You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
OpenAudio_ArduinoLibrary/analyze_fft1024_F32.cpp

184 lines
6.9 KiB

/* analyze_fft1024_F32.cpp Converted from Teensy I16 Audio Library
* This version uses float F32 inputs. See comments at analyze_fft1024_F32.h
* Converted to use half-length FFT 17 March 2021 RSL
*
* Conversion parts copyright (c) Bob Larkin 2021
*
* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <Arduino.h>
#include "analyze_fft1024_F32.h"
// Move audio data from an audio_block_f32_t to the FFT instance buffer.
// This is for 128 numbers per block, only.
static void copy_to_fft_buffer(void *destination, const void *source) {
const float *src = (const float *)source;
float *dst = (float *)destination;
for (int i=0; i < 128; i++) {
*dst++ = *src++; // real sample for half-length FFT
}
}
static void apply_window_to_fft_buffer(void *buffer, const void *window) {
float *buf = (float *)buffer;
const float *win = (float *)window;
for(int i=0; i<NFFT; i++)
buf[i] *= *win++;
}
void AudioAnalyzeFFT1024_F32::update(void) {
audio_block_f32_t *block;
float outDC=0.0f;
float magsq=0.0f;
block = AudioStream_F32::receiveReadOnly_f32();
if (!block) return;
switch (state) {
case 0:
blocklist[0] = block;
state = 1;
break;
case 1:
blocklist[1] = block;
state = 2;
break;
case 2:
blocklist[2] = block;
state = 3;
break;
case 3:
blocklist[3] = block;
state = 4;
break;
case 4:
blocklist[4] = block;
// Now the post FT processing for using half-length transform
// FFT was in state==7, but it loops around to here. Does some
// zero data at startup that is harmless.
count++; // Next do non-coherent averaging
for(int i=0; i<NFFT_D2; i++) {
if(i>0) {
float rns = 0.5f*(fft_buffer[2*i] + fft_buffer[NFFT-2*i]);
float ins = 0.5f*(fft_buffer[2*i+1] + fft_buffer[NFFT-2*i+1]);
float rnd = 0.5f*(fft_buffer[2*i] - fft_buffer[NFFT-2*i]);
float ind = 0.5f*(fft_buffer[2*i+1] - fft_buffer[NFFT-2*i+1]);
float xr = rns + cosN[i]*ins - sinN[i]*rnd;
float xi = ind - sinN[i]*ins - cosN[i]*rnd;
magsq = xr*xr + xi*xi;
}
else {
magsq = outDC*outDC; // Do the DC term
}
if(count==1) // Starting new average
sumsq[i] = magsq;
else if (count<=nAverage) // Adding on to average
sumsq[i] += magsq;
}
if (count >= nAverage) { // Average is finished
// Set outputflag false here to minimize reads of output[] data
// when it is being updated.
outputflag = false;
count = 0;
float inAf = 1.0f/(float)nAverage;
float kMaxDB = 20.0*log10f((float)NFFT_D2); // 54.1854 for 1024
for(int i=0; i<NFFT_D2; i++) {
if(outputType==FFT_RMS)
output[i] = sqrtf(inAf*sumsq[i]);
else if(outputType==FFT_POWER)
output[i] = inAf*sumsq[i];
else if(outputType==FFT_DBFS) {
if(sumsq[i]>0.0f)
output[i] = 10.0f*log10f(inAf*sumsq[i]) - kMaxDB; // Scaled to FS sine wave
else
output[i] = -193.0f; // lsb for 23 bit mantissa
}
else
output[i] = 0.0f;
} // End, set output[i] over all NFFT_D2
outputflag = true;
} // End of average is finished
state = 5;
break;
case 5:
blocklist[5] = block;
state = 6;
break;
case 6:
blocklist[6] = block;
state = 7;
break;
case 7:
blocklist[7] = block;
// We have 4 previous blocks pointed to by blocklist[]:
copy_to_fft_buffer(fft_buffer+0x000, blocklist[0]->data);
copy_to_fft_buffer(fft_buffer+0x080, blocklist[1]->data);
copy_to_fft_buffer(fft_buffer+0x100, blocklist[2]->data);
copy_to_fft_buffer(fft_buffer+0x180, blocklist[3]->data);
// and 4 new blocks, just gathered:
copy_to_fft_buffer(fft_buffer+0x200, blocklist[4]->data);
copy_to_fft_buffer(fft_buffer+0x280, blocklist[5]->data);
copy_to_fft_buffer(fft_buffer+0x300, blocklist[6]->data);
copy_to_fft_buffer(fft_buffer+0x380, blocklist[7]->data);
if (pWin)
apply_window_to_fft_buffer(fft_buffer, window);
outDC = 0.0f;
for(int i=0; i<NFFT; i++)
outDC += fft_buffer[i];
outDC /= ((float)NFFT);
#if defined(__IMXRT1062__)
// Teensyduino core for T4.x supports arm_cfft_f32
// arm_cfft_f32 (const arm_cfft_instance_f32 *S, float32_t *p1, uint8_t ifftFlag, uint8_t bitReverseFlag)
arm_cfft_f32 (&Sfft, fft_buffer, 0, 1);
#else
// For T3.x go back to old (deprecated) style (check radix2/radix4)<<<
arm_cfft_radix2_f32(&fft_inst, fft_buffer);
#endif
// FFT output is now in fft_buffer. Pick up processing at state==4.
AudioStream_F32::release(blocklist[0]);
AudioStream_F32::release(blocklist[1]);
AudioStream_F32::release(blocklist[2]);
AudioStream_F32::release(blocklist[3]);
blocklist[0] = blocklist[4];
blocklist[1] = blocklist[5];
blocklist[2] = blocklist[6];
blocklist[3] = blocklist[7];
state = 4;
break;
} // End switch(state)
} // End update()