You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
OpenAudio_ArduinoLibrary/input_i2s_f32.cpp

304 lines
12 KiB

/*
* input_i2s_f32.cpp
*
* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
* Extended by Chip Audette, OpenAudio, May 2019
* Converted to F32 and to variable audio block length
* The F32 conversion is under the MIT License. Use at your own risk.
*/
// Updated OpenAudio F32 with this version from Chip Audette's Tympan Library Jan 2021 RSL
// Removed unused pieces. RSL 30 May 2022
#include <Arduino.h> //do we really need this? (Chip: 2020-10-31)
#include "input_i2s_f32.h"
#include "output_i2s_f32.h"
#include <arm_math.h>
//DMAMEM __attribute__((aligned(32)))
static uint64_t i2s_rx_buffer[AUDIO_BLOCK_SAMPLES]; // Two 32-bit transfers per sample.
audio_block_f32_t * AudioInputI2S_F32::block_left_f32 = NULL;
audio_block_f32_t * AudioInputI2S_F32::block_right_f32 = NULL;
uint16_t AudioInputI2S_F32::block_offset = 0;
bool AudioInputI2S_F32::update_responsibility = false;
DMAChannel AudioInputI2S_F32::dma(false);
int AudioInputI2S_F32::flag_out_of_memory = 0;
unsigned long AudioInputI2S_F32::update_counter = 0;
float AudioInputI2S_F32::sample_rate_Hz = AUDIO_SAMPLE_RATE;
int AudioInputI2S_F32::audio_block_samples = AUDIO_BLOCK_SAMPLES;
//#for 16-bit transfers
#define I2S_BUFFER_TO_USE_BYTES (AudioOutputI2S_F32::audio_block_samples*sizeof(i2s_rx_buffer[0]))
//#for 32-bit transfers
//#define I2S_BUFFER_TO_USE_BYTES (AudioOutputI2S_F32::audio_block_samples*2*sizeof(i2s_rx_buffer[0]))
void AudioInputI2S_F32::begin(void) {
bool transferUsing32bit = true; // be official, although this is not cared about
begin(transferUsing32bit);
}
void AudioInputI2S_F32::begin(bool transferUsing32bit) {
dma.begin(true); // Allocate the DMA channel first
AudioOutputI2S_F32::sample_rate_Hz = sample_rate_Hz; //these were given in the AudioSettings in the contructor
AudioOutputI2S_F32::audio_block_samples = audio_block_samples;//these were given in the AudioSettings in the contructor
//block_left_1st = NULL;
//block_right_1st = NULL;
// TODO: should we set & clear the I2S_RCSR_SR bit here?
AudioOutputI2S_F32::config_i2s(transferUsing32bit);
#if defined(KINETISK)
CORE_PIN13_CONFIG = PORT_PCR_MUX(4); // pin 13, PTC5, I2S0_RXD0
dma.TCD->SADDR = (void *)((uint32_t)&I2S0_RDR0 + 0); // take the full 32 bit (not just upper half)
dma.TCD->SOFF = 0;
dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2);
dma.TCD->NBYTES_MLNO = 4;
dma.TCD->SLAST = 0;
dma.TCD->DADDR = i2s_rx_buffer;
dma.TCD->DOFF = 4;
//dma.TCD->CITER_ELINKNO = sizeof(i2s_rx_buffer) / 2; //original from Teensy Audio Library
dma.TCD->CITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 4;
//dma.TCD->DLASTSGA = -sizeof(i2s_rx_buffer); //original from Teensy Audio Library
dma.TCD->DLASTSGA = -I2S_BUFFER_TO_USE_BYTES;
//dma.TCD->BITER_ELINKNO = sizeof(i2s_rx_buffer) / 2; //original from Teensy Audio Library
dma.TCD->BITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 4;
dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_RX);
I2S0_RCSR |= I2S_RCSR_RE | I2S_RCSR_BCE | I2S_RCSR_FRDE | I2S_RCSR_FR;
I2S0_TCSR |= I2S_TCSR_TE | I2S_TCSR_BCE; // TX clock enable, because sync'd to TX
#elif defined(__IMXRT1062__)
CORE_PIN8_CONFIG = 3; //1:RX_DATA0
IOMUXC_SAI1_RX_DATA0_SELECT_INPUT = 2;
dma.TCD->SADDR = (void *)((uint32_t)&I2S1_RDR0 + 0);
dma.TCD->SOFF = 0;
dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2);
dma.TCD->NBYTES_MLNO = 4;
dma.TCD->SLAST = 0;
dma.TCD->DADDR = i2s_rx_buffer;
dma.TCD->DOFF = 4;
//dma.TCD->CITER_ELINKNO = sizeof(i2s_rx_buffer) / 2; //original from Teensy Audio Library
dma.TCD->CITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 4;
//dma.TCD->DLASTSGA = -sizeof(i2s_rx_buffer); //original from Teensy Audio Library
dma.TCD->DLASTSGA = -I2S_BUFFER_TO_USE_BYTES;
//dma.TCD->BITER_ELINKNO = sizeof(i2s_rx_buffer) / 2; //original from Teensy Audio Library
dma.TCD->BITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 4;
dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SAI1_RX);
I2S1_RCSR = I2S_RCSR_RE | I2S_RCSR_BCE | I2S_RCSR_FRDE | I2S_RCSR_FR;
#endif
update_responsibility = update_setup();
dma.enable();
dma.attachInterrupt(isr);
update_counter = 0;
}
void AudioInputI2S_F32::isr(void)
{
uint32_t daddr, offset;
const int32_t *src, *end;
//int16_t *dest_left, *dest_right;
//audio_block_t *left, *right;
float32_t *dest_left_f32, *dest_right_f32;
audio_block_f32_t *left_f32, *right_f32;
#if defined(KINETISK) || defined(__IMXRT1062__)
daddr = (uint32_t)(dma.TCD->DADDR);
#endif
dma.clearInterrupt();
//if (daddr < (uint32_t)i2s_rx_buffer + sizeof(i2s_rx_buffer) / 2) { //original Teensy Audio Library
if (daddr < (uint32_t)i2s_rx_buffer + I2S_BUFFER_TO_USE_BYTES / 2) {
// DMA is receiving to the first half of the buffer
// need to remove data from the second half
//src = (int16_t *)&i2s_rx_buffer[AUDIO_BLOCK_SAMPLES/2]; //original Teensy Audio Library
//end = (int16_t *)&i2s_rx_buffer[AUDIO_BLOCK_SAMPLES]; //original Teensy Audio Library
src = (int32_t *)&i2s_rx_buffer[audio_block_samples/2];
end = (int32_t *)&i2s_rx_buffer[audio_block_samples];
update_counter++; //let's increment the counter here to ensure that we get every ISR resulting in audio
if (AudioInputI2S_F32::update_responsibility) AudioStream_F32::update_all();
} else {
// DMA is receiving to the second half of the buffer
// need to remove data from the first half
src = (int32_t *)&i2s_rx_buffer[0];
//end = (int16_t *)&i2s_rx_buffer[AUDIO_BLOCK_SAMPLES/2]; //original Teensy Audio Library
end = (int32_t *)&i2s_rx_buffer[audio_block_samples/2];
}
left_f32 = AudioInputI2S_F32::block_left_f32;
right_f32 = AudioInputI2S_F32::block_right_f32;
if (left_f32 != NULL && right_f32 != NULL) {
offset = AudioInputI2S_F32::block_offset;
//if (offset <= (uint32_t)(AUDIO_BLOCK_SAMPLES/2)) { //original Teensy Audio Library
if (offset <= ((uint32_t) audio_block_samples/2)) {
dest_left_f32 = &(left_f32->data[offset]);
dest_right_f32 = &(right_f32->data[offset]);
//AudioInputI2S_F32::block_offset = offset + AUDIO_BLOCK_SAMPLES/2; //original Teensy Audio Library
AudioInputI2S_F32::block_offset = offset + audio_block_samples/2;
do {
//Serial.println(*src);
//n = *src++;
//*dest_left++ = (int16_t)n;
//*dest_right++ = (int16_t)(n >> 16);
*dest_left_f32++ = (float32_t) *src++;
*dest_right_f32++ = (float32_t) *src++;
} while (src < end);
}
}
}
#define I16_TO_F32_NORM_FACTOR (3.051850947599719e-05) //which is 1/32767
void AudioInputI2S_F32::scale_i16_to_f32( float32_t *p_i16, float32_t *p_f32, int len) {
for (int i=0; i<len; i++) { *p_f32++ = ((*p_i16++) * I16_TO_F32_NORM_FACTOR); }
}
#define I24_TO_F32_NORM_FACTOR (1.192093037616377e-07) //which is 1/(2^23 - 1)
void AudioInputI2S_F32::scale_i24_to_f32( float32_t *p_i24, float32_t *p_f32, int len) {
for (int i=0; i<len; i++) { *p_f32++ = ((*p_i24++) * I24_TO_F32_NORM_FACTOR); }
}
#define I32_TO_F32_NORM_FACTOR (4.656612875245797e-10) //which is 1/(2^31 - 1)
void AudioInputI2S_F32::scale_i32_to_f32( float32_t *p_i32, float32_t *p_f32, int len) {
for (int i=0; i<len; i++) { *p_f32++ = ((*p_i32++) * I32_TO_F32_NORM_FACTOR); }
}
void AudioInputI2S_F32::update_1chan(int chan, audio_block_f32_t *&out_f32) {
if (!out_f32) return;
//scale the float values so that the maximum possible audio values span -1.0 to + 1.0
scale_i32_to_f32(out_f32->data, out_f32->data, audio_block_samples);
//scale_i16_to_f32(out_f32->data, out_f32->data, audio_block_samples);
//prepare to transmit by setting the update_counter (which helps tell if data is skipped or out-of-order)
out_f32->id = update_counter;
//transmit the f32 data!
AudioStream_F32::transmit(out_f32,chan);
//release the memory blocks
AudioStream_F32::release(out_f32);
}
void AudioInputI2S_F32::update(void)
{
static bool flag_beenSuccessfullOnce = false;
audio_block_f32_t *new_left=NULL, *new_right=NULL, *out_left=NULL, *out_right=NULL;
new_left = AudioStream_F32::allocate_f32();
new_right = AudioStream_F32::allocate_f32();
if ((!new_left) || (!new_right)) {
//ran out of memory. Clear and return!
if (new_left) AudioStream_F32::release(new_left);
if (new_right) AudioStream_F32::release(new_right);
new_left = NULL; new_right = NULL;
flag_out_of_memory = 1;
if (flag_beenSuccessfullOnce) Serial.println("Input_I2S_F32: update(): WARNING!!! Out of Memory.");
} else {
flag_beenSuccessfullOnce = true;
}
__disable_irq();
if (block_offset >= audio_block_samples) {
// the DMA filled 2 blocks, so grab them and get the
// 2 new blocks to the DMA, as quickly as possible
out_left = block_left_f32;
block_left_f32 = new_left;
out_right = block_right_f32;
block_right_f32 = new_right;
block_offset = 0;
__enable_irq();
//update_counter++; //I chose to update it in the ISR instead.
update_1chan(0,out_left); //uses audio_block_samples and update_counter
update_1chan(1,out_right); //uses audio_block_samples and update_counter
} else if (new_left != NULL) {
// the DMA didn't fill blocks, but we allocated blocks
if (block_left_f32 == NULL) {
// the DMA doesn't have any blocks to fill, so
// give it the ones we just allocated
block_left_f32 = new_left;
block_right_f32 = new_right;
block_offset = 0;
__enable_irq();
} else {
// the DMA already has blocks, doesn't need these
__enable_irq();
AudioStream_F32::release(new_left);
AudioStream_F32::release(new_right);
}
} else {
// The DMA didn't fill blocks, and we could not allocate
// memory... the system is likely starving for memory!
// Sadly, there's nothing we can do.
__enable_irq();
}
}
/******************************************************************/
void AudioInputI2Sslave_F32::begin(void)
{
dma.begin(true); // Allocate the DMA channel first
//block_left_1st = NULL;
//block_right_1st = NULL;
AudioOutputI2Sslave_F32::config_i2s();
#if defined(KINETISK)
CORE_PIN13_CONFIG = PORT_PCR_MUX(4); // pin 13, PTC5, I2S0_RXD0
dma.TCD->SADDR = (void *)((uint32_t)&I2S0_RDR0 + 0);
dma.TCD->SOFF = 0;
dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2);
dma.TCD->NBYTES_MLNO = 4;
dma.TCD->SLAST = 0;
dma.TCD->DADDR = i2s_rx_buffer;
dma.TCD->DOFF = 4;
dma.TCD->CITER_ELINKNO = sizeof(i2s_rx_buffer) / 4;
dma.TCD->DLASTSGA = -sizeof(i2s_rx_buffer);
dma.TCD->BITER_ELINKNO = sizeof(i2s_rx_buffer) / 4;
dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_RX);
update_responsibility = update_setup();
dma.enable();
I2S0_RCSR |= I2S_RCSR_RE | I2S_RCSR_BCE | I2S_RCSR_FRDE | I2S_RCSR_FR;
I2S0_TCSR |= I2S_TCSR_TE | I2S_TCSR_BCE; // TX clock enable, because sync'd to TX
dma.attachInterrupt(isr);
#endif
}