You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
OpenAudio_ArduinoLibrary/examples/CESSB1/CESSB1.ino

218 lines
8.8 KiB

/* CESSB1.ino
*
* This INO tests the Dave Hershberger Controlled Envelope Single Sideband
* transmit generator radioCESSBtransmit_F32. This was developed By W9GR
* with the aim to "allow your rig to output more average power while
* keeping peak envelope power PEP the same". The increase in perceived
* loudness can be up to 4dB without any audible increase in distortion
* and without making you sound "processed." See radioCESSBTransmit_F32.h
* for more information and references.
*
* Your microSD card must have the WAV file W9GR48.WAV loaded to it. Source:
* https://github.com/chipaudette/OpenAudio_ArduinoLibrary/blob/master/utility/
*
* The SD card may connect to different pins, depending on the
* hardware you are using. Configure the SD card
* pins to match your hardware. It is set for T4.x Rev D PJRC
* Teensy Audio Adaptor card here.
*
* This example code is in the public domain.
*/
#include <Audio.h>
#include <Wire.h>
#include <SPI.h>
#include <SD.h>
#include "OpenAudio_ArduinoLibrary.h"
// Normal input is from the WAV file with W9GR voice.
// An alternative is two tones. Compile that with the following define.
// #define USE_TWO_TONE
// T3.x supported sample rates: 2000, 8000, 11025, 16000, 22050, 24000, 32000, 44100, 44117, 48000,
// 88200, 88235 (44117*2), 95680, 96000, 176400, 176470, 192000
// T4.x supports any sample rate the codec will handle.
const float sample_rate_Hz = 48000.0f;
const int audio_block_samples = 128; // Always 128, which is AUDIO_BLOCK_SAMPLES from AudioStream.h
AudioSettings_F32 audio_settings(sample_rate_Hz, audio_block_samples);
#ifdef USE_TWO_TONE
AudioSynthWaveformSine_F32 sine3(audio_settings); //xy=231,444
AudioSynthWaveformSine_F32 sine4(audio_settings); //xy=259,345
AudioMixer4_F32 mixer4_4; //xy=405,427
#endif
AudioSDPlayer_F32 playWav1(audio_settings); //xy=111,51
radioCESSBtransmit_F32 cessb1(audio_settings);
RadioIQMixer_F32 iqMixer2(audio_settings); //xy=100,300
AudioFilter90Deg_F32 filter90deg1(audio_settings); //xy=250,300
RadioIQMixer_F32 iqMixer1(audio_settings); //xy=250,150
AudioAnalyzeRMS_F32 rms1; //xy=300,50
AudioMixer4_F32 mixer4_1; //xy=400,310
AudioMixer4_F32 mixer4_2; //xy=400,150
AudioOutputI2S_F32 audioOutput(audio_settings); //xy=520,250
AudioAnalyzeFFT1024_F32 fft1; //xy=550,125
#ifdef USE_TWO_TONE
AudioConnection_F32 patchCorda(sine3, 0, mixer4_4, 1);
AudioConnection_F32 patchCordb(sine4, 0, mixer4_4, 0);
AudioConnection_F32 patchCordc(mixer4_4, 0, cessb1, 0);
#else
AudioConnection_F32 patchCord5(playWav1, 0, cessb1, 0);
#endif
AudioConnection_F32 patchCord1(cessb1, 0, iqMixer1, 0);
AudioConnection_F32 patchCord2(cessb1, 1, iqMixer1, 1);
AudioConnection_F32 patchCord9(iqMixer1, 0, mixer4_2, 0);
AudioConnection_F32 patchCord10(iqMixer1, 1, mixer4_2, 1);
AudioConnection_F32 patchCord13(mixer4_2, fft1); // Transmitter output
// mixer4_2 is transmitter SSB output, iqMixer2 is receiver input
AudioConnection_F32 patchCord14(mixer4_2, 0, iqMixer2, 0);
AudioConnection_F32 patchCord3(iqMixer2, 0, filter90deg1, 0);
AudioConnection_F32 patchCord4(iqMixer2, 1, filter90deg1, 1);
AudioConnection_F32 patchCord7(filter90deg1, 0, mixer4_1, 0);
AudioConnection_F32 patchCord8(filter90deg1, 1, mixer4_1, 1);
AudioConnection_F32 patchCord11(mixer4_1, 0, audioOutput, 0);
AudioConnection_F32 patchCord12(mixer4_1, 0, audioOutput, 1);
AudioControlSGTL5000 sgtl5000_1; //xy=582,327
// Use these with the Teensy 4.x Rev D Audio Shield (NOT for T3.x)
#define SDCARD_CS_PIN 10
#define SDCARD_MOSI_PIN 11
#define SDCARD_SCK_PIN 13
// Filter for AudioFilter90Deg_F32 hilbert1, for the test receiver.
#include "hilbert251A.h"
// This provides information about the current WAV file to this .INO
struct wavData* pCurrentWavData;
struct levels* pLevelData;
uint32_t writeOne = 0;
uint32_t cntFFT = 0;
void setup() { // ********** SETUP **********
Serial.begin(9600); delay(1000);
Serial.println("*** F32 WAV from SD Card ***");
AudioMemory_F32(70, audio_settings);
pCurrentWavData = playWav1.getCurrentWavData();
sgtl5000_1.enable();
SPI.setMOSI(SDCARD_MOSI_PIN);
SPI.setSCK(SDCARD_SCK_PIN);
Serial.print("SD.begin() returns ");
Serial.println(SD.begin(SDCARD_CS_PIN));
#ifdef USE_TWO_TONE
// Two-tone test, multiples of 48000/1024 Hz
sine3.frequency(468.75f);
sine3.amplitude(0.5f);
sine4.frequency(703.125f);
sine4.amplitude(0.5f);
#endif
// Build the CESSB SSB transmitter
cessb1.setSampleRate_Hz(48000.0f); // Required
// Set input, correction, and output gains
float32_t Pre_CESSB_Gain = 1.5f; // Sets the amount of clipping, 1.0 to 2.0f, 3 is excessive
cessb1.setGains(Pre_CESSB_Gain, 2.0f, 1.0f);
cessb1.setSideband(false); // true reverses the sideband
pLevelData = cessb1.getLevels(0); // Gets pointer to struct
// Generate SSB at 15 kHz
iqMixer1.useTwoChannel(true);
iqMixer1.useSimple(false); // enables setGainOut()
// Following if cessb1.setSideband(false), otherwise reverse
// Compensate for window loss in FFT as well as x2 for mixers
iqMixer1.setGainOut(2.76f);
iqMixer1.frequency(13650); // 13650 for LSB, 16350 for USB
mixer4_2.gain(1, 1.0f); // 1.0f for LSB, -1.0f for USB
// A receiver for the SSB transmitter
iqMixer2.frequency(15000.0f);
iqMixer2.useTwoChannel(false);
filter90deg1.begin(hilbert251A, 251); // Set the Hilbert transform FIR filter
mixer4_1.gain(0, -1.0f); // LSB + for USB
audioOutput.setGain(0.05); // <<< Output volume control
fft1.setOutputType(FFT_DBFS);
fft1.windowFunction(AudioWindowBlackmanHarris1024);
fft1.setNAverage(16);
}
void playFile(const char *filename)
{
if(playWav1.isPlaying())
return;
Serial.println("");
Serial.print("Playing file: ");
Serial.println(filename);
// Allow for running the WAV file at a sub-rate from the Audio rate
// Two of these are defined above for 1 and 4 sub rates.
// playWav1.setSubMult(&wavQuarter);
// Start playing the file. This sketch continues to
// run while the file plays.
playWav1.play(filename);
// A brief delay for the library read WAV info
delay(25);
Serial.print("WAV file format = "); Serial.println(pCurrentWavData->audio_format);
Serial.print("WAV number channels = "); Serial.println(pCurrentWavData->num_channels);
Serial.print("WAV File Sample Rate = "); Serial.println(pCurrentWavData->sample_rate);
Serial.print("Number of bits per Sample = "); Serial.println(pCurrentWavData->bits);
Serial.print("File length, seconds = ");
Serial.println(0.001f*(float32_t)playWav1.lengthMillis(), 3);
}
void loop() {
// Thanks to W9GR for the test files. These are intended for testing
// the CESSB radio transmission system (see CESSB1.ino in the examples)
// but work well to provide a voice bandwidth test of WAV file reading.
#ifndef USE_TWO_TONE
playFile("W9GR48.WAV"); // filenames are always uppercase 8.3 format
#endif
if(fft1.available() && ++cntFFT>100 && cntFFT<102)
{
for(int kk=0; kk<512; kk++)
{
Serial.print(46.875f*(float32_t)kk); Serial.print(",");
Serial.println(fft1.read(kk));
}
}
if(cessb1.levelDataCount() > 300) // Typically 300 to 3000
{
cessb1.getLevels(1); // Cause write of data to struct & reset
/* // Detailed Report Uncomment to print
Serial.print(10.0f*log10f(pLevelData->pwr0));
Serial.print(" In Ave Pwr Out ");
Serial.println(10.0f*log10f(pLevelData->pwr1));
Serial.print(20.0f*log10f(pLevelData->peak0));
Serial.print(" In Peak Out ");
Serial.println(20.0f*log10f(pLevelData->peak1));
Serial.print(pLevelData->peak0, 6);
Serial.print(" In Peak Volts Out ");
Serial.println(pLevelData->peak1, 6);
Serial.print("Enhancement = ");
Serial.print((10.0f*log10f(pLevelData->pwr1) - 20.0f*log10f(pLevelData->peak1)) -
(10.0f*log10f(pLevelData->pwr0) - 20.0f*log10f(pLevelData->peak0)) );
Serial.println(" dB");
*/
/*
// CSV Report suitable for entering to spread sheet, Uncomment to print
// InAve, InPk, OutAve, OutPk, EnhancementdB
Serial.print(pLevelData->pwr0, 5); Serial.print(",");
Serial.print(pLevelData->peak0, 5); Serial.print(",");
Serial.print(pLevelData->pwr1, 5); Serial.print(",");
Serial.print(pLevelData->peak1, 5); Serial.print(",");
Serial.println((10.0f*log10f(pLevelData->pwr1) - 20.0f*log10f(pLevelData->peak1)) -
(10.0f*log10f(pLevelData->pwr0) - 20.0f*log10f(pLevelData->peak0)) );
*/
}
} // End loop()