
// 0xF = +22.5 dB
// This range is -6.0 dB to +16.5 dB if ADC_VOL_M6DB is set to 1.
// 3:0 ADC_VOL_LEFT ADC Left Channel Volume
// (same scale as ADC_VOL_RIGHT)
#define SGTL5000_CHIP_ANA_HP_CTRL 0x0022
// 14:8 HP_VOL_RIGHT Headphone Right Channel Volume (default 0x18)
// Right channel headphone volume control with 0.5 dB steps.
// 0x00 = +12 dB
// 0x01 = +11.5 dB
// 0x18 = 0 dB
// ...
// 0x7F = -51.5 dB
// 6:0 HP_VOL_LEFT Headphone Left Channel Volume (default 0x18)
// (same scale as HP_VOL_RIGHT)
#define SGTL5000_CHIP_ANA_CTRL 0x0024
// 8 MUTE_LO LINEOUT Mute, 0 = Unmute, 1 = Mute (default 1)
// 6 SELECT_HP Select the headphone input, 0 = DAC, 1 = LINEIN
// 5 EN_ZCD_HP Enable the headphone zero cross detector (ZCD)
// 0x0 = HP ZCD disabled
// 0x1 = HP ZCD enabled
// 4 MUTE_HP Mute the headphone outputs, 0 = Unmute, 1 = Mute (default)
// 2 SELECT_ADC Select the ADC input, 0 = Microphone, 1 = LINEIN
// 1 EN_ZCD_ADC Enable the ADC analog zero cross detector (ZCD)
// 0x0 = ADC ZCD disabled
// 0x1 = ADC ZCD enabled
// 0 MUTE_ADC Mute the ADC analog volume, 0 = Unmute, 1 = Mute (default)
#define SGTL5000_CHIP_LINREG_CTRL 0x0026
// 6 VDDC_MAN_ASSN Determines chargepump source when VDDC_ASSN_OVRD is set.
// 0x0 = VDDA
// 0x1 = VDDIO
// 5 VDDC_ASSN_OVRD Charge pump Source Assignment Override
// 0x0 = Charge pump source is automatically assigned based
// on higher of VDDA and VDDIO
// 0x1 = the source of charge pump is manually assigned by
// VDDC_MAN_ASSN If VDDIO and VDDA are both the same
// and greater than 3.1 V, VDDC_ASSN_OVRD and
// VDDC_MAN_ASSN should be used to manually assign
// VDDIO as the source for charge pump.
// 3:0 D_PROGRAMMING Sets the VDDD linear regulator output voltage in 50 mV steps.
// Must clear the LINREG_SIMPLE_POWERUP and STARTUP_POWERUP bits
// in the 0x0030 (CHIP_ANA_POWER) register after power-up, for
// this setting to produce the proper VDDD voltage.
// 0x0 = 1.60
// 0xF = 0.85
#define SGTL5000_CHIP_REF_CTRL 0x0028 // bandgap reference bias voltage and currents
// 8:4 VAG_VAL Analog Ground Voltage Control
// These bits control the analog ground voltage in 25 mV steps.
// This should usually be set to VDDA/2 or lower for best
// performance (maximum output swing at minimum THD). This VAG
// reference is also used for the DAC and ADC voltage reference.
// So changing this voltage scales the output swing of the DAC
// and the output signal of the ADC.
// 0x00 = 0.800 V
// 0x1F = 1.575 V
// 3:1 BIAS_CTRL Bias control
// These bits adjust the bias currents for all of the analog
// blocks. By lowering the bias current a lower quiescent power
// is achieved. It should be noted that this mode can affect
// performance by 3-4 dB.
// 0x0 = Nominal
// 0x1-0x3=+12.5%
// 0x4=-12.5%
// 0x5=-25%
// 0x6=-37.5%
// 0x7=-50%
// 0 SMALL_POP VAG Ramp Control
// Setting this bit slows down the VAG ramp from ~200 to ~400 ms
// to reduce the startup pop, but increases the turn on/off time.
// 0x0 = Normal VAG ramp
// 0x1 = Slow down VAG ramp
#define SGTL5000_CHIP_MIC_CTRL 0x002A // microphone gain & internal microphone bias
// 9:8 BIAS_RESISTOR MIC Bias Output Impedance Adjustment
// Controls an adjustable output impedance for the microphone bias.
// If this is set to zero the micbias block is powered off and
// the output is highZ.
// 0x0 = Powered off
// 0x1 = 2.0 kohm
// 0x2 = 4.0 kohm
// 0x3 = 8.0 kohm
// 6:4 BIAS_VOLT MIC Bias Voltage Adjustment
// Controls an adjustable bias voltage for the microphone bias
// amp in 250 mV steps. This bias voltage setting should be no
// more than VDDA-200 mV for adequate power supply rejection.
// 0x0 = 1.25 V
// ...
// 0x7 = 3.00 V
// 1:0 GAIN MIC Amplifier Gain
// Sets the microphone amplifier gain. At 0 dB setting the THD
// can be slightly higher than other paths- typically around
// ~65 dB. At other gain settings the THD are better.
// 0x0 = 0 dB
// 0x1 = +20 dB
// 0x2 = +30 dB
// 0x3 = +40 dB
#define SGTL5000_CHIP_LINE_OUT_CTRL 0x002C
// 11:8 OUT_CURRENT Controls the output bias current for the LINEOUT amplifiers. The
// nominal recommended setting for a 10 kohm load with 1.0 nF load cap
// is 0x3. There are only 5 valid settings.
// 0x0=0.18 mA
// 0x1=0.27 mA
// 0x3=0.36 mA
// 0x7=0.45 mA
// 0xF=0.54 mA
// 5:0 LO_VAGCNTRL LINEOUT Amplifier Analog Ground Voltage
// Controls the analog ground voltage for the LINEOUT amplifiers
// in 25 mV steps. This should usually be set to VDDIO/2.
// 0x00 = 0.800 V
// ...
// 0x1F = 1.575 V
// ...
// 0x23 = 1.675 V
// 0x24-0x3F are invalid
#define SGTL5000_CHIP_LINE_OUT_VOL 0x002E
// 12:8 LO_VOL_RIGHT LINEOUT Right Channel Volume (default=4)
// Controls the right channel LINEOUT volume in 0.5 dB steps.
// Higher codes have more attenuation.
// 4:0 LO_VOL_LEFT LINEOUT Left Channel Output Level (default=4)
// Used to normalize the output level of the left line output
// to full scale based on the values used to set
// LINE_OUT_CTRL->LO_VAGCNTRL and CHIP_REF_CTRL->VAG_VAL.
// In general this field should be set to:
// 40*log((VAG_VAL)/(LO_VAGCNTRL)) + 15
// Suggested values based on typical VDDIO and VDDA voltages.
// VDDA VAG_VAL VDDIO LO_VAGCNTRL LO_VOL_*
// 1.8 V 0.9 3.3 V 1.55 0x06
// 1.8 V 0.9 1.8 V 0.9 0x0F
// 3.3 V 1.55 1.8 V 0.9 0x19
// 3.3 V 1.55 3.3 V 1.55 0x0F
// After setting to the nominal voltage, this field can be used
// to adjust the output level in +/-0.5 dB increments by using
// values higher or lower than the nominal setting.
#define SGTL5000_CHIP_ANA_POWER 0x0030 // power down controls for the analog blocks.
// The only other power-down controls are BIAS_RESISTOR in the MIC_CTRL register
// and the EN_ZCD control bits in ANA_CTRL.
// 14 DAC_MONO While DAC_POWERUP is set, this allows the DAC to be put into left only
// mono operation for power savings. 0=mono, 1=stereo (default)
// 13 LINREG_SIMPLE_POWERUP Power up the simple (low power) digital supply regulator.
// After reset, this bit can be cleared IF VDDD is driven
// externally OR the primary digital linreg is enabled with
// LINREG_D_POWERUP
// 12 STARTUP_POWERUP Power up the circuitry needed during the power up ramp and reset.
// After reset this bit can be cleared if VDDD is coming from
// an external source.
// 11 VDDC_CHRGPMP_POWERUP Power up the VDDC charge pump block. If neither VDDA or VDDIO
// is 3.0 V or larger this bit should be cleared before analog
// blocks are powered up.
// 10 PLL_POWERUP PLL Power Up, 0 = Power down, 1 = Power up
// When cleared, the PLL is turned off. This must be set before
// CHIP_CLK_CTRL->MCLK_FREQ is programmed to 0x3. The
// CHIP_PLL_CTRL register must be configured correctly before
// setting this bit.
// 9 LINREG_D_POWERUP Power up the primary VDDD linear regulator, 0 = Power down, 1 = Power up
// 8 VCOAMP_POWERUP Power up the PLL VCO amplifier, 0 = Power down, 1 = Power up
// 7 VAG_POWERUP Power up the VAG reference buffer.
// Setting this bit starts the power up ramp for the headphone
// and LINEOUT. The headphone (and/or LINEOUT) powerup should
// be set BEFORE clearing this bit. When this bit is cleared
// the power-down ramp is started. The headphone (and/or LINEOUT)
// powerup should stay set until the VAG is fully ramped down
// (200 to 400 ms after clearing this bit).
// 0x0 = Power down, 0x1 = Power up
// 6 ADC_MONO While ADC_POWERUP is set, this allows the ADC to be put into left only
// mono operation for power savings. This mode is useful when
// only using the microphone input.
// 0x0 = Mono (left only), 0x1 = Stereo
// 5 REFTOP_POWERUP Power up the reference bias currents
// 0x0 = Power down, 0x1 = Power up
// This bit can be cleared when the part is a sleep state
// to minimize analog power.
// 4 HEADPHONE_POWERUP Power up the headphone amplifiers
// 0x0 = Power down, 0x1 = Power up
// 3 DAC_POWERUP Power up the DACs
// 0x0 = Power down, 0x1 = Power up
// 2 CAPLESS_HEADPHONE_POWERUP Power up the capless headphone mode
// 0x0 = Power down, 0x1 = Power up
// 1 ADC_POWERUP Power up the ADCs
// 0x0 = Power down, 0x1 = Power up
// 0 LINEOUT_POWERUP Power up the LINEOUT amplifiers
// 0x0 = Power down, 0x1 = Power up
#define SGTL5000_CHIP_PLL_CTRL 0x0032
// 15:11 INT_DIVISOR
// 10:0 FRAC_DIVISOR
#define SGTL5000_CHIP_CLK_TOP_CTRL 0x0034
// 11 ENABLE_INT_OSC Setting this bit enables an internal oscillator to be used for the
// zero cross detectors, the short detect recovery, and the
// charge pump. This allows the I2S clock to be shut off while
// still operating an analog signal path. This bit can be kept
// on when the I2S clock is enabled, but the I2S clock is more
// accurate so it is preferred to clear this bit when I2S is present.
// 3 INPUT_FREQ_DIV2 SYS_MCLK divider before PLL input
// 0x0 = pass through
// 0x1 = SYS_MCLK is divided by 2 before entering PLL
// This must be set when the input clock is above 17 Mhz. This
// has no effect when the PLL is powered down.
#define SGTL5000_CHIP_ANA_STATUS 0x0036
// 9 LRSHORT_STS This bit is high whenever a short is detected on the left or right
// channel headphone drivers.
// 8 CSHORT_STS This bit is high whenever a short is detected on the capless headphone
// common/center channel driver.
// 4 PLL_IS_LOCKED This bit goes high after the PLL is locked.
#define SGTL5000_CHIP_ANA_TEST1 0x0038 // intended only for debug.
#define SGTL5000_CHIP_ANA_TEST2 0x003A // intended only for debug.
#define SGTL5000_CHIP_SHORT_CTRL 0x003C
// 14:12 LVLADJR Right channel headphone short detector in 25 mA steps.
// 0x3=25 mA
// 0x2=50 mA
// 0x1=75 mA
// 0x0=100 mA
// 0x4=125 mA
// 0x5=150 mA
// 0x6=175 mA
// 0x7=200 mA
// This trip point can vary by ~30% over process so leave plenty
// of guard band to avoid false trips. This short detect trip
// point is also effected by the bias current adjustments made
// by CHIP_REF_CTRL->BIAS_CTRL and by CHIP_ANA_TEST1->HP_IALL_ADJ.
// 10:8 LVLADJL Left channel headphone short detector in 25 mA steps.
// (same scale as LVLADJR)
// 6:4 LVLADJC Capless headphone center channel short detector in 50 mA steps.
// 0x3=50 mA
// 0x2=100 mA
// 0x1=150 mA
// 0x0=200 mA
// 0x4=250 mA
// 0x5=300 mA
// 0x6=350 mA
// 0x7=400 mA
// 3:2 MODE_LR Behavior of left/right short detection
// 0x0 = Disable short detector, reset short detect latch,
// software view non-latched short signal
// 0x1 = Enable short detector and reset the latch at timeout
// (every ~50 ms)
// 0x2 = This mode is not used/invalid
// 0x3 = Enable short detector with only manual reset (have
// to return to 0x0 to reset the latch)
// 1:0 MODE_CM Behavior of capless headphone central short detection
// (same settings as MODE_LR)
#define SGTL5000_DAP_CONTROL 0x0100
#define SGTL5000_DAP_PEQ 0x0102
#define SGTL5000_DAP_BASS_ENHANCE 0x0104
#define SGTL5000_DAP_BASS_ENHANCE_CTRL 0x0106
#define SGTL5000_DAP_AUDIO_EQ 0x0108
#define SGTL5000_DAP_SGTL_SURROUND 0x010A
#define SGTL5000_DAP_FILTER_COEF_ACCESS 0x010C
#define SGTL5000_DAP_COEF_WR_B0_MSB 0x010E
#define SGTL5000_DAP_COEF_WR_B0_LSB 0x0110
#define SGTL5000_DAP_AUDIO_EQ_BASS_BAND0 0x0116 // 115 Hz
#define SGTL5000_DAP_AUDIO_EQ_BAND1 0x0118 // 330 Hz
#define SGTL5000_DAP_AUDIO_EQ_BAND2 0x011A // 990 Hz
#define SGTL5000_DAP_AUDIO_EQ_BAND3 0x011C // 3000 Hz
#define SGTL5000_DAP_AUDIO_EQ_TREBLE_BAND4 0x011E // 9900 Hz
#define SGTL5000_DAP_MAIN_CHAN 0x0120
#define SGTL5000_DAP_MIX_CHAN 0x0122
#define SGTL5000_DAP_AVC_CTRL 0x0124
#define SGTL5000_DAP_AVC_THRESHOLD 0x0126
#define SGTL5000_DAP_AVC_ATTACK 0x0128
#define SGTL5000_DAP_AVC_DECAY 0x012A
#define SGTL5000_DAP_COEF_WR_B1_MSB 0x012C
#define SGTL5000_DAP_COEF_WR_B1_LSB 0x012E
#define SGTL5000_DAP_COEF_WR_B2_MSB 0x0130
#define SGTL5000_DAP_COEF_WR_B2_LSB 0x0132
#define SGTL5000_DAP_COEF_WR_A1_MSB 0x0134
#define SGTL5000_DAP_COEF_WR_A1_LSB 0x0136
#define SGTL5000_DAP_COEF_WR_A2_MSB 0x0138
#define SGTL5000_DAP_COEF_WR_A2_LSB 0x013A
#define SGTL5000_I2C_ADDR_CS_LOW 0x0A // CTRL_ADR0_CS pin low (normal configuration)
#define SGTL5000_I2C_ADDR_CS_HIGH 0x2A // CTRL_ADR0_CS pin high
void AudioControlSGTL5000_F32::setAddress(uint8_t level)
{
if (level == LOW) i2c_addr = SGTL5000_I2C_ADDR_CS_LOW;
else i2c_addr = SGTL5000_I2C_ADDR_CS_HIGH;
}
bool AudioControlSGTL5000_F32::enable()
{
return enable(&Wire);
}
bool FLASHMEM AudioControlSGTL5000_F32::enable(TwoWire *i2cBus, uint8_t addr, const uint32_t extMCLK, const uint32_t pllFreq)
{
_wire = i2cBus;
i2c_addr = addr;
_wire->begin();
delay(5);
// Check if we are in Master Mode and if the Teensy had a reset:
uint16_t n = read(SGTL5000_CHIP_I2S_CTRL);
if ((extMCLK > 0) && (n == (0x0030 | (1 << 7))))
{
// Yes. Do not initialize.
muted = false;
semi_automated = true;
return true;
}
muted = true;
int r = write(SGTL5000_CHIP_ANA_POWER, 0x4060); // VDDD is externally driven with 1.8V
if (!r) return false;
write(SGTL5000_CHIP_LINREG_CTRL, 0x006C); // VDDA & VDDIO both over 3.1V
write(SGTL5000_CHIP_REF_CTRL, 0x01F2); // VAG=1.575, normal ramp, +12.5% bias current
write(SGTL5000_CHIP_LINE_OUT_CTRL, 0x0F22); // LO_VAGCNTRL=1.65V, OUT_CURRENT=0.54mA
write(SGTL5000_CHIP_SHORT_CTRL, 0x4446); // allow up to 125mA
write(SGTL5000_CHIP_ANA_CTRL, 0x0137); // enable zero cross detectors
if (extMCLK > 0)
{
// SGTL is I2S Master
// Datasheet Pg. 14: Using the PLL - Asynchronous SYS_MCLK input
if (extMCLK > 17000000)
{
write(SGTL5000_CHIP_CLK_TOP_CTRL, 1);
}
else
{
write(SGTL5000_CHIP_CLK_TOP_CTRL, 0);
}
uint32_t int_divisor = (pllFreq / extMCLK) & 0x1f;
uint32_t frac_divisor = (uint32_t)((((float)pllFreq / extMCLK) - int_divisor) * 2048.0f) & 0x7ff;
write(SGTL5000_CHIP_PLL_CTRL, (int_divisor << 11) | frac_divisor);
write(SGTL5000_CHIP_ANA_POWER, 0x40FF | (1 << 10) | (1 << 8)); // power up: lineout, hp, adc, dac, PLL_POWERUP, VCOAMP_POWERUP
}
else
{
// SGTL is I2S Slave
write(SGTL5000_CHIP_ANA_POWER, 0x40FF); // power up: lineout, hp, adc, dac
}
write(SGTL5000_CHIP_DIG_POWER, 0x0073); // power up all digital stuff
delay(400);
write(SGTL5000_CHIP_LINE_OUT_VOL, 0x1D1D); // default approx 1.3 volts peak-to-peak
if (extMCLK > 0)
{
// SGTL is I2S Master
write(SGTL5000_CHIP_CLK_CTRL, 0x0004 | 0x03); // 44.1 kHz, 256*Fs, use PLL
write(SGTL5000_CHIP_I2S_CTRL, 0x0000 | (1 << 7)); // SCLK=64*Fs, 32bit, I2S format
}
else
{
// SGTL is I2S Slave
write(SGTL5000_CHIP_CLK_CTRL, 0x0004); // 44.1 kHz, 256*Fs
write(SGTL5000_CHIP_I2S_CTRL, 0x0000); // SCLK=64*Fs, 32bit, I2S format
}
// default signal routing is ok?
write(SGTL5000_CHIP_SSS_CTRL, 0x0010); // ADC->I2S, I2S->DAC
write(SGTL5000_CHIP_ADCDAC_CTRL, 0x0000); // disable dac mute
write(SGTL5000_CHIP_DAC_VOL, 0x3C3C); // digital gain, 0dB
write(SGTL5000_CHIP_ANA_HP_CTRL, 0x7F7F); // set volume (lowest level)
write(SGTL5000_CHIP_ANA_CTRL, 0x0036); // enable zero cross detectors
semi_automated = true;
return true;
}
uint16_t AudioControlSGTL5000_F32::read(uint16_t reg)
{
uint16_t val;
_wire->beginTransmission(i2c_addr);
_wire->write(reg >> 8);
_wire->write(reg);
if (_wire->endTransmission(false) != 0)
return 0;
if (_wire->requestFrom((int)i2c_addr, 2) < 2)
return 0;
val = _wire->read() << 8;
val |= _wire->read();
return val;
}
bool AudioControlSGTL5000_F32::write(uint16_t reg, uint16_t val)
{
if (reg == SGTL5000_CHIP_ANA_CTRL)
ana_ctrl = val;
_wire->beginTransmission(i2c_addr);
_wire->write(reg >> 8);
_wire->write(reg);
_wire->write(val >> 8);
_wire->write(val);
if (_wire->endTransmission() == 0)
return true;
return false;
}
uint16_t AudioControlSGTL5000_F32::modify(uint16_t reg, uint16_t val, uint16_t iMask)
{
uint16_t val1 = (read(reg) & (~iMask)) | val;
if (!write(reg, val1))
return 0;
return val1;
}
bool AudioControlSGTL5000_F32::volumeInteger(uint16_t n)
{
if (n == 0)
{
muted = true;
write(SGTL5000_CHIP_ANA_HP_CTRL, 0x7F7F);
return muteHeadphone();
}
else if (n > 0x80) n = 0;
else n = 0x80 - n;
if (muted)
{
muted = false;
unmuteHeadphone();
}
n = n | (n << 8);
return write(SGTL5000_CHIP_ANA_HP_CTRL, n); // set volume
}
bool AudioControlSGTL5000_F32::volume(float left, float right)
{
uint16_t m = ((0x7F - calcVol(right, 0x7F)) << 8) | (0x7F - calcVol(left, 0x7F));
return write(SGTL5000_CHIP_ANA_HP_CTRL, m);
}
bool AudioControlSGTL5000_F32::micGain(uint16_t dB)
{
uint16_t preamp_gain, input_gain;
if (dB >= 40) { preamp_gain = 3; dB -= 40;}
else if (dB >= 30) { preamp_gain = 2; dB -= 30;}
else if (dB >= 20) { preamp_gain = 1; dB -= 20;}
else { preamp_gain = 0;}
input_gain = (dB * 2) / 3;
if (input_gain > 15) input_gain = 15;
return write(SGTL5000_CHIP_MIC_CTRL, 0x0170 | preamp_gain) && write(SGTL5000_CHIP_ANA_ADC_CTRL, (input_gain << 4) | input_gain);
}
bool AudioControlSGTL5000_F32::inputSelect(int n)
{
if (n == AUDIO_INPUT_LINEIN)
{
return write(0x0020, 0x055) // +7.5dB gain (1.3Vp-p full scale)
&& write(0x0024, ana_ctrl | (1 << 2)); // enable linein
}
else if (n == AUDIO_INPUT_MIC)
{
return write(0x002A, 0x0173) // mic preamp gain = +40dB
&& write(0x0020, 0x088) // input gain +12dB (is this enough?)
&& write(0x0024, ana_ctrl & ~(1 << 2)); // enable mic
}
else
{
return false;
}
}
bool AudioControlSGTL5000_F32::headphoneSelect(int n)
{
if (n == AUDIO_HEADPHONE_DAC)
{
return write(0x0024, ana_ctrl | (1 << 6)); // route DAC to headphones out
}
else if (n == AUDIO_HEADPHONE_LINEIN)
{
return write(0x0024, ana_ctrl & ~(1 << 6)); // route linein to headphones out
}
else
{
return false;
}
}
// CHIP_ANA_ADC_CTRL
// Actual measured full-scale peak-to-peak sine wave input for max signal
// 0: 3.12 Volts p-p
// 1: 2.63 Volts p-p
// 2: 2.22 Volts p-p
// 3: 1.87 Volts p-p
// 4: 1.58 Volts p-p
// 5: 1.33 Volts p-p
// 6: 1.11 Volts p-p
// 7: 0.94 Volts p-p
// 8: 0.79 Volts p-p
// 9: 0.67 Volts p-p
// 10: 0.56 Volts p-p
// 11: 0.48 Volts p-p
// 12: 0.40 Volts p-p
// 13: 0.34 Volts p-p
// 14: 0.29 Volts p-p
// 15: 0.24 Volts p-p
bool AudioControlSGTL5000_F32::lineInLevel(uint8_t left, uint8_t right)
{
if (left > 15) left = 15;
if (right > 15) right = 15;
return write(SGTL5000_CHIP_ANA_ADC_CTRL, (left << 4) | right);
}
// CHIP_LINE_OUT_VOL
// Actual measured full-scale peak-to-peak sine wave output voltage:
// 0-12: output has clipping
// 13: 3.16 Volts p-p
// 14: 2.98 Volts p-p
// 15: 2.83 Volts p-p
// 16: 2.67 Volts p-p
// 17: 2.53 Volts p-p
// 18: 2.39 Volts p-p
// 19: 2.26 Volts p-p
// 20: 2.14 Volts p-p
// 21: 2.02 Volts p-p
// 22: 1.91 Volts p-p
// 23: 1.80 Volts p-p
// 24: 1.71 Volts p-p
// 25: 1.62 Volts p-p
// 26: 1.53 Volts p-p
// 27: 1.44 Volts p-p
// 28: 1.37 Volts p-p
// 29: 1.29 Volts p-p
// 30: 1.22 Volts p-p
// 31: 1.16 Volts p-p
uint16_t AudioControlSGTL5000_F32::lineOutLevel(uint8_t n)
{
if (n > 31) n = 31;
else if (n < 13) n = 13;
return modify(SGTL5000_CHIP_LINE_OUT_VOL, (n << 8) | n, (31 << 8) | 31);
}
uint16_t AudioControlSGTL5000_F32::lineOutLevel(uint8_t left, uint8_t right)
{
if (left > 31)
left = 31;
else if (left < 13)
left = 13;
if (right > 31)
right = 31;
else if (right < 13)
right = 13;
return modify(SGTL5000_CHIP_LINE_OUT_VOL, (right << 8) | left, (31 << 8) | 31);
}
uint16_t AudioControlSGTL5000_F32::dacVolume(float n) // set both directly
{
if ((read(SGTL5000_CHIP_ADCDAC_CTRL) & (3 << 2)) != ((n > 0 ? 0 : 3) << 2))
{
modify(SGTL5000_CHIP_ADCDAC_CTRL, (n > 0 ? 0 : 3) << 2, 3 << 2);
}
unsigned char m = calcVol(n, 0xC0);
return modify(SGTL5000_CHIP_DAC_VOL, ((0xFC - m) << 8) | (0xFC - m), 65535);
}
uint16_t AudioControlSGTL5000_F32::dacVolume(float left, float right)
{
uint16_t adcdac = ((right > 0 ? 0 : 2) | (left > 0 ? 0 : 1)) << 2;
if ((read(SGTL5000_CHIP_ADCDAC_CTRL) & (3 << 2)) != adcdac)
{
modify(SGTL5000_CHIP_ADCDAC_CTRL, adcdac, 1 << 2);
}
uint16_t m = (0xFC - calcVol(right, 0xC0)) << 8 | (0xFC - calcVol(left, 0xC0));
return modify(SGTL5000_CHIP_DAC_VOL, m, 65535);
}
bool AudioControlSGTL5000_F32::dacVolumeRamp()
{
return modify(SGTL5000_CHIP_ADCDAC_CTRL, 0x300, 0x300);
}
bool AudioControlSGTL5000_F32::dacVolumeRampLinear()
{
return modify(SGTL5000_CHIP_ADCDAC_CTRL, 0x200, 0x300);
}
bool AudioControlSGTL5000_F32::dacVolumeRampDisable()
{
return modify(SGTL5000_CHIP_ADCDAC_CTRL, 0, 0x300);
}
uint16_t AudioControlSGTL5000_F32::adcHighPassFilterEnable(void)
{
return modify(SGTL5000_CHIP_ADCDAC_CTRL, 0, 3);
}
uint16_t AudioControlSGTL5000_F32::adcHighPassFilterFreeze(void)
{
return modify(SGTL5000_CHIP_ADCDAC_CTRL, 2, 3);
}
uint16_t AudioControlSGTL5000_F32::adcHighPassFilterDisable(void)
{
return modify(SGTL5000_CHIP_ADCDAC_CTRL, 1, 3);
}
// DAP_CONTROL
uint16_t AudioControlSGTL5000_F32::audioPreProcessorEnable(void)
{
// audio processor used to pre-process analog input before Teensy
return write(SGTL5000_DAP_CONTROL, 1) && write(SGTL5000_CHIP_SSS_CTRL, 0x0013);
}
uint16_t AudioControlSGTL5000_F32::audioPostProcessorEnable(void)
{
// audio processor used to post-process Teensy output before headphones/lineout
return write(SGTL5000_DAP_CONTROL, 1) && write(SGTL5000_CHIP_SSS_CTRL, 0x0070);
}
uint16_t AudioControlSGTL5000_F32::audioProcessorDisable(void)
{
return write(SGTL5000_CHIP_SSS_CTRL, 0x0010) && write(SGTL5000_DAP_CONTROL, 0);
}
// DAP_PEQ
uint16_t AudioControlSGTL5000_F32::eqFilterCount(uint8_t n) // valid to n&7, 0 thru 7 filters enabled.
{
return modify(SGTL5000_DAP_PEQ, (n & 7), 7);
}
// DAP_AUDIO_EQ
uint16_t AudioControlSGTL5000_F32::eqSelect(uint8_t n) // 0=NONE, 1=PEQ (7 IIR Biquad filters), 2=TONE (tone), 3=GEQ (5 band EQ)
{
return modify(SGTL5000_DAP_AUDIO_EQ, n & 3, 3);
}
uint16_t AudioControlSGTL5000_F32::eqBand(uint8_t bandNum, float n)
{
if (semi_automated)
automate(1, 3);
return dap_audio_eq_band(bandNum, n);
}
void AudioControlSGTL5000_F32::eqBands(float bass, float mid_bass, float midrange, float mid_treble, float treble)
{
if (semi_automated)
automate(1, 3);
dap_audio_eq_band(0, bass);
dap_audio_eq_band(1, mid_bass);
dap_audio_eq_band(2, midrange);
dap_audio_eq_band(3, mid_treble);
dap_audio_eq_band(4, treble);
}
void AudioControlSGTL5000_F32::eqBands(float bass, float treble) // dap_audio_eq(2);
{
if (semi_automated)
automate(1, 2);
dap_audio_eq_band(0, bass);
dap_audio_eq_band(4, treble);
}
// SGTL5000 PEQ Coefficient loader
void AudioControlSGTL5000_F32::eqFilter(uint8_t filterNum, int *filterParameters)
{
// TODO: add the part that selects 7 PEQ filters.
if (semi_automated)
automate(1, 1, filterNum + 1);
modify(SGTL5000_DAP_FILTER_COEF_ACCESS, (uint16_t)filterNum, 15);
write(SGTL5000_DAP_COEF_WR_B0_MSB, (*filterParameters >> 4) & 65535);
write(SGTL5000_DAP_COEF_WR_B0_LSB, (*filterParameters++) & 15);
write(SGTL5000_DAP_COEF_WR_B1_MSB, (*filterParameters >> 4) & 65535);
write(SGTL5000_DAP_COEF_WR_B1_LSB, (*filterParameters++) & 15);
write(SGTL5000_DAP_COEF_WR_B2_MSB, (*filterParameters >> 4) & 65535);
write(SGTL5000_DAP_COEF_WR_B2_LSB, (*filterParameters++) & 15);
write(SGTL5000_DAP_COEF_WR_A1_MSB, (*filterParameters >> 4) & 65535);
write(SGTL5000_DAP_COEF_WR_A1_LSB, (*filterParameters++) & 15);
write(SGTL5000_DAP_COEF_WR_A2_MSB, (*filterParameters >> 4) & 65535);
write(SGTL5000_DAP_COEF_WR_A2_LSB, (*filterParameters++) & 15);
write(SGTL5000_DAP_FILTER_COEF_ACCESS, (uint16_t)0x100 | filterNum);
}
/* Valid values for dap_avc parameters
maxGain; Maximum gain that can be applied
0 - 0 dB
1 - 6.0 dB
2 - 12 dB
lbiResponse; Integrator Response
0 - 0 mS
1 - 25 mS
2 - 50 mS
3 - 100 mS
hardLimit
0 - Hard limit disabled. AVC Compressor/Expander enabled.
1 - Hard limit enabled. The signal is limited to the programmed threshold (signal saturates at the threshold)
threshold
floating point in range 0 to -96 dB
attack
floating point figure is dB/s rate at which gain is increased
decay
floating point figure is dB/s rate at which gain is reduced
*/
uint16_t AudioControlSGTL5000_F32::autoVolumeControl(uint8_t maxGain, uint8_t lbiResponse, uint8_t hardLimit, float threshold, float attack, float decay)
{
// if(semi_automated&&(!read(DAP_CONTROL)&1)) audioProcessorEnable();
if (maxGain > 2)
maxGain = 2;
lbiResponse &= 3;
hardLimit &= 1;
uint8_t thresh = (pow(10, threshold / 20) * 0.636) * pow(2, 15);
uint8_t att = (1 - pow(10, -(attack / (20 * 44100)))) * pow(2, 19);
uint8_t dec = (1 - pow(10, -(decay / (20 * 44100)))) * pow(2, 23);
write(SGTL5000_DAP_AVC_THRESHOLD, thresh);
write(SGTL5000_DAP_AVC_ATTACK, att);
write(SGTL5000_DAP_AVC_DECAY, dec);
return modify(SGTL5000_DAP_AVC_CTRL, maxGain << 12 | lbiResponse << 8 | hardLimit << 5, 3 << 12 | 3 << 8 | 1 << 5);
}
uint16_t AudioControlSGTL5000_F32::autoVolumeEnable(void)
{
return modify(SGTL5000_DAP_AVC_CTRL, 1, 1);
}
uint16_t AudioControlSGTL5000_F32::autoVolumeDisable(void)
{
return modify(SGTL5000_DAP_AVC_CTRL, 0, 1);
}
uint16_t AudioControlSGTL5000_F32::enhanceBass(float lr_lev, float bass_lev)
{
return modify(SGTL5000_DAP_BASS_ENHANCE_CTRL, ((0x3F - calcVol(lr_lev, 0x3F)) << 8) | (0x7F - calcVol(bass_lev, 0x7F)), (0x3F << 8) | 0x7F);
}
uint16_t AudioControlSGTL5000_F32::enhanceBass(float lr_lev, float bass_lev, uint8_t hpf_bypass, uint8_t cutoff)
{
modify(SGTL5000_DAP_BASS_ENHANCE, (hpf_bypass & 1) << 8 | (cutoff & 7) << 4, 1 << 8 | 7 << 4);
return enhanceBass(lr_lev, bass_lev);
}
uint16_t AudioControlSGTL5000_F32::enhanceBassEnable(void)
{
return modify(SGTL5000_DAP_BASS_ENHANCE, 1, 1);
}
uint16_t AudioControlSGTL5000_F32::enhanceBassDisable(void)
{
return modify(SGTL5000_DAP_BASS_ENHANCE, 0, 1);
}
uint16_t AudioControlSGTL5000_F32::surroundSound(uint8_t width)
{
return modify(SGTL5000_DAP_SGTL_SURROUND, (width & 7) << 4, 7 << 4);
}
uint16_t AudioControlSGTL5000_F32::surroundSound(uint8_t width, uint8_t select)
{
return modify(SGTL5000_DAP_SGTL_SURROUND, ((width & 7) << 4) | (select & 3), (7 << 4) | 3);
}
uint16_t AudioControlSGTL5000_F32::surroundSoundEnable(void)
{
return modify(SGTL5000_DAP_SGTL_SURROUND, 3, 3);
}
uint16_t AudioControlSGTL5000_F32::surroundSoundDisable(void)
{
return modify(SGTL5000_DAP_SGTL_SURROUND, 0, 3);
}
unsigned char AudioControlSGTL5000_F32::calcVol(float n, unsigned char range)
{
// n=(n*(((float)range)/100))+0.499;
n = (n * (float)range) + 0.499;
if ((unsigned char)n > range)
n = range;
return (unsigned char)n;
}
// DAP_AUDIO_EQ_BASS_BAND0 & DAP_AUDIO_EQ_BAND1 & DAP_AUDIO_EQ_BAND2 etc etc
uint16_t AudioControlSGTL5000_F32::dap_audio_eq_band(uint8_t bandNum, float n) // by signed percentage -100/+100; dap_audio_eq(3);
{
n = (n * 48) + 0.499;
if (n < -47)
n = -47;
if (n > 48)
n = 48;
n += 47;
return modify(SGTL5000_DAP_AUDIO_EQ_BASS_BAND0 + (bandNum * 2), (uint16_t)n, 127);
}
void AudioControlSGTL5000_F32::automate(uint8_t dap, uint8_t eq)
{
// if((dap!=0)&&(!(read(DAP_CONTROL)&1))) audioProcessorEnable();
if ((read(SGTL5000_DAP_AUDIO_EQ) & 3) != eq)
eqSelect(eq);
}
void AudioControlSGTL5000_F32::automate(uint8_t dap, uint8_t eq, uint8_t filterCount)
{
automate(dap, eq);
if (filterCount > (read(SGTL5000_DAP_PEQ) & 7))
eqFilterCount(filterCount);
}
void AudioControlSGTL5000_F32::set_bitDepth(bit_depth_t bits)
{
uint16_t regTmp = read(SGTL5000_CHIP_I2S_CTRL);
regTmp &= ~(0x30); // clear bit 5:4 (DLEN)
regTmp |= ((uint8_t)bits << 4) & 0x30; // update DLEN
write(SGTL5000_CHIP_ADCDAC_CTRL, 0x000C); // mute DAC
write(SGTL5000_CHIP_I2S_CTRL, regTmp); // write new config
write(SGTL5000_CHIP_ADCDAC_CTRL, 0x0000); // unmute DAC
}