/* * UART_F32 * 10 JUne 2022 - Separated from FM Discriminator * * Copyright (c) 2022 Bob Larkin * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /* This object takes a single audio input representing the baseband output * of a suitable detector such as frequency or phase. The polarity of the * input is >0.0 for logic 1 as well as the the idle state and <0.0 for logic 0. * The timing of the UART is specified by the * setUART(cTauI, cTauHalfI, nBits, nParity, nStop) function. The first two * parameters are the data bit period measured in audio sample periods, * and half of that (roughly) that sets the number of audio sample periods between * between the 1-to-0 transition of the start bit and the middle of the start bit. * nBits can be between 1 and 32 (default 8). nParity can be PARITY_NONE, * PARITY_ODD or PARITY_EVEN. nStop is currently restricted to 1, but * this could change. * * Data is read using the functions * int32_t getNDataBuffer() that returns the number of words available * and readUartData() that returns a pointer to the oldest UART data structure: * struct uartData { * uint32_t data; * uint8_t error; // Parity=01, Overrun=02, Underrun=04 * int32_t timeCrossings;} * Up to 16 of these structures can be buffered before creating * an ERR_OVERRUN. * * NOTE: Parity checking does nothing now. Needs to be added using * the in-place function. June 2022 * * Time: For T4.0, 7 microseconds for 128 data points. * */ #ifndef _uart_f32_h #define _uart_f32_h #include "AudioStream_F32.h" #include "OpenAudio_ArduinoLibrary.h" #define SERIAL_IDLE 0 #define SERIAL_DATA 1 #define SERIAL_DATA_FINISHED 2 #define PARITY_NONE 0 #define PARITY_ODD 1 #define PARITY_EVEN 2 #define ERR_FRAME 1; #define ERR_OVERRUN 2 #define ERR_PARITY 4 struct uartData { uint32_t data; uint8_t status; int32_t timeCrossings; }; class UART_F32 : public AudioStream_F32 { //GUI: inputs:1, outputs:0 //this line used for automatic generation of GUI node //GUI: shortName: uart public: // Default block size and sample rate: UART_F32(void) : AudioStream_F32(1, inputQueueArray_f32) { } // Option of AudioSettings_F32 change to block size and/or sample rate: UART_F32(const AudioSettings_F32 &settings) : AudioStream_F32(1, inputQueueArray_f32) { sampleRate_Hz = settings.sample_rate_Hz; block_size = settings.audio_block_samples; } void setUART(uint32_t _cTauI, uint32_t _cTauHalfI, uint16_t _nBits, uint16_t _nParity, uint16_t _nStop) { cTauI = _cTauI; cTauHalfI = _cTauHalfI; nBits = _nBits; nStop = _nStop; nTotal = 1 + nBits; if(nParity > 0) nTotal++; } // Returns the number of unread data words int32_t getNDataBuffer(void) { delay(1); // Why needed?? <<<<<<<<<<<<<< return (uartWriteIndex - uartReadIndex); } // Read UART data returns a pointer to the uartData structure. // This increments the index and thus can only be called once per // successful UART output word. If no data is available, a NULL // pointer is returned. struct uartData* readUartData(void) { if(uartReadIndex >= uartWriteIndex) // Never should be greater return NULL; int32_t uri = uartReadIndex & uartDMask; // Circular increment of the read index uartReadIndex++; bufferSpace = 16 - uartWriteIndex + uartReadIndex; return &uartD[uri]; } // The input is a floating point value, centered on 0.0. One source of this // could be a discriminator base-band output. If the input signal is offset // from zero, it can be corrected with this function. This inputOffset is // added to the input and can be + or - in value. void setInputOffset(float32_t _inputOffset) { inputOffset = _inputOffset; } void setSampleRate_Hz(float32_t _sampleRate_Hz) { sampleRate_Hz = _sampleRate_Hz; } virtual void update(void); private: // One input data pointer audio_block_f32_t *inputQueueArray_f32[1]; float32_t sampleRate_Hz = AUDIO_SAMPLE_RATE_EXACT; uint16_t block_size = AUDIO_BLOCK_SAMPLES; // BFSK decode clock variables // Always 1 start bit. uint16_t nBits = 8; // Data bits uint16_t nParity = PARITY_NONE; uint16_t nStop = 1; // Fixed for now uint16_t nTotal = 9; // 1+nBits+Parity uint32_t cTauI = 40UL; uint32_t cTauHalfI = 20UL; struct uartData uartD[16]; // Circular buffer of UART data float32_t inputOffset = 0.0f; // Offset of input data // These next 2 indices are the index, mod 16, where we wil write // data to next, or read data from next (if available). // If the two are equal, no data is available to read. int32_t uartReadIndex = 0L; // Both indices continue to grow, unbounded int32_t uartWriteIndex = 0L; const int32_t uartDMask = 0B1111; // Mask for 16 word buffer int32_t bufferSpace = 16L; // 16 - uartWriteIndex + uartReadIndex uint16_t serialState = SERIAL_IDLE; uint8_t saveStatus; float32_t yData = 0.0f; float32_t yLast = -0.01f; float32_t yClock = -1.0f; float32_t errorClock = 0.0f; uint32_t sClock = 0UL; // Counted in audio sample units uint32_t lastTime = 0UL; // Last zero crossing uint32_t timeStartBit= 0UL; uint32_t timeLastTransition = 0UL; uint32_t cSampleNext = 0UL; uint8_t bitCount = 0UL; // Where we are at in receiving word uint32_t bitMask = 1; // Values 1, 2, 4, 8, 16,... tracks bitCount uint32_t dataWord = 0UL; uint32_t elapsedTime = 0UL; void initUartData(uint n) { uartD[n].data = 0UL; uartD[n].status = 0; // including data ready, overrun, parity and framing errors uartD[n].timeCrossings = 0; } // Write an output word for Serial BFSK modem void writeUartData(uint32_t _data, uint8_t _status, int32_t _timeCrossings) { bufferSpace = 16L - uartWriteIndex + uartReadIndex; //0 to 16 amount of space available if(bufferSpace > 0) { uartD[uartWriteIndex&uartDMask].data = _data; uartD[uartWriteIndex&uartDMask].status = _status; uartD[uartWriteIndex&uartDMask].timeCrossings = _timeCrossings; uartWriteIndex++; // Bump write index saveStatus &= ~ERR_OVERRUN; // Clear overrun bit, it has finally been sent } else // No room in buffer { saveStatus |= ERR_OVERRUN; // Error gets sent when overrun is cleared } bufferSpace = 16L - uartWriteIndex + uartReadIndex; } // Thanks svicent. NEEDS TO BE ADDED TO writeUartData() <<<---- uint8_t oddParity(uint32_t ino) { uint8_t n8 = 0; while(ino != 0) { n8++; ino &= (ino-1); // the loop will execute once for each bit of ino set } /* if n8 is odd, least significant bit will be 1 */ return (n8 & 1); } }; // End class UART_F32 #endif