You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
5.2 KiB
169 lines
5.2 KiB
// ---------------------------------------------------------------------------
|
|
// This file is part of reSID, a MOS6581 SID emulator engine.
|
|
// Copyright (C) 2004 Dag Lem <resid@nimrod.no>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
// ---------------------------------------------------------------------------
|
|
|
|
#ifndef __EXTFILT_H__
|
|
#define __EXTFILT_H__
|
|
|
|
#include "siddefs.h"
|
|
|
|
RESID_NAMESPACE_START
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// The audio output stage in a Commodore 64 consists of two STC networks,
|
|
// a low-pass filter with 3-dB frequency 16kHz followed by a high-pass
|
|
// filter with 3-dB frequency 16Hz (the latter provided an audio equipment
|
|
// input impedance of 1kOhm).
|
|
// The STC networks are connected with a BJT supposedly meant to act as
|
|
// a unity gain buffer, which is not really how it works. A more elaborate
|
|
// model would include the BJT, however DC circuit analysis yields BJT
|
|
// base-emitter and emitter-base impedances sufficiently low to produce
|
|
// additional low-pass and high-pass 3dB-frequencies in the order of hundreds
|
|
// of kHz. This calls for a sampling frequency of several MHz, which is far
|
|
// too high for practical use.
|
|
// ----------------------------------------------------------------------------
|
|
class ExternalFilter
|
|
{
|
|
public:
|
|
ExternalFilter();
|
|
|
|
void enable_filter(bool enable);
|
|
void set_sampling_parameter(float pass_freq);
|
|
//void set_chip_model(chip_model model);
|
|
|
|
RESID_INLINE void clock(sound_sample Vi);
|
|
RESID_INLINE void clock(cycle_count delta_t, sound_sample Vi);
|
|
void reset();
|
|
|
|
// Audio output (20 bits).
|
|
RESID_INLINE sound_sample output();
|
|
|
|
protected:
|
|
// Filter enabled.
|
|
bool enabled;
|
|
|
|
// Maximum mixer DC offset.
|
|
sound_sample mixer_DC;
|
|
|
|
// State of filters.
|
|
sound_sample Vlp; // lowpass
|
|
sound_sample Vhp; // highpass
|
|
sound_sample Vo;
|
|
|
|
// Cutoff frequencies.
|
|
sound_sample w0lp;
|
|
sound_sample w0hp;
|
|
|
|
friend class SID;
|
|
};
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Inline functions.
|
|
// The following functions are defined inline because they are called every
|
|
// time a sample is calculated.
|
|
// ----------------------------------------------------------------------------
|
|
|
|
#if RESID_INLINING || defined(__EXTFILT_CC__)
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// SID clocking - 1 cycle.
|
|
// ----------------------------------------------------------------------------
|
|
RESID_INLINE
|
|
void ExternalFilter::clock(sound_sample Vi)
|
|
{
|
|
// This is handy for testing.
|
|
if (!enabled) {
|
|
// Remove maximum DC level since there is no filter to do it.
|
|
Vlp = Vhp = 0;
|
|
Vo = Vi - mixer_DC;
|
|
return;
|
|
}
|
|
|
|
// delta_t is converted to seconds given a 1MHz clock by dividing
|
|
// with 1 000 000.
|
|
|
|
// Calculate filter outputs.
|
|
// Vo = Vlp - Vhp;
|
|
// Vlp = Vlp + w0lp*(Vi - Vlp)*delta_t;
|
|
// Vhp = Vhp + w0hp*(Vlp - Vhp)*delta_t;
|
|
|
|
sound_sample dVlp = (w0lp >> 8)*(Vi - Vlp) >> 12;
|
|
sound_sample dVhp = w0hp*(Vlp - Vhp) >> 20;
|
|
Vo = Vlp - Vhp;
|
|
Vlp += dVlp;
|
|
Vhp += dVhp;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// SID clocking - delta_t cycles.
|
|
// ----------------------------------------------------------------------------
|
|
RESID_INLINE
|
|
void ExternalFilter::clock(cycle_count delta_t,
|
|
sound_sample Vi)
|
|
{
|
|
// This is handy for testing.
|
|
if (!enabled) {
|
|
// Remove maximum DC level since there is no filter to do it.
|
|
Vlp = Vhp = 0;
|
|
Vo = Vi - mixer_DC;
|
|
return;
|
|
}
|
|
|
|
// Maximum delta cycles for the external filter to work satisfactorily
|
|
// is approximately 8.
|
|
cycle_count delta_t_flt = 8;
|
|
|
|
while (delta_t) {
|
|
if (delta_t < delta_t_flt) {
|
|
delta_t_flt = delta_t;
|
|
}
|
|
|
|
// delta_t is converted to seconds given a 1MHz clock by dividing
|
|
// with 1 000 000.
|
|
|
|
// Calculate filter outputs.
|
|
// Vo = Vlp - Vhp;
|
|
// Vlp = Vlp + w0lp*(Vi - Vlp)*delta_t;
|
|
// Vhp = Vhp + w0hp*(Vlp - Vhp)*delta_t;
|
|
|
|
sound_sample dVlp = (w0lp*delta_t_flt >> 8)*(Vi - Vlp) >> 12;
|
|
sound_sample dVhp = w0hp*delta_t_flt*(Vlp - Vhp) >> 20;
|
|
Vo = Vlp - Vhp;
|
|
Vlp += dVlp;
|
|
Vhp += dVhp;
|
|
|
|
delta_t -= delta_t_flt;
|
|
}
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Audio output (19.5 bits).
|
|
// ----------------------------------------------------------------------------
|
|
RESID_INLINE
|
|
sound_sample ExternalFilter::output()
|
|
{
|
|
return Vo;
|
|
}
|
|
|
|
#endif // RESID_INLINING || defined(__EXTFILT_CC__)
|
|
|
|
RESID_NAMESPACE_STOP
|
|
|
|
#endif // not __EXTFILT_H__
|
|
|