@ -34,20 +34,19 @@ allows you to control a LED that's connected to GPIO2.
BUILDING EVERYTHING
For this, you need an environment that can compile ESP8266 firmware. Environments for this still
are in flux at the moment, but I'm using a crosstool-ng gcc setup combined with the libs & includes
from the ESP SDK and ESP VM. You probably also need an UNIX-like system; I'm working on
Debian Linux myself.
are in flux at the moment, but I'm using esp-open-sdk: https://github.com/pfalcon/esp-open-sdk .
You probably also need an UNIX-like system; I'm working on Debian Linux myself.
To manage the paths to all this, you can source a small shell fragment into your current session. For
example, I source a file with these contents:
export PATH=${PWD}/crosstool-NG/builds/xtensa-lx106-elf/bin:$PATH
export XTENSA_TOOLS_ROOT=${PWD}/crosstool-NG/builds/xtensa-lx106-elf/bin
export SDK_BASE=${PWD}/esp_iot_sdk_v0.9.5/
export SDK_EXTRA_INCLUDES=${PWD}/esp_iot_sdk_novm_unpacked/usr/xtensa/XtDevTools/install/builds/RC-2010.1-win32/lx106/xtensa-elf/include/
export ESPTOOL=${PWD}/esptool/esptool.py
export PATH=${PWD}/esp-open-sdk/xtensa-lx106-elf/bin:$PATH
export SDK_BASE=${PWD}/esp-open-sdk/sdk
export ESPTOOL=${PWD}/esptool/esptool
export ESPPORT=/dev/ttyUSB0
export ESPBAUD=460800
Actual setup of the SDK and toolchain is out of the scope of this document, so I hope this helps you
enough to set up your own if you haven't already.
enough to set up your own if you haven't already.
If you have that, you can clone out the source code:
git clone http://git.spritesserver.nl/esphttpd.git/
@ -75,7 +74,7 @@ WRITING CODE FOR THE WEBSERVER
the SDK works, this shouldn't be too hard :P
CHANGE FROM SDK 0.9.3 (and earlier) TO SDK 0.9.4:
CHANGE FROM SDK 0.9.3 (and earlier) TO SDK 0.9.4 (and later) :
Change all occurences of
espconn_sent(connData->conn, (uint8 *)buff, len);
to