/* * Copyright 2012 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifdef VERBOSE #include #endif #include "synth.h" #include "fm_op_kernel.h" #include "fm_core.h" //using namespace std; struct FmOperatorInfo { int in; int out; }; enum FmOperatorFlags { OUT_BUS_ONE = 1 << 0, OUT_BUS_TWO = 1 << 1, OUT_BUS_ADD = 1 << 2, IN_BUS_ONE = 1 << 4, IN_BUS_TWO = 1 << 5, FB_IN = 1 << 6, FB_OUT = 1 << 7 }; struct FmAlgorithm { int ops[6]; }; const FmAlgorithm algorithms[32] = { { { 0xc1, 0x11, 0x11, 0x14, 0x01, 0x14 } }, // 1 { { 0x01, 0x11, 0x11, 0x14, 0xc1, 0x14 } }, // 2 { { 0xc1, 0x11, 0x14, 0x01, 0x11, 0x14 } }, // 3 { { 0xc1, 0x11, 0x94, 0x01, 0x11, 0x14 } }, // 4 ** EXCEPTION VIA CODE { { 0xc1, 0x14, 0x01, 0x14, 0x01, 0x14 } }, // 5 { { 0xc1, 0x94, 0x01, 0x14, 0x01, 0x14 } }, // 6 ** EXCEPTION VIA CODE { { 0xc1, 0x11, 0x05, 0x14, 0x01, 0x14 } }, // 7 { { 0x01, 0x11, 0xc5, 0x14, 0x01, 0x14 } }, // 8 { { 0x01, 0x11, 0x05, 0x14, 0xc1, 0x14 } }, // 9 { { 0x01, 0x05, 0x14, 0xc1, 0x11, 0x14 } }, // 10 { { 0xc1, 0x05, 0x14, 0x01, 0x11, 0x14 } }, // 11 { { 0x01, 0x05, 0x05, 0x14, 0xc1, 0x14 } }, // 12 { { 0xc1, 0x05, 0x05, 0x14, 0x01, 0x14 } }, // 13 { { 0xc1, 0x05, 0x11, 0x14, 0x01, 0x14 } }, // 14 { { 0x01, 0x05, 0x11, 0x14, 0xc1, 0x14 } }, // 15 { { 0xc1, 0x11, 0x02, 0x25, 0x05, 0x14 } }, // 16 { { 0x01, 0x11, 0x02, 0x25, 0xc5, 0x14 } }, // 17 { { 0x01, 0x11, 0x11, 0xc5, 0x05, 0x14 } }, // 18 { { 0xc1, 0x14, 0x14, 0x01, 0x11, 0x14 } }, // 19 { { 0x01, 0x05, 0x14, 0xc1, 0x14, 0x14 } }, // 20 { { 0x01, 0x14, 0x14, 0xc1, 0x14, 0x14 } }, // 21 { { 0xc1, 0x14, 0x14, 0x14, 0x01, 0x14 } }, // 22 { { 0xc1, 0x14, 0x14, 0x01, 0x14, 0x04 } }, // 23 { { 0xc1, 0x14, 0x14, 0x14, 0x04, 0x04 } }, // 24 { { 0xc1, 0x14, 0x14, 0x04, 0x04, 0x04 } }, // 25 { { 0xc1, 0x05, 0x14, 0x01, 0x14, 0x04 } }, // 26 { { 0x01, 0x05, 0x14, 0xc1, 0x14, 0x04 } }, // 27 { { 0x04, 0xc1, 0x11, 0x14, 0x01, 0x14 } }, // 28 { { 0xc1, 0x14, 0x01, 0x14, 0x04, 0x04 } }, // 29 { { 0x04, 0xc1, 0x11, 0x14, 0x04, 0x04 } }, // 30 { { 0xc1, 0x14, 0x04, 0x04, 0x04, 0x04 } }, // 31 { { 0xc4, 0x04, 0x04, 0x04, 0x04, 0x04 } }, // 32 }; int n_out(const FmAlgorithm &alg) { int count = 0; for (int i = 0; i < 6; i++) { if ((alg.ops[i] & 7) == OUT_BUS_ADD) count++; } return count; } void FmCore::dump() { #ifdef VERBOSE for (int i = 0; i < 32; i++) { cout << (i + 1) << ":"; const FmAlgorithm &alg = algorithms[i]; for (int j = 0; j < 6; j++) { int flags = alg.ops[j]; cout << " "; if (flags & FB_IN) cout << "["; cout << (flags & IN_BUS_ONE ? "1" : flags & IN_BUS_TWO ? "2" : "0") << "->"; cout << (flags & OUT_BUS_ONE ? "1" : flags & OUT_BUS_TWO ? "2" : "0"); if (flags & OUT_BUS_ADD) cout << "+"; //cout << alg.ops[j].in << "->" << alg.ops[j].out; if (flags & FB_OUT) cout << "]"; } cout << " " << n_out(alg); cout << endl; } #endif } void FmCore::compute(int32_t *output, FmOpParams *params, int algorithm, int32_t *fb_buf, int feedback_shift, const Controllers *controllers) { const int kLevelThresh = 1120; const FmAlgorithm alg = algorithms[algorithm]; bool has_contents[3] = { true, false, false }; for (int op = 0; op < 6; op++) { int flags = alg.ops[op]; bool add = (flags & OUT_BUS_ADD) != 0; FmOpParams ¶m = params[op]; int inbus = (flags >> 4) & 3; int outbus = flags & 3; int32_t *outptr = (outbus == 0) ? output : buf_[outbus - 1].get(); int32_t gain1 = param.gain[0]; int32_t gain2 = param.gain[1]; if (gain1 >= kLevelThresh || gain2 >= kLevelThresh) { if (!has_contents[outbus]) { add = false; } if (inbus == 0 || !has_contents[inbus]) { // PG: this is my 'dirty' implementation of FB for 2 and 3 operators... // still needs some tuning... if ((flags & 0xc0) == 0xc0 && feedback_shift < 16) { switch ( algorithm ) { // two operator feedback, process exception for ALGO 6 case 5 : FmOpKernel::compute_fb2(outptr, params, fb_buf, feedback_shift, controllers); param.phase += param.freq << LG_N; params[1].phase += param.freq + params[1].freq << LG_N; // yuk, hack, we already processed op-5 op++; // ignore next operator; break; // three operator feedback, process exception for ALGO 4 case 3 : FmOpKernel::compute_fb3(outptr, params, fb_buf, feedback_shift, controllers); param.phase += param.freq << LG_N; params[1].phase += param.freq + params[1].freq << LG_N; // hack, we already processed op-5 - op-4 params[2].phase += param.freq + params[1].freq + params[2].freq << LG_N; // yuk yuk op += 2; // ignore the 2 other operators break; default: // one operator feedback, normal proces //cout << "\t" << op << " fb " << inbus << outbus << add << endl; FmOpKernel::compute_fb(outptr, param.phase, param.freq, gain1, gain2, fb_buf, feedback_shift, add, controllers); param.phase += param.freq << LG_N; break; } has_contents[outbus] = true; continue; } else { // cout << op << " pure " << inbus << outbus << add << endl; FmOpKernel::compute_pure(outptr, param.phase, param.freq, gain1, gain2, add, controllers); } } else { // cout << op << " normal " << inbus << outbus << " " << param.freq << add << endl; FmOpKernel::compute(outptr, buf_[inbus - 1].get(), param.phase, param.freq, gain1, gain2, add, controllers); } has_contents[outbus] = true; } else if (!add) { has_contents[outbus] = false; } param.phase += param.freq << LG_N; } }